
Noname manuscript No.

(will be inserted by the editor)

Invariant-Free Clausal Temporal Resolution

Jose Gaintzarain · Montserrat Hermo · Paqui

Lucio · Marisa Navarro · Fernando Orejas

Received: date / Accepted: date

Abstract Resolution is a well-known proof method for classical logics that is well suited

for mechanization. The most fruitful approach in the literature on temporal logic, which was

started with the seminal paper of M. Fisher, deals with Propositional Linear-time Temporal

Logic (PLTL) and requires to generate invariants for performing resolution on eventualities.

The methods and techniquesdeveloped in that approach have also been successfully adapted

in order to obtain a clausal resolution method for Computation Tree Logic (CTL), but in-

variant handling seems to be a handicap for further extension to more general branching

temporal logics. In this paper, we present a new approach to applying resolution to PLTL.

The main novelty of our approach is that we do not generate invariants for performing reso-

lution on eventualities. Hence, we say that the approach presented in this paper is invariant-

free. Our method is based on the dual methods of tableaux and sequents for PLTL that we

presented in a previous paper. Our resolution method involves translation into a clausal nor-

mal form that is a direct extension of classical CNF. We first show that any PLTL-formula

can be transformed into this clausal normal form. Then, we present our temporal resolution

method, called TRS-resolution, that extends classical propositional resolution. Finally, we

This work has been partially supported by the Spanish Project TIN2007-66523 and the Basque Project LoRea

GIU07/35.

Jose Gaintzarain

The University of the Basque Country, 48012-Bilbao, Spain.

E-mail: jose.gaintzarain@ehu.es

Montserrat Hermo

The University of the Basque Country, 20080-San Sebastián, Spain.

E-mail: montserrat.hermo@ehu.es

Paqui Lucio

The University of the Basque Country, 20080-San Sebastián, Spain.

E-mail: paqui.lucio@ehu.es

Marisa Navarro

The University of the Basque Country, 20080-San Sebastián, Spain.

E-mail: marisa.navarro@ehu.es

Fernando Orejas

Technical University of Catalonia, 08034-Barcelona, Spain.

E-mail: orejas@lsi.upc.edu

2

prove that TRS-resolution is sound and complete. In fact, it finishes for any input formula

deciding its satisfiability, hence it gives rise to a new decision procedure for PLTL.

Keywords Propositional Linear-time Temporal Logic · Resolution · Invariant-free · Clausal

Normal Form

1 Introduction

Temporal logic plays a significant role in computer science, since it is an ideal tool for spec-

ifying object behaviour, cooperative protocols, reactive systems, digital circuits, concurrent

programs and, in general, for reasoning about dynamic systems whose states change over

time. In particular, several conceptswhich are useful for the specification of properties of dy-

namic systems –such as fairness, non-starvation, liveness, safety, mutual exclusion, etc– can

be formally stated in temporal logic using very concise and readable formulas. Several dif-

ferent temporal logics have been devised –as formalisms for representing dynamic systems–

that mainly differ in their underlying model of time and in their expressiveness. Regarding

time modeling there are linear vs. branching, discrete vs. dense, future vs. past-and-future,

finite vs infinite, etc. Regarding expressiveness, they involve different temporal connectives

and logical constructions (such as, quantifiers, variables, fixpoint operators). Propositional

Linear-time Temporal Logic (PLTL) is one of the most widely used temporal logics. This

logic has, as the intended model for time, the standard model of natural numbers. Different

contributions in the literature on temporal logic show its usefulness in computer science and

other related areas. For a recent and extensive monograph on PLTL techniques and tools, we

refer to [13], where the reader can find sample applications along with references to specific

work that uses this temporal formalism to represent dynamic entities in a wide variety of

fields. The minimal language for PLTL adds to classical propositional connectives two ba-

sic temporal connectives ◦ (“next”) and U (“until”) such that ◦p is interpreted as ”the next

state makes p true” and pU q is interpreted as ”p is true from now until q eventually becomes

true”. Many other useful temporal connectives can be defined as derived connectives, e.g. �

(“eventually”), � (“always”) and R (“release”). From the extensive literature on technical

aspects of PLTL we mention here [15,16,29,31] where more references can be found.

Automated reasoning for temporal logic is a quite recent trend. In temporal logics, as

well as in the more general framework of modal logic, different proof methods are starting

to be designed, implemented, compared, and improved. The interested reader is referred

to [31] for a good survey about theorem-proving in PLTL and its extensions. The proof

theory for temporal logics is mainly based on three kinds of proposals: automata, tableau

and resolution. The most developed approach is model checking, which is automata-based.

In fact, model checking of temporal formulas is traditionally carried out by a conversion to

Büchi automata (see e.g. [35]), and there is a large body of research in this area. However,

the automata approach is not well suited for automated deduction, in the sense that it cannot

be used to generate proofs or deductions of a conclusion from a set of premises.

Automated reasoning for PLTL, and related logics, is mainly based on tableaux and res-

olution. Indeed, there is recently published work comparing implementations of the different

tableau and resolution procedures for PLTL and similar logics (see e.g. [20,26]).

The first tableau method for PLTL was introduced by P. Wolper in [37] and it is a two-

pass method. In the first pass, it generates an auxiliary graph. This graph is checked and

(possibly) pruned in a second phase that analyzes whether the so-called eventualities are

fulfilled. An eventuality is a formula that asserts that something does eventually hold. For

3

example, to fulfill the formula � ϕ or the formula χU ϕ the formula ϕ must eventually be

satisfied. Hence, any path in the graph that includes �ϕ or χU ϕ, but does not include ϕ,

is pruned. At the end, an empty graph means unsatisfiability. Since Wolper’s seminal paper

[37], several authors (e.g. [24,4,29]) have proposed and studied tableau methods for differ-

ent temporal and modal logics inspired by Wolper’s tableau (see [22] for a good survey).

In addition, Wolper’s two-pass tableau has been used in the development of decision pro-

cedures or proof techniques for logics that extend PLTL to some decidable fragment of the

first-order temporal logic (e.g.[28]), or to the branching case or with other features, such

as agents, knowledge, etc (e.g. [21]). The first one-pass tableau method for PLTL was de-

veloped in [34] and it avoids the second pass by adding extra information to the nodes in

the tableau. Some of this information must be synthesized bottom-up and it is needed be-

cause the fulfillment of an eventuality in a single branch depends on the other branches.

Hence, it carries out an on-the-fly checking of the fulfillment of every eventuality in every

branch. This on-the-fly tableau method has been successfully applied to other logics such

as e.g. CTL ([3]) and PDL ([23]). Another one-pass tableau method was introduced in [17]

(see also [19]) that is different from the two-pass tableau started by Wolper, and that is not

based on an on-the-fly check of eventualities. Instead, in [17,19], there is a tableau rule

that prevents from indefinitely delaying the satisfaction of eventualities. The TRS-resolution

mechanism introduced in this paper is strongly based on the tableau method in [17,19]. In

Section 9, we give more details on the relation between TRS-resolution and the TTM tableau

method that is its forerunner.

In this paper, we deal with clausal resolution for PLTL. The method of resolution, in-

vented by J.A. Robinson in 1965 ([32]), is an efficient refutation proof method that has

provided the basis for several well-known theorem provers for classical logics. The earliest

temporal resolution method [1] uses a non-clausal approach, hence a large number of rules

are required for handling general formulas instead of clauses. There is also early work (e.g.

[5,8]) related to clausal resolution for (less expressive) sublogics of PLTL. The language

in [5] includes no eventualities, whereas in [8] the authors consider the strictly less expres-

sive sublanguage of PLTL defined by using only ◦ and � as temporal connectives. The early

clausal method presented in [36] considers full PLTL and uses a clausal form similar to ours,

but completeness is only achieved in absence of eventualities (i.e. formulas of the form �ϕ

or ϕU ψ). More recently, a fruitful trend of clausal temporal resolution methods, starting

with the seminal paper of M. Fisher [12], achieves completeness for full PLTL by means

of a specialized temporal resolution rule that needs to generate an invariant formula from

a set of clauses that behaves as a loop. The methods and techniques developed in such an

approach have been successfully adapted to Computation Tree Logic (CTL) (see [6]), but

invariant handling seems to be a handicap for further extension to more general branching

temporal logics such as Full Computation Tree Logic (CTL?). In Section 9 we compare our

approach with the methods in [8,1,36,12].

In this paper, we introduce a new clausal resolution method that is sound and complete

for full PLTL. Our method is based on the dual methods of tableaux and sequents for PLTL

presented in [19]. On this basis we are able to perform clausal resolution in the presence of

eventualities avoiding the requirement of invariant generation. We define a notion of clausal

normal form and prove that every PLTL-formula can be translated into an equisatisfiable

set of clauses. Our resolution mechanism explicitly simulates the transition from one world

to the next one. Inside each world, we apply two kinds of rules: (1) the resolution and

subsumption rules and (2) the fixpoint rules that split a clause with an eventuality atom into

a finite number of new clauses. We prove that the method is sound and complete. In fact,

4

it finishes for any set of clauses deciding its (un)satisfiability, hence it gives rise to a new

decision procedure for PLTL.

Outline of the paper. In Section 2 we provide the basic background on PLTL. In Section

3 we introduce the syntactic notion of clause (Subsection 3.1), we show that any PLTL-

formula can be transformed into a set of clauses (Subsection 3.2) and the complexity of

this transformation (Subsection 3.3). In Section 4 we introduce the system TRS of inference

rules in two subsections: the first one presents the basic rules and the second one presents the

rule for solving eventualities in a way that prevents their indefinite delay. Then, in Section

5 we present the notion of TRS-derivation, provide some sample derivations and study the

relationship between TRS-resolution and classical (propositional) resolution. The soundness

of TRS is proved in Section 6. In Section 7 we propose an algorithm for systematically

obtaining, for any set of clauses Γ , a finite derivation that proves that Γ is either satisfiable

or unsatisfiable. We also show some examples of application of the algorithm in Subsection

7.2. An important issue for this algorithm is to prove its termination for every input. This

proof is presented in Subsection 7.3. In Subsection 7.4 we provide a bound of the worst-case

complexity of the algorithm. In Section 8, we prove the completeness of TRS-resolution on

the basis of the algorithm that outputs a derivation for every set of clauses. In Section 9 we

discuss significant related work. Finally, we summarize our contribution and outline some

topics for future research.

2 The Logic PLTL

A PLTL-formula is built using propositional variables (denoted by lowercase letters p, q, . . .)

from a set Prop, the classical connectives¬ and ∧, and the temporal connectives◦ and U . A

lowercase Greek letter (ϕ,ψ, χ, γ, . . .) denotes a formula and an uppercase one (Φ,∆, Γ, Ψ,Ω, . . .)

denotes a finite set of PLTL-formulas. As usual other connectives can be defined in terms

of the previous ones: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ϕRψ ≡ ¬(¬ϕU ¬ψ), �ϕ ≡ ¬ϕU ϕ,

�ϕ ≡ ¬�¬ϕ. Note that �ϕ ≡ ¬ϕRϕ. In this paper, these derived connectives are tech-

nically useful for expressing the clausal form of formulas. In the sequel, a formula means a

PLTL-formula and the following kind of formulas are significant.

Definition 1 We call eventuality to any formula of the form ϕU ψ or �ϕ. Eventualities of

the form ϕU ψ are also called until-formulas.

We use two kinds of superscripts on unary connectives. First, a superscript i varying

on IN represents the sequence consisting of i identical connectives, in particular the empty

sequence for i = 0. For instance, ◦
i

represents the sequence ◦ . . . ◦ of length i. Second, the

special case of superscript b varying in {0, 1} which allows to represent a formula with or

without a prefixed connective. For instance, �
bϕ is �ϕ whenever b is 1 and ϕ whenever b

is 0. Along the rest of the paper superscripts starting by b (from bit) range in {0, 1}.

A PLTL-structure M is a pair (SM, VM) such that SM is a denumerable sequence of

states s0, s1, s2, . . . and VM is a map VM : SM → 2Prop. Intuitively, VM(s) specifies which

atomic propositions are (necessarily) true in the state s.

The formal semantics of formulas is given by the truth of a formula ϕ in the state sj of a

PLTL-structure M, which is denoted by 〈M, sj〉 |= ϕ. This semantics is inductively defined

as follows:

– 〈M, sj〉 |= p iff p ∈ VM(sj) for p ∈ Prop

– 〈M, sj〉 |= ¬ϕ iff 〈M, sj〉 6|= ϕ

5

– 〈M, sj〉 |= ϕ ∧ ψ iff 〈M, sj〉 |= ϕ and 〈M, sj〉 |= ψ

– 〈M, sj〉 |= ◦ϕ iff 〈M, sj+1〉 |= ϕ

– 〈M, sj〉 |= ϕU ψ iff there exists k ≥ j such that 〈M, sk〉 |= ψ and for every i such that

j ≤ i < k it holds 〈M, si〉 |= ϕ.

The extension of the above formal semantics to the derived connectives yields:

– 〈M, sj〉 |= ϕ ∨ ψ iff 〈M, sj〉 |= ϕ or 〈M, sj〉 |= ψ

– 〈M, sj〉 |= ϕRψ iff for every k ≥ j it holds either 〈M, sk〉 |= ψ or 〈M, si〉 |= ϕ for

some i such that j ≤ i < k

– 〈M, sj〉 |= �ϕ iff 〈M, sk〉 |= ϕ for some k ≥ j

– 〈M, sj〉 |= �ϕ iff 〈M, sk〉 |= ϕ for every k ≥ j.

The semantics is extended from formulas to sets of formulas in the usual way: 〈M, sj〉 |= Φ

iff 〈M, sj〉 |= γ for all γ ∈ Φ. We say that M is a model of Φ, denoted M |= Φ, iff

〈M, s0〉 |= Φ. A satisfiable set of formulas has at least one model, otherwise it is unsatis-

fiable. Two sets of formulas Φ and Ψ are equisatisfiable whenever Φ is satisfiable iff Ψ is

satisfiable. The logical consequence relation between a set of formulas Φ and a formula χ,

denoted as Φ |= χ, is defined in the following way:

Φ |= χ iff for every PLTL-structure M and every sj ∈ SM:

if 〈M, sj〉 |= Φ then 〈M, sj〉 |= χ

A logic is said to be compact when it verifies that, given any set of formulasΦ, if every finite

subset of Φ is satisfiable then Φ is satisfiable. It is well known that PLTL is a non-compact

logic. For example, the infinite set of formulas {◦i
p | i ∈ IN} ∪ {� ¬p} is not satisfiable

but every finite subset of it is satisfiable. As a consequence, the completeness of our clausal

resolution method is weak in the sense that it is restricted to finite sets of clauses. Therefore,

along this paper, every set of formulas, in particular clauses, is assumed to be finite.

3 The Clausal Language

In this section we first define the conjunctive normal form of a formula. This is the basis for

our notion of clause. In the second subsection we explain how to convert any formula into a

set of clauses. Thirdly, we give the worst case complexity of the translation.

3.1 Conjunctive Normal Form for Formulas

Our notion of literal extends the classical notion of propositional literal. This extension

introduces both temporal literals and (possibly empty) prefixed chains of the connective ◦

in front of temporal and propositional literals. That is, using the usual BNF-notation:

P ::= p | ¬p
T ::= P1 U P2 | P1 RP2 | �P | �P

L ::= ◦
i
P | ◦i

T

where p ∈ Prop and i ∈ IN . P stands for a propositional literal, T for a (basic) temporal

literal and L for a literal. In the sequel, we use the term literal in the latter sense and only if

6

needed we will specify whether a literal is propositional or temporal.1 Sub- and superscripts

are used when necessary.

We extend the classical notion of the complement eL of a literal L as follows:

ep = ¬p, f¬p = p, f◦L = ◦eL, P̃1 U P2 = fP1 R fP2 and ˜P1 RP2 = fP1 U fP2

It is easy to see that g�P = � eP and g�P = � eP . Although �P and �P can be respectively

defined by eP U P and eP RP , we have intentionally introduced � P and �P as temporal

literals because of technical convenience.

A now-clauseN is a finite disjunction of literals (above denoted by L):

N ::= ⊥ | L ∨N

where ⊥ represents the empty disjunction (or the empty now-clause). We identify finite dis-

junctions of literals with sets of literals. Hence, we assume that there are neither repetitions

nor any established order in the literals of a clause. This assumption is especially advanta-

geous for presenting the resolution rule, because it avoids factoring and ordering problems.

However, for readability, we always write the disjunction symbol between the literals of a

clause.

A clause is either a now-clause or a now-clause preceded by the connective �

C ::= N | � N

A clause of the form � N is called an always-clause. Note that the formula �
b⊥ represents

the two possible syntactic forms of the empty clause, as now- or always-clause.

For a clause C = �
b(L1 ∨ . . . ∨ Ln) we denote by Lit(C) the set {L1, . . . , Ln} and for

a set of clauses Γ we denote by Lit(Γ) the set
S

C∈Γ Lit(C).

Definition 2 The set of all clauses in Γ that contain the literal L is denoted by Γ � {L}, i.e.

Γ � {L} = {C ∈ Γ | L ∈ Lit(C)}.

Since ◦ distributes over disjunction, for a given now-clause N = L1 ∨ . . . ∨ Ln, we denote

by ◦N the now-clause ◦L1 ∨ . . . ∨ ◦Ln. We say that a clause C is ◦-free if Lit(C) does not

contain any literal of the form ◦L.

Definition 3 Given a set of clausesΓ , we define alw(Γ) = {�N | �N ∈ Γ} and now(Γ) =

Γ \ alw(Γ).

Note that a formula of the form �P , can be understood as a now-clause consisting of one

temporal literal or as an always-clause consisting of one propositional literal. If a set of

clauses Γ contains this kind of formulas, by convention those formulas are considered to be

in alw(Γ).

Definition 4 For any set of clauses Γ

(a) drop� (Γ) = now(Γ) ∪ {N | �N ∈ alw(Γ)}.

(b) BTL(Γ) = {T | T ∨N ∈ drop� (Γ)}.

(c) unnext(Γ) = alw(Γ) ∪ {N | �
b(◦N) ∈ Γ}.

The set drop� (Γ) is formed by all the now-clauses in Γ together with the inner now-

clause of all the always-clauses in Γ .

BTL(Γ) is the set of all the (basic) temporal literals that occur in Γ . Hence, BTL(Γ) is a

subset of Lit(Γ). It is worth to note that any literal in Lit(Γ) that does not belong to BTL(Γ)

1 Note that ◦ is the only temporal connective that does not occur in the so-called (basic) temporal literals.

7

is either a propositional literal P or a literal of the form ◦L, according to the grammar at

the beginning of this section. Note also that unnext implicitly uses the equivalence between

�N and {N,�◦N}.

The set unnext(Γ) consists of all the clauses that should be satisfied at the next state of

a state that satisfies Γ .

A formula is in conjunctive normal form whenever it is a conjunction of clauses. For

simplicity, we identify a set of clauses with the conjunction of the clauses in it. Concretely,

we identify any formula in conjunctive normal form

N1 ∧N2 ∧ . . . ∧Nr ∧ �Nr+1 ∧ . . . ∧ �Nk

with the set of clauses

{N1, N2, . . . , Nr,�Nr+1, . . . ,�Nk}

where eachNi is a now-clause, k ≥ 1 and 0 ≤ r ≤ k.

3.2 Transforming Formulas into CNF

In this subsection we present a transformation CNF which maps any formula ϕ to its con-

junctive normal form CNF(ϕ). First, we show that any formula ϕ can be transformed into

another formula NNF(ϕ), called the negation normal form of ϕ, such that every connective

¬ is in front of a proposition. Second, we introduce an intermediate notion of normal form,

called distributed normal form, denoted DtNF(ϕ) for input formula ϕ. The transformations

NNF and DtNF preserve logical equivalence. Finally we present the transformation of any

formula to its conjunctive normal form. The formulas ϕ and CNF(ϕ) are equisatisfiable

although, in general, they are not logically equivalent.

Proposition 5 For any formula ϕ there exists a logically equivalent formula NNF(ϕ) such

that χ ∈ Prop for every subformula of NNF(ϕ) of the form ¬χ.

Proof NNF(ϕ) is obtained by repeatedly applying to any subformula of ϕ the following

reduction rules until no one can be applied

¬¬ψ
nnf
7−→ ψ ¬(ψ1 ∨ ψ2)

nnf
7−→ ¬ψ1 ∧ ¬ψ2

¬◦ψ
nnf
7−→ ◦¬ψ ¬(ψ1 ∧ ψ2)

nnf
7−→ ¬ψ1 ∨ ¬ψ2

¬�ψ
nnf
7−→ �¬ψ ¬(ψ1 U ψ2)

nnf
7−→ ¬ψ1 R¬ψ2

¬�ψ
nnf
7−→ �¬ψ ¬(ψ1 Rψ2)

nnf
7−→ ¬ψ1 U ¬ψ2

It is routine to see that the relation
nnf
7−→ (defined above) preserves logical equivalence and the

process of repeatedly applying the transformation
nnf
7−→ stops after a finite number of steps.

Therefore, ϕ and NNF(ϕ) are logically equivalent.

Now, in the distributed normal form, every connective ¬ is in front of a propositional

variable, every connective ∨ is distributed over ∧, temporal connectives that are distribu-

tive over ∨ and ∧ are distributed, for formulas of the form ϕU (δ U ψ) and of the form

ϕR (δRψ) the subformulas ϕ and δ are different and non-empty sequences of the form

� . . .� and of the form � . . .� are of length 1.

8

Definition 6 A formula is in distributed normal form if it has the form (γ1
1 ∨ . . . ∨ γk1

1) ∧

. . . ∧ (γ1
n ∨ . . . ∨ γkn

n) where each γ
j
g denotes a formula of one of the following forms

– ◦
i
P

– ◦
i
(αRβ) for some α and β 6= αRψ for any ψ

– ◦
i
(β U α) for some β and α 6= β U ψ for any ψ

– ◦
i
�β for some β 6= �ψ for any ψ

– ◦
i
�α for some α 6= � ψ for any ψ

where α and β denote two special cases of distributed normal form. Concretely, β stands

for a formula of the form (γ1
1 ∨ . . . ∨ γk1

1) with k1 ≥ 1 and α stands for either a formula γ1
1

or a formula (γ1
1 ∨ . . . ∨ γk1

1) ∧ . . . ∧ (γ1
n ∨ . . . ∨ γkn

n) with n ≥ 2 and kh ≥ 1 for every

h ∈ {1, . . . , n}.

Note that if a formula is in distributed normal form then it is also in negation normal

form.

Proposition 7 For any formula ϕ there exists a logically equivalent formula DtNF(ϕ) such

that DtNF(ϕ) is in distributed normal form.

Proof First, we transform ϕ into NNF(ϕ) and then we repeatedly apply to NNF(ϕ) the

following reduction rules

(ϕ1 ∧ ϕ2) ∨ ψ
dtnf
7−→ (ϕ1 ∨ ψ) ∧ (ϕ2 ∨ ψ) ψ ∨ (ϕ1 ∧ ϕ2)

dtnf
7−→ (ψ ∨ ϕ1) ∧ (ψ ∨ ϕ2)

◦(ϕ1 ∨ ϕ2)
dtnf
7−→ ◦ϕ1 ∨ ◦ϕ2 ◦(ϕ1 ∧ ϕ2)

dtnf
7−→ ◦ϕ1 ∧ ◦ϕ2

ψU (ϕ1 ∨ ϕ2)
dtnf
7−→ (ψU ϕ1) ∨ (ψ U ϕ2) ψR (ϕ1 ∧ ϕ2)

dtnf
7−→ (ψRϕ1) ∧ (ψRϕ2)

(ϕ1 ∧ ϕ2)U ψ
dtnf
7−→ (ϕ1 U ψ) ∧ (ϕ2 U ψ) (ϕ1 ∨ ϕ2)Rψ

dtnf
7−→ (ϕ1 Rψ) ∨ (ϕ2 Rψ)

� (ϕ1 ∨ ϕ2)
dtnf
7−→ �ϕ1 ∨ �ϕ2 � (ϕ1 ∧ ϕ2)

dtnf
7−→ �ϕ1 ∧ �ϕ2

ψ1 U (ψ1 U ψ2)
dtnf
7−→ ψ1 U ψ2 ψ1 R (ψ1 Rψ2)

dtnf
7−→ ψ1 Rψ2

� �ψ
dtnf
7−→ �ψ � �ψ

dtnf
7−→ �ψ

It is routine to see that this reduction always terminates giving a formula in distributed

normal form. Additionally, it is proved that every
dtnf
7−→-rule preserves logical equivalence.

For that, the only non-trivial
dtnf
7−→-rules are the ones for transforming ψU (ϕ1 ∨ ϕ2), (ϕ1 ∧

ϕ2)U ψ, ψR (ϕ1 ∧ϕ2), and (ϕ1 ∨ϕ2)Rψ. Here, we give the proof details for the first one.

The remaining three are similar.

Suppose that 〈M, sj〉 |= ψ U (ϕ1 ∨ ϕ2). Then, there exists k ≥ j such that 〈M, sk〉 |=

ϕ1 ∨ ϕ2 and 〈M, si〉 |= ψ for every i such that j ≤ i < k. Hence, for such k, either

〈M, sk〉 |= ϕ1 or 〈M, sk〉 |= ϕ2. In the former case, 〈M, sj〉 |= ψU ϕ1, whereas in the

latter 〈M, sj〉 |= ψU ϕ2. Therefore 〈M, sj〉 |= (ψ U ϕ1) ∨ (ψ U ϕ2).

Conversely, if 〈M, sj〉 |= (ψU ϕ1)∨(ψU ϕ2), then either 〈M, sj〉 |= (ψ U ϕ1) or 〈M, sj〉 |=

(ψ U ϕ2). Hence, there exists k ≥ j such that 〈M, si〉 |= ψ for all i such that j ≤ i < k and

〈M, sk〉 |= ϕ1 or 〈M, sk〉 |= ϕ2. Then, 〈M, sk〉 |= ϕ1 ∨ ϕ2 and 〈M, si〉 |= ψ for every i

such that j ≤ i < k. Therefore, 〈M, sj〉 |= ψ U (ϕ1 ∨ ϕ2).

As the following theorem shows, we will use the distributed normal form as a prelimi-

nary step for transforming a formula into its conjunctive normal form.

9

Theorem 8 For any formula ϕ there exists an equisatisfiable formula CNF(ϕ) such that

CNF(ϕ) is in conjunctive normal form.

Proof First, we transform ϕ into DtNF(ϕ). Second, we repeatedly apply the following rules

until no one can be applied. In the rules bellowψ is the whole formula (in distributed normal

form) and the expressions of the form ψ[α ⇒ β] denote the formula obtained by simultane-

ously replacing all the occurrences of the subformula α in ψ by the formula β, where α is

any non-literal subformula of any conjunct of ψ that is not a clause yet.

ψ
cnf
7−→ ψ[◦

i
(ϕ1 U ϕ2) ⇒ ◦

i
(p1 U p2)] ∧ CNF(� (¬p1 ∨ ϕ1)) ∧ CNF(� (¬p2 ∨ ϕ2))

ψ
cnf
7−→ ψ[◦

i
(ϕ1 Rϕ2) ⇒ ◦

i
(p1 R p2)] ∧ CNF(� (¬p1 ∨ ϕ1)) ∧ CNF(� (¬p2 ∨ ϕ2))

ψ
cnf
7−→ ψ[◦

i
�γ ⇒ ◦

i
� p] ∧ CNF(� (¬p ∨ γ))

ψ
cnf
7−→ ψ[◦

i
� γ ⇒ ◦

i
� p] ∧ CNF(� (¬p ∨ γ))

ψ
cnf
7−→ ψ[� (γ ∨ �χ) ⇒ � (γ ∨ �p)] ∧ CNF(� (¬p ∨ χ))

ψ
cnf
7−→ ψ[� (�χ ∨ γ) ⇒ � (� p ∨ γ)] ∧ CNF(� (¬p ∨ χ))

where p, p1 and p2 are fresh new propositional variables and the formula χ is not a proposi-

tional literal. Note that the new conjunctions of the form CNF(� (¬ψ1∨ψ2)) serve to define

the fresh new symbols ψ1. We will prove that the transformation from ϕ to CNF(ϕ) stops

after a finite number of steps and both formulas are equisatisfiable.

On one hand, each application of a
cnf
7−→-rule reduces the depth of (at least) one non-literal

subformula of a formula in DtNF-form. Additionally, the number of fresh new variables is

bounded by the number of subformulas. These two facts ensure termination.

On the other hand we prove, by structural induction, that the formulas in both sides of

each
cnf
7−→-rule are equisatisfiable. Here we only show the details for the first rule above (the

remaining rules are similar or particular cases). Suppose that 〈M, sj〉 |= ψ where ψ is in

distributed normal form and ◦
i
(ϕ1 U ϕ2) is a non-literal subformula of any conjunct of ψ

that is not a clause yet. Then, since p1 and p2 are fresh, p1, p2 6∈ VM(sk) for all k. Therefore,

we define M′ to be the extension of M such that ph ∈ VM′ (s′k) iff 〈M, sk〉 |= ϕh for all

k and h ∈ {1, 2}. As a consequence, for all k, 〈M, sk〉 |= ◦
i
(ϕ1 U ϕ2) iff 〈M′, s′k〉 |=

◦
i
(p1 U p2) and 〈M′, s′k〉 |= � (¬p1 ∨ ϕ1) ∧ � (¬p2 ∨ ϕ2). Hence,

〈M′, s′k〉 |= ψ[◦
i
(ϕ1 U ϕ2) ⇒ ◦

i
(p1 U p2)] ∧ � (¬p1 ∨ ϕ1) ∧ � (¬p2 ∨ ϕ2).

By the induction hypothesis, the transformation of � (¬p1 ∨ ϕ1) and � (¬p2 ∨ ϕ2) to con-

junctive normal form preserves equisatisfiability.

Conversely, consider any modelM of the right-hand part of the first
cnf
7−→-rule. If 〈M, s0〉 6|=

◦
i(p1 U p2), then 〈M, s0〉 must satisfy some other disjunct in every conjunct of ψ where

◦
i
(p1 U p2) occurs in. Therefore M is also a model of ψ. If 〈M, s0〉 |= ◦

i
(p1 U p2), then

there exists a j ≥ i such that 〈M, sj〉 |= p2 and 〈M, sk〉 |= p1 for all k such that i ≤ k < j.

Additionally, for all k, 〈M, sk〉 |= � (¬ph ∨ ϕh) for h ∈ {1, 2}. Therefore, 〈M, sj〉 |= ϕ2

and 〈M, sk〉 |= ϕ1 for all k such that i ≤ k < j. Hence, 〈M, s0〉 |= ◦
i
(ϕ1 U ϕ2), which

means that M must be a model of ψ.

10

Example 9 Let us consider the following formula ϕ = ¬(p ∧ r ∧ � (¬(p ∧ r) ∨ ◦(p ∧ r)))

Note that ϕ is equivalent to ¬� (p∧ r) by means of induction on time. First, we transform ϕ

into

NNF(ϕ) = ¬p ∨ ¬r ∨ � (p ∧ r ∧ ◦(¬p ∨ ¬r))

Then, its distributed normal form is

DtNF(ϕ) = ¬p ∨ ¬r ∨ � (p ∧ r ∧ (◦¬p ∨ ◦¬r))

Finally, the conjunctive (or clausal) normal form of ϕ is

CNF(ϕ) = (¬p ∨ ¬r ∨ � a) ∧ CNF(� (¬a ∨ (p ∧ r ∧ (◦¬p ∨ ◦¬r)))) =

= (¬p ∨ ¬r ∨ � a) ∧ � (¬a∨ p) ∧ � (¬a∨ r) ∧ � (¬a∨ ◦¬p ∨ ◦¬r)

where a new propositional variable a ∈ Prop has been introduced and new clauses that

define the variable a have been added. The formula CNF(ϕ) can also be understood as the

set of clauses {(¬p ∨ ¬r ∨ � a),� (¬a∨ p),� (¬a ∨ r),� (¬a∨ ◦¬p ∨ ◦¬r)}.

3.3 Complexity of the Translation

In this subsection we show that the worst case of the translation to CNF is bounded by an

exponential on the size of the input formula.

Definition 10 Given a formula ϕ, we define the size of ϕ, namely size(ϕ), as the number of

connectives cnt(ϕ) plus the number of propositional variables, pv(ϕ) in ϕ.

Proposition 11 For any formula ϕ, size(CNF(ϕ)) ∈ 2O(size(ϕ)).

Proof The complexity of the first transformation from ϕ to NNF(ϕ) is linear because the

worst case is when the connective ¬ appears only once and it occurs as the outermost con-

nective, i.e. ϕ is of the form ¬ψ for some formula ψ. In such a case ¬ will end up appearing

in front of every propositional variable. Hence, size(NNF(ϕ)) = cnt(ϕ) − 1 + 2 × pv(ϕ)

which is smaller or equal than 2 × size(ϕ).

In the second transformation to DtNF(ϕ), each use of the distribution laws can almost dou-

ble the size of the initial formula. So, we only can ensure that size(DtNF(ϕ)) ≤ 2size(NNF(ϕ))

or equivalently that size(DtNF(ϕ)) ∈ O(2size(ϕ)).

Finally, the last transformation to CNF(ϕ) has again linear complexity. This is basically be-

cause –in the rules of Theorem 8– each new variable replaces a subformula of a formula ψ

that is already in DtNF form.

Summarizing, size(CNF(ϕ)) ∈ O(2O(size(ϕ))) = 2O(size(ϕ)).

We would like to remark that the exponential blow-up is only due –as in classical cnf–

to the distribution laws and it can be prevented using fresh variables as it is made in the

so-called definitional cnf (see [11]). Therefore, as in classical cnf, for practical purposes, we

could use new variables to achieve a transformation to clausal form of linear complexity.

11

4 The Temporal Resolution Rules

In this section, we present the rules of our temporal resolution system. In addition to a

resolution-like rule (Res), this system includes a subsumption rule (Sbm) and also the three

so-called fixpoint rules –(RFix), (U Fix) and (U Set)– for decomposing temporal liter-

als. The rule (Sbm) is a natural extension of (traditional) clausal subsumption. The rules

(RFix) and (U Fix) are based on the usual inductive definition of the connectives R and

U , respectively, whereas (U Set) is based on a more complex inductive definition of U that

is the basis of our approach. Therefore, this section is split into two subsections. The first

subsection is devoted to the first four rules which we call Basic Rules. The details about the

rule (U Set) are explained in the second subsection. The corresponding derived rules for �

and � are showed in both subsections. In the sequel, the rules explained in this section are

called TRS-rules and the system is called TRS.

(Res)
�

b(L ∨ N) �
b′(eL ∨ N ′)

�
b×b′(N ∨ N ′)

Fig. 1 The Resolution Rule

4.1 Basic Rules

Considering that Γ is the current set of clauses, the resolution rule (Res) in Fig. 1 is applied

to two clauses (the premises) in Γ and obtains a new clause (the resolvent). The rule (Res)

is a very natural generalization of classical resolution for always-clauses, and it is written in

the usual format of premises and resolvent separated by a horizontal line. (Res) applies to

two clauses (the premises) that contain two complementary literals. Both premises can be

headed or not by an always connective (depending on superscripts b and b′ whose range is

{0, 1}). By means of the product b × b′ in the superscript of the resolvent, only when both

premises are always-clauses, the resolvent is also an always-clause. In particular, when N

and N ′ are both ⊥, the resolvent is �
b×b′⊥, i.e. either �⊥ or ⊥. The resolvent is added

to Γ while the premises remain in Γ . That is, each application of the rule (Res) adds a

clause to the current set of clauses. On the contrary, the remaining TRS-rules replace a set of

clausesΣ ⊆ Γ with another set of clauses, namely Ψ . We write them as transformation rules

Σ 7→ Ψ . The setsΣ andΨ are respectively called the antecedent and the consequent and they

are in general equisatisfiable but in some cases logically equivalent. So that, each application

of these transformation rules removes the clauses in Σ from the current set of clauses and

adds the clauses in Ψ . The first transformation rule is the subsumption rule (Sbm) in Fig. 2,

(Sbm) {�
bN, �

bN ′} 7−→ {�
bN ′} if N ′ ⊆ N

Fig. 2 The Subsumption Rule

12

which generalizes classical subsumption to always-clauses.2 This rule is applied to any set

that contains both �
bN and �

bN ′ to eliminate the former while �
bN ′ remains.

(RFix) {�
b((P1 RP2) ∨ N)} 7−→ {�

b(P2 ∨ N), �
b(P1 ∨ ◦(P1 RP2) ∨ N)}

(U Fix) {�
b((P1 U P2) ∨ N)} 7−→ {�

b(P2 ∨ P1 ∨ N), �
b(P2 ∨ ◦(P1 U P2) ∨ N)}

Fig. 3 The Fixpoint Rules (RFix) and (U Fix)

The fixpoint rules (RFix) and (U Fix) in Fig. 3 serve to replace a clause of the form

�
b(T ∨ N) with a logically equivalent set of clauses. The rule (RFix) splits the tem-

poral literal P1 RP2 by using the well-known inductive definition of the connective R :

P1 RP2 ≡ P2 ∧ (P1 ∨ ◦(P1 RP2)). Likewise, the rule (U Fix) uses the inductive defi-

nition of the connective U : P1 U P2 ≡ P2 ∨ (P1 ∧ ◦(P1 U P2)). In both cases, a simple

distribution gives the equivalent set of two clauses that is shown in the consequent of each

rule. In order to illustrate this point let us consider the case of the connective U . By the

inductive definition of U and distributivity of ∨ over ∧,

P1 U P2 ≡ P2 ∨ (P1 ∧ ◦(P1 U P2)) ≡ (P2 ∨ P1) ∧ (P2 ∨ ◦(P1 U P2)).

Hence, �
b((P1 U P2) ∨ N) is logically equivalent to the conjunction of the two clauses

�
b(P2 ∨P1∨N) and �

b(P2∨◦(P1 U P2)∨N). So that, the antecedent of the rule (U Fix)

is logically equivalent to the conjunction of the two clauses in the consequent. Since the

(�Fix) {�
b(� P ∨ N)} 7−→ {�

b(P ∨ N), �
b(◦� P ∨ N)}

(�Fix) {�
b(� P ∨ N)} 7−→ {�

b(P ∨ ◦�P ∨ N)}

Fig. 4 The Fixpoint Rules (� Fix) and (�Fix)

connectives � and � can be seen as particular cases of R and U respectively, the rules in Fig.

4 constitute the corresponding specializations of the rules in Fig. 3.

4.2 The Rule (U Set)

The construction of the consequent of the rule (U Set) in Fig. 5 takes into account, not only

a (non-empty) set whose clauses include a temporal atom P1 U P2, but also the remaining

clauses. Consequently, the antecedent of the rule (U Set) is

Γ ≡ Φ ∪ {�
bi((P1 U P2) ∨Ni) | 1 ≤ i ≤ n} (1)

where n ≥ 1 and Φ stands for the set consisting of all the remaining clauses in the set to

which (U Set) is applied. It is worth to note that the literal P1 U P2 can also occur in Φ.3

2 Note that the same superscript b occurs in both clauses.
3 The opposite restriction is not required for soundness. However, for achieving completeness the rule

(U Set) is applied over a partition of the current set of clauses into a set formed by all the clauses that

include P1 U P2 and the remaining clauses.

13

(U Set) Φ ∪ {�
bi((P1 U P2) ∨ Ni) | 1 ≤ i ≤ n}

7−→ Φ ∪ {P2 ∨ P1 ∨ Ni, P2 ∨ ◦(aU P2) ∨ Ni | 1 ≤ i ≤ n}

∪ CNF(def(a,P1, ∆))

∪ {� (◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1
∆ = now(Φ)
a ∈ Prop is fresh

def(a,P1, ∆) = � (¬a ∨ (P1 ∧ ¬∆)) if ∆ 6= ∅
def(a,P1, ∆) = � ¬a if ∆ = ∅

Fig. 5 The Rule (U Set)

Example 12 Let us apply the rule (U Set) to the eventuality r U s in the set of clauses

{p, ◦q,�u,� ((rU s) ∨ (◦t))}.

Then Φ = {p,◦q,�u} and ∆ = now(Φ) = {p, ◦q}, where now is the operator on sets of

clauses introduced in Definition 3. Therefore, the consequent of this (U Set) application is

{p, ◦q,�u} ∪ {s ∨ r ∨ ◦t, s ∨ ◦(aU s) ∨ ◦t}

∪ {� (¬a∨ r),� (¬a ∨ ¬p ∨ ◦¬q)}

∪ {� ((◦(r U s)) ∨ (◦◦t))}

where a is the fresh variable and def(a, r, ∆) = {� (¬a∨ r),� (¬a∨¬p∨◦¬q)}. Below we

justify the construction of ∆ = now(Φ) for excluding always-clauses from the definition of

the fresh variable a. We call ∆ the context. Let us give a clue on context handling through

this example. If we used the whole set Φ instead of ∆ in the definition of a, then the second

clause in def(a, r, Φ) would be � (¬a ∨ ¬p ∨ ◦¬q ∨ �¬u). However, since �u is in Φ, the

clause �u also belongs to the consequent. Therefore, the disjunct �¬u of the above clause,

would never be satisfied.

Next, we explain the intuition behind the rule (U Set) and introduce the definition of

context. First, it is easy to see that the above set Γ (see (1)) and the following set Γ1 are

equisatisfiable.

Γ1 ≡ Φ ∪ {(P1 U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {�

bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

Second, as explained for the rule (U Fix), the set Γ1 is equisatisfiable to the set

Γ2 ≡ Φ ∪ {P2 ∨ P1 ∨Ni, P2 ∨ ◦(P1 U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {�

bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

Now, the crucial idea is that Γ2 is also equisatisfiable to the following set4

Γ3 ≡ Φ ∪ {P2 ∨ P1 ∨Ni, P2 ∨ ◦((P1 ∧ ¬Φ)U P2) ∨Ni | 1 ≤ i ≤ n}

∪ {�
bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

To see that Γ2 and Γ3 are equisatisfiable, suppose that the set Γ2 has a model M such that

〈M, s0〉 |= Φ ∪ {P1,¬P2,◦(P1 U P2)} and 〈M, s1〉 6|= P2. Then, P2 should be satisfied

4 where ¬Φ stands for the disjunction of the negation of all the formulas in Φ. Hence, Γ3 is not necessarily

formed by clauses.

14

in a later state sj with j > 1 and P1 is true in all the states sh such that 1 ≤ h < j.

Moreover, if Φ is satisfied in a state sk with k ∈ {0, . . . , j − 1} and Φ is not satisfied in

the states sk+1, . . . , sj−1, then we can construct a model M′ of Γ2 by simply deleting the

states s0, . . . , sk−1 in M. Note that at least s0 satisfies Φ and also that, in particular, k could

be j − 1, which means that the sequence sk+1, . . . , sj−1 is empty and the model M′ starts

in sj−1. This M′ is a model of ◦((P1 ∧ ¬Φ)U P2). In the converse direction, any model of

◦((P1 ∧ ¬Φ)U P2) is itself a model of ◦(P1 U P2). So Γ2 and Γ3 are equisatisfiable.

Finally, the always-clauses in Φ can be excluded from the negation of Φ since, in general, the

two sets {�ψ,◦((γ ∧ (ϕ∨ ¬�ψ))U δ)} and {�ψ, ◦((γ ∧ϕ)U δ)} are logically equivalent.

This fact motivates the following notion of context.

Definition 13 In an application of the rule (U Set) (see Fig. 5) to an antecedent that is

partitioned in the two sets Φ and {�
bi((P1 U P2) ∨ Ni) | 1 ≤ i ≤ n} we say that ∆ =

now(Φ) is the context. 5

Then, Γ3 is logically equivalent to

Γ4 ≡ Φ ∪ {P2 ∨ P1 ∨Ni, P2 ∨ ◦((P1 ∧ ¬∆)U P2) ∨Ni | 1 ≤ i ≤ n}

∪ {�
bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

Since ◦((P1 ∧ ¬∆)U P2) is not a literal, the rule (U Set) introduces a fresh propositional

variable a that replaces the formula P1 ∧ ¬∆, hence the definition of a should be given by

the cnf-form of the formula � (a↔ (P1∧¬∆)). However, since the left-to-right implication

is enough for equisatisfiability, we do not add the clauses for the reverse implication, using

only the transformation to cnf-form of the formula � (¬a∨ (P1 ∧ ¬∆)). The correctness of

the rule (U Set) is shown in detail in the proof of Proposition 28.

The rule (U Set) leads to a complete resolution method –that does not require invariant

generation– mainly due to the above explained management of the so-called contexts (in the

rule (U Set)) that prevents from postponing indefinitely the satisfaction of P1 U P2. Exam-

ple 17 in Section 5 illustrates how contexts are handled to cause inconsistency whenever the

fulfillment of an eventuality could be infinitely delayed. There is a finite number of possible

different contexts and the repetition of a previous context, while postponing an eventual-

ity, also causes inconsistency. Therefore, there is a clear strategy to achieve termination and

completeness.

(�Set) Φ ∪ {�
bi(� P ∨ Ni) | 1 ≤ i ≤ n}

7−→ Φ ∪ {P ∨ ◦(aU P) ∨ Ni | 1 ≤ i ≤ n}

∪ CNF(def(a, ∆))

∪ {� (◦�P ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1
∆ = now(Φ)
a ∈ Prop is fresh

def(a,∆) = � (¬a∨ ¬∆) if ∆ 6= ∅
def(a,∆) = � ¬a if ∆ = ∅

Fig. 6 The Rule (� Set)

The rule (� Set) in Fig. 6 is the specialization of (U Set) that corresponds to the equiv-

alence of � P ≡ eP U P . Consequently, along the rest of the paper, the rule (� Set) is treated

5 The operator now was introduced in Definition 3.

15

as a derived rule, in the sense that most technical details are given only for the general rule

(U Set).

5 Temporal Resolution Derivations

A classical resolution derivation for a set of propositional clauses Γ is a sequence of sets of

clauses

Γ0 7→ Γ1 7→ . . . 7→ Γk

where Γ = Γ0 and each Γi+1 is obtained from Γi by means of a resolution-step that consists

in applying the (classical) resolution rule. The sequence ends when either Γk contains ⊥ or

every application of the resolution rule on formulas in Γk yields a formula that is already in

Γk . For classical propositional logic, resolution is sound, refutationally complete and, even,

complete. Soundness and refutational completeness mean that the method obtains a set Γk

that contains ⊥ for some k ∈ IN if and only if Γ is unsatisfiable. Moreover, in classical

propositional resolution the sequence obtained is always finite (if the pairs of clauses for

applying the resolution rule are selected fairly) and consequently classical propositional

resolution is also complete and serves as a decision procedure.

In this section we first extend the classical notion of derivation –to the temporal case

of PLTL– introducing TRS-derivations. We also provide some sample TRS-derivations. The

notion of TRS-derivation is the basis of the sound, refutationally complete, and complete

resolution mechanism that is presented in this paper. In the second subsection we prove

technical results on the relationship between TRS-resolution and classical (propositional)

resolution.

5.1 TRS-Derivations and Examples

Our notion of derivation explicitly simulates the transition from one state to the next one,

in the sense that whenever in the current set of clauses no more resolution resolvents can

be added, then we use the operator unnext (see Definition 4) to get the clauses that must

be satisfied in the state that follows (is next to) the current one. Inside each state, the TRS-

rules are applied, hence the so-called local derivations are (roughly speaking) an extension

of classical derivations.

Definition 14 A TRS-derivation for a set of clauses Γ is a sequence

D = Γ
0
0 7→ Γ

1
0 7→ . . . 7→ Γ

h0

0 Z⇒ Γ
0
1 7→ Γ

1
1 7→ . . . 7→ Γ

h1

1 Z⇒ . . . Z⇒ Γ
0
i 7→ Γ

1
i 7→ . . .

where

(a) Γ0
0 = Γ

(b) 7→ represents the application of a TRS-rule

(c) Z⇒ represents the application of the unnext operator

If any set Γ
j
i in D contains �

b⊥, then D is called a refutation for Γ . We say that a TRS-

derivation is a local derivation if it does not contain any application of the unnext operator.

A local derivation is called a local refutation if it is a refutation.

16

Note that we use two different symbols (7→ and Z⇒) to highlight the difference between the

application of a TRS-rule and the application of the unnext operator. The former applications

produce sets Γ
j+1
i from Γ

j
i and are called TRS-steps. The latter applications yield Γ0

i+1 from

Γhi

i and are called unnext-steps.

In the sequel we only use the prefix TRS- whenever confusion might result, otherwise

we simply say derivation.

Now we give four examples of refutations. For readability, the derivations are repre-

sented as vertical sequences of rule applications with the name of the applied rule at the

right-hand side of each step. In addition, the formulas to which each rule affects have been

underlined. The first example shows that in some cases, even if temporal literals are in-

volved, the refutation is achieved using only the resolution rule (Res) and the unnext oper-

ator. The second example illustrates that sometimes the rule (U Set) is not necessary and

the rule (U Fix) is enough. The third example shows how contexts are handled to cause

inconsistency whenever the fulfillment of an eventuality could be infinitely delayed. Finally,

in the fourth example, the rule (U Set) is applied to a proper subset of the set of clauses that

contain the literal pU q. In general, it can be applied to any non-empty subset.

Example 15

Γ2

1
= {� (r ∨ � p), � p, �◦¬r, ¬r, � ¬p, � (◦r ∨ ¬q ∨ � p), ⊥}

Γ1

1
= {� (r ∨ � p), � ◦¬r, ¬r, �¬p, � (◦r ∨ ¬q ∨ � p),� p}

(Res)

Γ0

1
= {� (r ∨ � p), �◦¬r, ¬r, �¬p, � (◦r ∨ ¬q ∨ � p)}

(Res)

Γ0

0
= {� (r ∨ � p), �◦¬r, ◦� ¬p, � (◦r ∨ ¬q ∨ � p), p ∨ q, ¬q}

(unnext)

It is worth to remark that in the TRS-step that yields Γ2
1 from Γ1

1 the formula �¬p is

treated as a now-clause formed by a temporal literal.

Example 16

Γ5

0
= {� ¬p, � (p ∨ r), � (p ∨ ◦(r U p)), p ∨ ¬r, p ∨ ◦((¬r)U p), � r, ¬r, ⊥}

Γ4

0
= {�¬p, � (p ∨ r), � (p ∨ ◦(r U p)), p ∨ ¬r, p ∨ ◦((¬r)U p), � r, ¬r}

(Res)

Γ3

0
= {� ¬p, � (p ∨ r), � (p ∨ ◦(r U p)), p ∨ ¬r, p ∨ ◦((¬r)U p), � r}

(Res)

Γ2

0
= {�¬p, � (p ∨ r), � (p ∨ ◦(r U p)), p ∨ ¬r, p ∨ ◦((¬r)U p)}

(Res)

Γ1

0
= {� ¬p, (¬r)U p, � (p ∨ r), � (p ∨ ◦(r U p))}

(U Fix)

Γ0

0
= {� ¬p, � (r U p), (¬r)U p}

(U Fix)

In this example the formulas �¬p and �r are treated as always-clauses formed by one

propositional literal.

Example 17 Let Γ0
0 = {� (¬p ∨ ◦p), p, xU ¬p}. Then, by applying (U Set) to xU ¬p in

Γ0
0 where Φ = {� (¬p ∨ ◦p), p} and ∆ = {p},

Γ1
0 = {� (¬p∨◦p), p,¬p∨x,¬p∨◦(aU ¬p),� (¬a∨¬p),� (¬a∨x)}where a is the fresh

variable whose meaning is defined to be x∧¬p by the last two clauses. Note that ¬p is ¬∆.

Then, by four applications of the rule (Res) that respectively resolve the singleton clause p

with the four occurrences of ¬p,

Γ5
0 = {� (¬p∨◦p),◦p, x, p,¬p∨x,¬p∨◦(aU ¬p),◦(aU ¬p),¬a,� (¬a∨¬p),� (¬a∨x)}.

Now, the operator unnext produces Γ0
1 = {� (¬p∨◦p), p, aU ¬p,� (¬a∨¬p),� (¬a∨x)}.

Hence, the application of (U Set) to aU ¬p in Γ0
1 where Φ = {� (¬p ∨ ◦p), p,� (¬a ∨

17

¬p),� (¬a ∨ x)} and ∆ = {p} yields

Γ1
1 = {� (¬p∨◦p), p,¬p∨a,¬p∨◦(bU ¬p),� (¬b∨¬p),� (¬b∨a),� (¬a∨¬p),� (¬a∨x)}

where the fresh variable b is defined as a∧¬p by the clauses � (¬b∨¬p),� (¬b∨ a). Then,

the application of (Res) to p and ¬p∨a yields a. Finally, the resolution of p and � (¬a∨¬p)

yields ¬a. Hence, the empty clause is immediately obtained from a and ¬a.

Roughly speaking, a holds whenever the satisfaction of ¬p (or equivalently the fullfilment

of xU ¬p) is postponed. However, ameans x∧¬p, where ¬p is the negated context. So that,

the part of the definition of a given by the clause � (¬a ∨ ¬p) allows the inference of ¬a,

which leads to the inconsistency.

Example 18

Γ3

1
= {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, �¬s, � ¬a, q ∨ a, q ∨ ◦(bU q), �¬b, q, ⊥}

Γ2

1
= {� ((pU q) ∨ r), � ((pU q) ∨ � s), �¬q, �¬s, �¬a, q ∨ a, q ∨ ◦(bU q), � ¬b, q}

(Res)

Γ1

1
= {� ((pU q) ∨ r), � ((pU q) ∨ � s), �¬q, �¬s, �¬a, q ∨ a, q ∨ ◦(bU q), � ¬b}

(Res)

Γ0

1
= {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, � ¬a, aU q}

(U Set)

Γ4

0
= {� ((pU q) ∨ r), � ((pU q) ∨ � s), � ¬q, � ¬s, q ∨ p, q ∨ ◦(aU q), �¬a, ◦(aU q)}

(unnext)

Γ3

0
= {� ((pU q) ∨ r), � ((pU q) ∨ � s), �¬q, � ¬s, q ∨ p, q ∨ ◦(aU q), � ¬a}

(Res)

Γ1

0
= {� ((pU q) ∨ r), � ((pU q) ∨ � s), �¬q, � ¬s, (pU q)}

(U Set)

Γ0

0
= {� ((pU q) ∨ r), � ((pU q) ∨ � s), �¬q, � ¬s}

(Res)

Note that the formula �¬s is treated as a literal in Γ0
0 and as an always-clause in Γ1

0 .

Besides, it is worth to note that in Γ1
0 there are three occurrences of pU q, but the rule

(U Set) is applied by considering the set Φ to be formed by the first four clauses.

5.2 Relating TRS-Resolution to Classical Resolution

In this subsection we define the notion of linear local derivation and, based on it, we establish

a relation between TRS-resolution and classical resolution that enables us to use well-known

results from classical propositional logic.

Definition 19 A set of clauses Γ is closed with respect to TRS-rules (shortly, TRS-closed)

iff it satisfies the following three conditions:

(a) BTL(Γ) = ∅ (i.e. any literal in Γ is either propositional (p or ¬p) or starts by ◦)6

(b) The subsumption rule (Sbm) cannot be applied to Γ

(c) Every clause obtained from Γ by application of the resolution rule (Res) is already in

Γ or it is subsumed by some clause in Γ .

Definition 20 Let Γ be a set of clauses, we denote by Γ∗ any set such that there exists a

local derivation Γ 7→ . . . 7→ Γ∗ and either �
b⊥ ∈ Γ∗ or Γ∗ is TRS-closed. Additionally,

the non-deterministic operation that yields Γ∗ from Γ is denoted by close.

Definition 21 A set of clauses Γ is locally inconsistent iff there exists a local refutation for

Γ . Otherwise it is locally consistent.

Proposition 22 For any TRS-closed set of clauses Γ , if �
b⊥ 6∈ Γ then Γ is locally consis-

tent.

6 see Subsection 3.1.

18

Proof If Γ is TRS-closed, every clause that can be obtained by means of the rule (Res) is

already in Γ or is subsumed by some other clause in Γ . If �
b⊥ is not in Γ then there is no

way to obtain it by means of a local derivation.

The following notion is an adaptation of the concept of linear resolution based on a

clause (see e.g. Section 2.6 in [33]).

Definition 23 A local derivation D for Γ is linear with respect to a clause C ∈ Γ iff it

satisfies the following three conditions

(a) Every TRS-step in D is an application of the rule (Res)

(b) C is one of the premises for (Res) in the first TRS-step

(c) For every TRS-step in D, except for the first one, one of the premises is the resolvent

obtained in the previous TRS-step.

Next, we formulate a useful relationship between TRS-resolution and classical propositional

resolution.

Definition 24 Let Γ be a set of clauses, prop(Γ) is the set that results from drop� (Γ) by

replacing all the occurrences of each non-propositional literal L ∈ Lit(drop� (Γ)) with a

fresh propositional literal in a coherent way, in the sense that complementary literals are

replaced with complementary propositional literals.

Proposition 25 Let Γ be a set of clauses such that BTL(Γ) = ∅.

(i) drop� (Γ) is locally inconsistent iff prop(Γ) is inconsistent (in classical logic).

(ii) Γ is locally inconsistent iff drop� (Γ) is locally inconsistent.

Proof (i) For the left to right implication, since BTL(Γ) = ∅, if drop� (Γ) is locally in-

consistent then there exists a local refutation for drop� (Γ) where every TRS-step is an

application of the rule (Res) or the rule (Sbm). Hence, we can trivially build a classical

refutation for prop(Γ) with the same number of steps and using classical resolution and

subsumption instead of (Res) and (Sbm), respectively.

Conversely, if prop(Γ) is inconsistent then by completeness of classical propositional

resolution there exists a refutation for prop(Γ) where only the classical resolution rule

is used. Then, it is easy to obtain a local refutation for drop� (Γ) applying the resolution

rule (Res) to the corresponding clauses.

(ii) Since BTL(Γ) = ∅, if Γ is locally inconsistent then there exists a local refutation D for

Γ where every TRS-step is an application of the rule (Res) or the rule (Sbm). From D

we can build a local refutation for drop� (Γ) in a trivial manner, by using a clause N

whenever the original derivation D uses the corresponding �N .

If drop� (Γ) is locally inconsistent then, by (i) and the completeness of classical propo-

sitional resolution, there exists a refutation D for prop(Γ) where every TRS-step is an

application of the classical resolution rule. From D, it is straightforward to obtain a lo-

cal refutation D′ for drop� (Γ) where every TRS-step is an application of the rule (Res).

This local refutation is trivially convertible into a local refutation for Γ , by using the

clause �N ∈ Γ instead of N ∈ drop� (Γ) wheneverN 6∈ Γ .

Next, we provide a basic result that is used in Section 8 for proving completeness. This

result is an adaptation of the completeness of classical linear resolution based on a clause

(see Section 2.6 in [33]) that states

Given a consistent set of propositional clausesΦ, if for a propositional clause β 6∈ Φ

the set Φ∪{β} is inconsistent then there exists a refutation for Φ∪{β} that is linear

with respect to the clause β.

19

Proposition 26 Let Γ be a locally consistent set of clauses such that BTL(Γ) = ∅ and let

C be a clause that is not in Γ such that BTL({C}) = ∅. If Γ ∪ {C} is locally inconsistent

then there exists a local refutation for Γ ∪ {C} that is linear with respect to the clause C.

Proof If Γ ∪ {C} is locally inconsistent, by Proposition 25 the set prop(Γ ∪ {C}) is incon-

sistent and, by completeness of classical linear resolution based on a clause (see above),

there exists a refutation D′ for prop(Γ ∪ {C}) that is linear with respect to the clause

C′ ∈ prop(Γ ∪ {C}) that corresponds to the clause C. From D′, it is trivial to build a

local refutation D for Γ ∪ {C} that is linear with respect to C.

6 Soundness

A resolution system is sound if, whenever a refutation exists for a set of clauses Γ , then Γ

is unsatisfiable. The soundness of a system can be guaranteed rule by rule, where a rule is

sound whenever it preserves the satisfiability. Often some rules preserve stronger properties

than satisfiability. In this section, we analize each rule from the point of view of soundness

and stronger properties and prove that the resolution system TRS is sound.

Proposition 27 The Basic Rules of Subsection 4.1 are sound. Moreover, every application

of these rules yields a new set of clauses that is logically equivalent to the initial set.

Proof When (Res) is applied to two clauses (the premises) �
b(L∨N) and �

b′(eL ∨N ′) in

Γ , the resolvent �
b×b′(N ∨N ′) is a logical consequence of {�

b(L∨N),� b′(eL∨N ′)} and,

consequently, the new set of clauses Γ ′ = Γ ∪ {�
b×b′(N ∨ N ′)} is logically equivalent to

the set of clauses Γ .

For soundness of (Sbm), suppose that �
bN and �

bN ′ are in Γ and that N ′ (N . It is

trivial that any model of Γ is also a model of Γ \ {�
bN} and vice-versa.

Given a set of clauses Γ , the rule (U Fix) replaces a clause �
b((P1 U P2) ∨ N) ∈ Γ

with two clauses �
b(P2 ∨ P1 ∨ N) and �

b(P2 ∨ ◦(P1 U P2) ∨ N) obtaining a new set Γ ′

= (Γ \ {�
b((P1 U P2) ∨ N)}) ∪ {�

b(P2 ∨ P1 ∨N),� b(P2 ∨ ◦(P1 U P2) ∨N)}. The two

sets, Γ and Γ ′, are logically equivalent since the clause that contains the literal of the form

P1 U P2 is replaced with the clauses obtained by taking into account the inductive definition

of the connective U . Similarly, the rule (RFix) replaces a clause �
b((P1 RP2) ∨ N) ∈ Γ

with two clauses �
b(P2 ∨ N) and �

b(P1 ∨ ◦(P1 RP2) ∨ N) obtaining a new set Γ ′ =

(Γ \ {�
b((P1 RP2) ∨N)}) ∪ {�

b(P2 ∨ N),� b(P1 ∨ ◦(P1 RP2) ∨ N)}. The sets Γ and

Γ ′ are logically equivalent because the clause that contains the literal of the form P1 RP2

is substituted by the clauses obtained by using the inductive definition of the connective R.

In particular, every application of the rules (�Fix) and (�Fix) yields a new set of clauses

that is logically equivalent to the initial set. Therefore, they are also sound.

Proposition 28 The rule (U Set) is sound. Moreover, the initial and the target sets of every

application of (U Set) are equisatisfiable.

Proof When the rule (U Set) is applied to a set of clausesΓ , a non-empty subset {�
bi(P1 U P2∨

Ni) | 1 ≤ i ≤ n} is replaced with a set of clauses

Ψ = {P2 ∨ P1 ∨Ni, P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}

∪ CNF(def(a, P1,∆))

∪ {� (◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

20

where ∆ = now(Γ \ {�
bi(P1 U P2 ∨Ni) | 1 ≤ i ≤ n}), a ∈ Prop is fresh, def(a, P1,∆) =

� (¬a∨ (P1 ∧ ¬∆)) if ∆ 6= ∅ and def(a, P1,∆) = �¬a if ∆ = ∅. So the new set Γ ′ is

(Γ \ {�
bi(P1 U P2 ∨ Ni) | 1 ≤ i ≤ n}) ∪ Ψ.

It is easy to see that if Γ ′ is satisfiable then Γ is satisfiable. Note that a does not appear

in Γ and formulas of the form �ϕ and (ϕ1 ∧ ϕ2)U ψ are equivalent to the sets of formulas

{ϕ,�◦ϕ} and {ϕ1 U ψ,ϕ2 U ψ}, respectively.

We will show the converse implication. Let 〈M, s0〉 |= Γ , since a does not appear in the

Ni’s, we build a model of Γ ′ in the following two cases. First, consider that 〈M, s0〉 |= Ni

for all i ∈ {1, . . . , n}. Then we can define a model M′ for Γ ′ as follows

– a 6∈ VM′(s′j) for every j ∈ IN
– p ∈ VM′ (s′j) iff p ∈ VM(sj) for all j ∈ IN and all p ∈ Prop such that p 6= a

Second, if 〈M, s0〉 6|= Ni for some i ∈ {1, . . . , n}, then it should be that 〈M, s0〉 |= P1 U P2.

Let x be the least z ≥ 0 such that 〈M, sz〉 |= P2. If x = 0 then, since a does not appear in

P2, a model M′ of Γ ′ can be built just as above. If x > 0, let y be the greatest z such that

0 ≤ z < x and

〈M, sz〉 |= now(Γ \ {�
bi(P1 U P2 ∨Ni) | 1 ≤ i ≤ n}) ∪ {P1 U P2}.

Note that at least z = 0 must satisfy the above set of clauses. As a consequence of the choice

of x and y, it holds that

〈M, sy〉 |= {P1,¬P2,◦((P1 ∧ ¬now(Γ \ {�
bi(P1 U P2 ∨Ni) | 1 ≤ i ≤ n}))U P2)}.

Besides, 〈M, sy〉 |= now(Γ \ {�
bi(P1 U P2 ∨ Ni) | 1 ≤ i ≤ n}). So that, we can define a

model M′ for Γ ′ as follows

– p ∈ VM′ (s′j) iff p ∈ VM(sj+y) for all j ∈ IN and all p ∈ Prop such that p 6= a

– a 6∈ VM′(s′0)

– a ∈ VM′(s′j) for every j ∈ {1, . . . , x− y − 1}

– a 6∈ VM′(s′j) for every j ≥ x− y.

As a particular case of Proposition 28, the derived rule (� Set) is also sound.

Proposition 29 The operator unnext (see Definition 4) preserves satisfiability.

Proof If M is a model of Γ then unnext(Γ) is true in the state s1 of M, which obviously

gives a model for unnext(Γ).

Note that the equisatisfiability, in general, of initial and target sets of unnext cannot

be ensured. For example, {p,¬p,◦q} is unsatisfiable, but unnext({p,¬p,◦q}) = {q} is

satisfiable.

As a direct consequence of the above Propositions 27, 28 and 29, we have the following

soundness theorem:

Theorem 30 If the resolution system TRS produces a refutation from Γ , then Γ is unsatisfi-

able.

21

Input: A finite set of clauses Γ

Output: A resolution proof for Γ called D(Γ)

1 Γ 0
0

:= Γ ; i := 0; j := 0;

2 sel ev set0 := fair select(Γ 0
0);

3 loop

4 if sel ev seti 6= ∅
5 then (Γ 1

i , sel ev set∗i) := apply U Set(Γ 0
i , sel ev seti); j := 1;

6 else sel ev set∗i := ∅
7 end if;

8 Γ∗

i := close(Γ j
i);

9 if �
b⊥ ∈ Γ∗

i or is cycling(D(Γ)) then exit; end if;

10 Γ 0
i+1

:= unnext(Γ∗

i);

11 if sel ev set∗i ∩ event(Γ 0
i+1

) = ∅ then sel ev seti+1 := fair select(Γ 0
i+1

);

12 else sel ev seti+1 := sel ev set∗i
13 end if;

14 i := i + 1; j := 0;

15 end loop;

Fig. 7 The Algorithm SR

7 The Algorithm SR for Systematic TRS-Resolution

The nondeterministic application of the set of TRS-rules yields sound derivations but it does

not guarantee completeness, even with the proviso of fairness. In this section we first intro-

duce an algorithm called SR that uses the system TRS in a more (not fully) deterministic

way which ensures completeness. Then, in the Subsection 7.2 we provide some detailed

examples of application of SR. In the last two subsections we respectively provide the ter-

mination and worst case complexity results for SR.

7.1 The Algorithm SR

The algorithm SR, for any input set of clauses Γ , obtains a finite resolution proof –called

D(Γ)– of the form

Γ0
0 7→ . . . 7→ Γh0

0 Z⇒ Γ0
1 7→ . . . 7→ Γh1

1 Z⇒ . . . Z⇒ Γ0
k 7→ . . . 7→ Γ

hk

k

As we will respectively show in Subsection 7.3 and Section 8, D(Γ) is always finite and

D(Γ) is a refutation whenever the input set Γ is unsatisfiable. When convenient, we repre-

sent D(Γ) by sequences of pairs

(Γ0, Γ
∗
0) Z⇒ (Γ1, Γ

∗
1) Z⇒ . . . Z⇒ (Γk , Γ

∗
k)

where Γi and Γ∗
i coincide with Γ0

i and Γhi

i respectively, for every i ∈ {0, . . . , k}.

The construction of D(Γ), for any input Γ , is expressed by means of a while-program

in Fig. 7, called the algorithm SR, which we explain next. In order to ensure that D(Γ)

is finite, the rule (U Set) is applied exactly to one eventuality7 (if there is any) between

each two consecutive unnext-steps (see Definition 14). For that purpose, the algorithm SR

7 see Definition 1.

22

keeps two variables sel ev seti and sel ev set∗i for every i ≥ 0. Both variables sel ev seti
and sel ev set∗i take as value a set that is empty or a singleton, depending on whether Γ0

i

contains at least one eventuality or not, respectively. The variable sel ev seti stands for the

selected eventuality in Γ0
i , whereas sel ev set∗i corresponds to the eventuality selected in

every set of the sequence from Γ1
i until Γhi

i .

The algorithm SR (see Fig. 7) initializes both the set of clauses for starting the derivation

Γ0
0 to be the input set Γ and the variable sel ev set0 to be either, a fairly selected eventuality

in Γ0
0 if there is any, or empty, otherwise. The expression fair select(Γ j

i) encapsulates the

fair selection of an eventuality in Γ
j
i , where fairness means that an eventuality cannot be

indefinitely unselected.

After initialization, the algorithm SR iterates the following process.

– The lines 4 to 8 serve to extend the derivation from Γ0
i to Γ∗

i .

First, by lines 4-7, the rule (U Set) is applied exactly to the selected eventuality provided

that sel ev seti 6= ∅. More precisely, if sel ev seti = {T}, then the rule (U Set) is

applied to a partition of Γ0
i of the form Φ ∪ (Γ0

i � sel ev seti),
8 producing the set

Γ1
i in D(Γ). Additionally, as part of this application of the rule (U Set), the variable

sel ev set∗i gets the value {aU P} where aU P is the new eventuality introduced by the

rule (U Set) with a fresh variable a. Otherwise, if sel ev seti is empty, the rule (U Set)

is not applied and sel ev set∗i gets the value ∅.

Second, by line 8, the remaining TRS-rules are repeatedly applied to Γ
j
i (where j = 0

or j = 1) to construct Γ∗
i . The operation close is introduced in Definition 20. Hence,

Γ∗
i is either TRS-closed (see Definition 19) or contains the empty clause. Moreover, the

variable sel ev set∗i is not changed by the operation close. Hence, at line 11 the value of

sel ev set∗i is the same as at line 7.

– In line 9, the loop is exited if either the empty clause has been added to Γ∗
i or a cycle in

D(Γ) is detected according to the following definition.

Definition 31 Let D = (Γ0, Γ
∗
0) Z⇒ (Γ1, Γ

∗
1) Z⇒ . . . Z⇒ (Γj , Γ

∗
j) Z⇒ . . . Z⇒ (Γk , Γ

∗
k) be

a derivation (where 0 ≤ j ≤ k), we say that D is cycling with respect to j and k iff D

satisfies the following conditions

1. �
b⊥ 6∈ Γ∗

i for every i ∈ {0, . . . , k}

2. now(unnext(Γ∗
k)) = now(Γj)

3. For every eventuality T such that T ∈ Lit(now(Γg)) for all g ∈ {j, . . . , k}, there

exists h ∈ {j, . . . , k} such that sel ev seth = {T}.

The function is cycling (line 9) is supposed to implement a test of the conditions (2) and

(3) in Definition 31 on the current derivation D(Γ) = (Γ0, Γ
∗
0) Z⇒ . . . Z⇒ (Γi, Γ

∗
i).

– Otherwise, if the loop is not exited, the unnext operator (Definition 4) is applied to the

TRS-closed set Γ∗
i to yield Γ0

i+1 (line 10), which will be the Γ0
i of the next step, after

increasing i (line 14).

– Finally, the lines 11 to 13 serve to initialize the variable sel ev seti+1. Note that, after

the application of the subsumption rule and/or of the unnext operator, every clause that

includes the selected eventuality sel ev set∗i could have disappeared from the current

Γ0
i+1 . In other words, although ◦(aU P) occurs in some Γ

j
i , it could happen that the

selected eventuality aU P does not occur in Γ0
i+1. The function event (line 11) returns

the set of all eventualities occurring in an input set of clauses, that is

Definition 32 LetΨ be a set of clauses, event(Ψ) = {P1 U P2 |� b((P1 U P2)∨N) ∈Ψ}.

8 See Definition 2.

23

Therefore, if sel ev set∗i ∩ event(Γ0
i+1) is non-empty, then the selected eventuality re-

mains selected. Otherwise, the function fair select is used to fairly select an eventuality

from event(Γ0
i+1).

We would like to remark the following three issues about the construction of D(Γ) by

the algorithm SR

1. Although (Sbm) can be correctly applied whenever it is possible, in order to guarantee

termination it suffices to apply (Sbm) just before testing for a cycling derivation.

2. For achieving completeness the unnext operator must always be applied to TRS-closed

sets.

3. In the intermediate sets Γ
j
i of the process for obtaining Γ∗

i from Γi, literals can appear

that are neither in Γ∗
i nor in Γi. This fact can be easily observed applying the algorithm

SR to (e.g.) the set Γ = {pU q, q}.

7.2 Examples

In this subsection we apply the algorithm SR to some illustrative examples. For readability,

the selected eventualities appear between quotation symbols.

Example 33 The following derivation is a refutation of {p,� (¬p∨◦p),� ¬p} that has been
obtained following the algorithm SR.

Γ∗

1
= Γ4

1
= {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p, ¬p ∨ a, ϕ, � (¬b ∨ a), � (¬b ∨ ¬p), a, ¬a, ⊥}

Γ3

1
= {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p, ¬p ∨ a, ϕ, � (¬b ∨ a), � (¬b ∨ ¬p), a,¬a}

(Res)

Γ2

1
= {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p,¬p ∨ a, ϕ, � (¬b ∨ a), � (¬b ∨ ¬p), a}

(Res)

Γ1

1
= {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p, ¬p ∨ a,¬p ∨ ◦(“bU ¬p”), � (¬b ∨ a), � (¬b ∨ ¬p)}

(Res)

Γ1 = Γ0

1
= {� (¬p ∨ ◦p), � (¬a ∨ ¬p), p, “aU ¬p”}

(U Set)

Γ∗

0
= Γ5

0
= {p, � (¬p ∨ ◦p), � (¬a ∨ ¬p), ◦p,◦(“aU ¬p”),¬a}

(unnext)

Γ4

0
= {p, � (¬p ∨ ◦p), ¬p ∨ ◦(“aU ¬p”), � (¬a ∨ ¬p), ◦p, ◦(“aU ¬p”), ¬a}

(Sbm)

Γ3

0
= {p, � (¬p ∨ ◦p), ¬p ∨ ◦(“aU ¬p”), � (¬a ∨ ¬p), ◦p, ◦(“aU ¬p”)}

(Res)

Γ2

0
= {p, � (¬p ∨ ◦p), ¬p ∨ ◦(“aU ¬p”), � (¬a ∨ ¬p), ◦p}

(Res)

Γ1

0
= {p, � (¬p ∨ ◦p),¬p ∨ ◦(“aU ¬p”), � (¬a ∨ ¬p)}

(Res)

Γ0 = Γ0

0
= {p, � (¬p ∨ ◦p), “�¬p”}

(�Set)

where ϕ = ¬p ∨ ◦(“bU ¬p”)

First of all, in Γ0 the selected eventuality is �¬p and the context is {p}, since always-

clauses are excluded from the negation of the context. Then, the rule (� Set) is applied. This

introduces a new propositional variable a and transforms the selected eventuality into the

last two clauses in Γ1
0 . From now, the selected eventuality is the until-formula in the third

clause in Γ1
0 . After that, the resolution rule (Res) is applied to the first two clauses in Γ1

0 .

This produces the last clause ◦p in Γ2
0 . Now again, (Res) is applied to the first and third

clauses in Γ2
0 , giving the last clause ◦(aU ¬p) in Γ3

0 . Again, by resolution of the first and

fourth clauses in Γ3
0 , we obtain the clause ¬a in Γ4

0 . By subsumption, the third clause is

dropped, since it is subsumed by the sixth one, giving Γ5
0 . Now, since no other rule can be

applied, the unnext operator transforms Γ5
0 into Γ1. The latter represents the clauses that

must be satisfied in the state s1, provided that the state s0 satisfies Γ0. Since the selected

eventuality must be immediately handled (after unnext), the rule (U Set) is applied to it.

24

Note that, the context is again {p}. Then, Γ1
1 contains four new clauses that substitute the

clause aU ¬p. A new propositional variable b occurs in the new clauses. Finally, by three

consecutive applications of the rule (Res) to the three underlined pairs of clauses, the empty

clause is obtained. Note that the repeated context in Γ0 and Γ1 has led to find a contradiction

in three resolution steps.

In the previous example, if we had used the rules (�Fix) and (U Fix) instead of the

rules (� Set) and (U Set), we would have not obtained the empty clause. The following

example illustrates this fact.

Example 34 Below, we start with the same Γ0
0 as in the previous Example 33. We firstly

apply (�Fix) (instead of (� Set)) and get a set Γ1
0 with an atom p that is resolved with two

clauses that contain ¬p. Then, by subsumption and unnext we get Γ0
1 = Γ0

0 . Repeating this

process we could obtain an endless resolution derivation. Indeed, we will never obtain the

empty clause unless we use the rules (� Set) and (U Set) in an appropriate manner.

· · ·
Γ0

1
= {p, � (¬p ∨ ◦p), �¬p}

Γ4

0
= {p, � (¬p ∨ ◦p), ◦p, ◦�¬p}

(unnext)

Γ3

0
= {p, � (¬p ∨ ◦p),¬p ∨ ◦�¬p,◦p, ◦�¬p}

(Sbm)

Γ2

0
= {p, � (¬p ∨ ◦p),¬p ∨ ◦�¬p,◦p}

(Res)

Γ1

0
= {p, � (¬p ∨ ◦p),¬p ∨ ◦�¬p}

(Res)

Γ0

0
= {p, � (¬p ∨ ◦p), �¬p}

(�Fix)

Obviously, this derivation does not follow the algorithm SR.

The next example shows how the systematic TRS-resolution deals with clauses of the

form �P .

Example 35

Γ∗

1
= Γ3

1
= {� p, �¬a, ¬p ∨ a,¬p ∨ ◦(“bU ¬p”), �¬b, a,⊥}

Γ2

1
= {� p, � ¬a, ¬p ∨ a,¬p ∨ ◦(“bU ¬p”), � ¬b, a}

(Res)

Γ1

1
= {� p, �¬a, ¬p ∨ a, ¬p ∨ ◦(“bU ¬p”), � ¬b}

(Res)

Γ1 = Γ0

1
= {� p, “aU ¬p”, � ¬a}

(U Set)

Γ∗

0
= Γ3

0
= {� p, ◦(“aU ¬p”), �¬a}

(unnext)

Γ2

0
= {� p, ¬p ∨ ◦(“aU ¬p”), ◦(“aU ¬p”), �¬a}

(Sbm)

Γ1

0
= {� p,¬p ∨ ◦(“aU ¬p”), � ¬a}

(Res)

Γ0 = Γ0

0
= {� p, “�¬p”}

(�Set)

Since the procedure close in SR uses the function BTL (see Definition 4) for selecting

temporal literals and since BTL is based on the function drop� , clauses of the form �P are

considered always-clauses formed by one propositional literal and not now-clauses formed

by one (basic) temporal literal. So following SR we obtain the above refutation. But it is

worthy to remark that if we do not follow SR it is possible to build the following refutation

Γ1

0
= {� p, �¬p, ⊥}

Γ0

0
= {� p, �¬p}

(Res)

The following two examples show that the subsumption rule (Sbm) is required to guar-

antee the termination of the algorithm SR. In the case of Example 36 the concerned set of

clauses is satisfiable, whereas in Example 37 is not.

25

Example 36 Consider the following derivation for the set of clauses{(pU q)∨� r,�¬p,�¬q},

which is only developed until the first application of (unnext).

Γ1 = Γ0

1
= {� ¬p, �¬q, � ¬a1, � r}

Γ∗

0
= Γ12

0
= {� ¬p, �¬q, � ¬a1, r, ◦� r}

(unnext)

Γ11

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r,

� ¬p, �¬q, � ¬a1, p ∨ r, p ∨ ◦� r, “◦(a1 U q)” ∨ r,

“◦(a1 U q)” ∨ ◦� r, q ∨ r, q ∨ ◦� r, r, ◦� r}
(Sbm)

Γ10

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r,

� ¬p, �¬q, � ¬a1, p ∨ r, p ∨ ◦� r, “◦(a1 U q)” ∨ r,

“◦(a1 U q)” ∨ ◦� r, q ∨ r, q ∨ ◦� r, r}
(Res)

Γ9

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r, � ¬p, �¬q,

�¬a1, p ∨ r, p ∨ ◦� r, “◦(a1 U q)” ∨ r, “◦(a1 U q)” ∨ ◦� r, q ∨ r, q ∨ ◦� r}
(Res)

Γ8

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r, �¬p, �¬q,

�¬a1, p ∨ r, p ∨ ◦� r, “◦(a1 U q)” ∨ r, “◦(a1 U q)” ∨ ◦� r, q ∨ r}
(Res)

Γ7

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r, �¬p, �¬q,

�¬a1, p ∨ r, p ∨ ◦� r, “◦(a1 U q)” ∨ r, “◦(a1 U q)” ∨ ◦� r}
(Res)

Γ6

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r, �¬p, �¬q,

�¬a1, p ∨ r, p ∨ ◦� r, “◦(a1 U q)” ∨ r}
(Res)

Γ5

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r, �¬p, �¬q,

�¬a1, p ∨ r, p ∨ ◦� r}
(Res)

Γ4

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r, �¬p, �¬q,

�¬a1, p ∨ r}
(Res)

Γ3

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ r, q ∨ “◦(a1 U q)” ∨ ◦� r, �¬p, �¬q,

�¬a1}
(Res)

Γ2

0
= {q ∨ p ∨ r, q ∨ p ∨ ◦� r, q ∨ “◦(a1 U q)” ∨ � r, � ¬p, � ¬q, �¬a1}

(�Fix)

Γ1

0
= {q ∨ p ∨ � r, q ∨ “◦(a1 U q)” ∨ � r, � ¬p, � ¬q, �¬a1}

(�Fix)

Γ0 = Γ0

0
= {“(pU q)” ∨ � r, � ¬p, � ¬q}

(U Set)

It is worthy to note that if (Sbm) were not applied in the step just before (unnext), then

the above set Γ1 would be

{“(a1 U q)” ∨ � r,�¬p,�¬q,�¬a1,� r}

Indeed, every set Γi (i ≥ 1) obtained after i unnext-steps would be of the form {(ai U q) ∨

� r,�¬p,�¬q,� r}∪ {�¬ah | 1 ≤ h ≤ i}. Consequently, it would be impossible to obtain

two sets Γj and Γk such that 0 ≤ j ≤ k and now(Γj) = now(unnext(Γ∗
k)). Hence, the

resolution process would not stop.

Example 37 For the set of clauses {(pU q)∨ (r U s),�¬p,�¬q,�¬s}, if the first selected

eventuality is pU q then the same problem as in the previous Example 36 happens, but with

(ai U q) ∨ (rU s) instead of (ai U q) ∨ � r, where ai is a fresh variable.

Remark 1 Note that when Γ is a satisfiable set of (non-temporal) classical propositional

clauses, the derivation D(Γ) obtained by the algorithm SR is of the form Γ0
0 7→ . . . 7→

Γh0

0 Z⇒ Γ0
1 , and it can also be represented as (Γ0, Γ

∗
0) Z⇒ (Γ1, Γ

∗
1), where Γ0 = Γ0

0 = Γ ,

Γh0

0 = Γ∗
0 , Γ1 = Γ∗

1 = unnext(Γ∗
0) = ∅. The set Γ0

1 –which is at the same time Γ1 and

Γ∗
1 – is TRS-closed and additionaly produces a cycle because D(Γ) verifies the three items

of Definition 31 and, in particular the second one since now(unnext(Γ∗
1)) = now(Γ1). So

the cycle is from Γ0
1 to Γ0

1 . Sets of temporal clauses, e.g. the singleton {◦P}, can also give

rise to this kind of cycling derivation ended in an empty set. However, the singleton {�P}

26

produces a cycle with non-empty set of clauses. In general, every systematic derivation that

is not a refutation becomes cyclic.

Along the rest of the paper, we will denote by D(Γ) any derivation of the form (Γ0, Γ
∗
0)

Z⇒ (Γ1, Γ
∗
1) Z⇒ . . . Z⇒ (Γj , Γ

∗
j) Z⇒ . . . Z⇒ (Γk, Γ

∗
k) obtained by SR with initial set Γ0 = Γ . In

particular, D(Γ) may be a refutation or a cycling derivation with respect to j and k.

7.3 Termination

In this section we show that the algorithm SR always obtains either a refutation or a cycling

derivation after a finite number of iterations. Remember that we assume that SR uses a fair

strategy for selecting eventualities.

The termination proof of SR requires to show that the algorithm cannot generate an

infinite number of new propositional variables. A priori, there are two ways for generating

new propositional variables in SR. The first is the translation to CNF applied in the output

to the rule (U Set). However, no new variable is introduced by SR in this way. The reason

is that the translation to CNF is applied to a formula that only needs DtNF-rules to be in

CNF and DtNF-rules do not use extra variables (see Proposition 7).

The second source of new propositional variables is the fresh variable that explicitly

occurs in the consequent of the rule (U Set). However, as we will show, the sequence of

new eventualities produced by successive applications of the rule (U Set) is always finite.

There is a twofold reason for the latter. On one hand, the clauses defining a new variable (see

function def in Fig. 5) are always-clauses, which are excluded from the negated context. On

the other hand, in the algorithm SR, the rule (U Set) is always applied to sets where the

propositional variables introduced (as fresh) by previous applications of (U Set) are also

out of the context.

In order to prove the termination result, we first define the closure (Definition 39) of a

set of clausesΓ that contains all the clauses that can be generated from the literals that could

appear in the clauses obtained from Γ by means of all the TRS-rules with the exception of

the rule (U Set) (and the derived rule (� Set)).

Definition 38 Let Γ be a set of clauses. The set univlit(Γ) is the smallest set of literals

defined as follows9

– Lit(Γ) ⊆ univlit(Γ)

– If L ∈ univlit(Γ), then eL ∈ univlit(Γ)

– If P1 U P2 ∈ univlit(Γ), then {◦(P1 U P2), P1, P2} ⊆ univlit(Γ)

– If P1 RP2 ∈ univlit(Γ), then {◦(P1 RP2), P1, P2} ⊆ univlit(Γ)

– If � P ∈ univlit(Γ), then {◦�P, P } ⊆ univlit(Γ)

– If �P ∈ univlit(Γ), then {◦�P, P } ⊆ univlit(Γ)

– If ◦L ∈ univlit(Γ), then L ∈ univlit(Γ).

The set univlit(Γ) is finite for any set of clauses Γ since we only consider finite sets of

clauses and finite clauses. Now, we define the closure of a set of clauses.

Definition 39 Let Γ be a set of clauses. The set closure(Γ) is the set formed by all the

clauses C such that Lit(C) ⊆ univlit(Γ).

9 Remember that Lit(�
b(L1 ∨ . . . ∨ Ln)) = {L1, . . . , Ln} and Lit(Γ) =

S
C∈Γ Lit(C).

27

The rule (U Set) introduces new eventualities involving fresh variables. In order to jus-

tify that derivations that (potentially) use (U Set) are finite, we have to show that the cycling

conditions in Definition 31, in particular its third requirement, will be satisfied after a finite

number of iteration steps.

Definition 40 Let D(Γ) = (Γ0, Γ
∗
0) Z⇒ . . . Z⇒ (Γk , Γ

∗
k) be the derivation constructed by

the algorithm SR (Fig. 7). We say that an eventualityT ′ is the direct descendant of an even-

tuality T in D(Γ) iff for some i ∈ {0, . . . , k}: sel ev seti = {T} and sel ev set∗i = {T ′}.

Let S = T0, T1, . . . , Tn be a sequence of eventualities. We say that S is the sequence

of descendants of T0 in D(Γ) iff Ti+1 is a direct descendant of Ti in D(Γ) for all i ∈

{0, . . . , n− 1}.

For example, � ¬p, aU ¬p, bU ¬p is the sequence of descendants of �¬p in the derivation

in Example 35.

Lemma 41 For all D(Γ) and every selected eventualityT in D(Γ), the sequence of descen-

dants of T in D(Γ) is finite.

Proof Let T beP0 U P . Suppose that T occurs in the set Γ0
0 in D(Γ), sel ev set0 = {P0 U P}

and the sequence of descendants of T in D(Γ) is infinite. When the rule (U Set) is applied

to a partition of Γ0
0 of the form Φ0 ∪ Γ0

0 � {P0 U P}, the set Γ0
0 � {P0 U P} is replaced

with the union of the following five disjoint sets of clauses

Ψ1
0 = {P ∨ P0 ∨N0 | �

b((P0 U P) ∨N0) ∈ Γ0}

Ψ2
0 = {P ∨ ◦(a1 U P) ∨ N0 | �

b((P0 U P) ∨N0) ∈ Γ0}

Ψ3
0 = {� (◦(P0 U P) ∨ ◦N0) | � ((P0 U P) ∨N0) ∈ Γ0}

Ψ4
0 = {� (¬a1 ∨ P0)}

Ψ5
0 = CNF(� (¬a1 ∨ ¬now(Φ0)))

where Ψ4
0 ∪ Ψ5

0 corresponds to CNF(def(a1, P0, now(Φ0))) (see Fig. 5).

Hence, the set Γ1
0 is the union of Φ0 and the above five sets, and the new selected

eventuality is a1 U P , i.e., sel ev set∗0 = {a1 U P}. The fresh variable a1 only occurs in Ψ2
0

and Ψ4
0 ∪ Ψ5

0 . The latter is a set of always-clauses, and the occurrences of a1 in Ψ4
0 ∪ Ψ5

0

are not preceded by ◦. Consequently, after the operations close and unnext (lines 8 and 10

in Fig. 7), all the occurrences of a1 in the set Γ0
1 are either in an always-clause or in a now-

clause that comes from Ψ2
0 . Hence, the only now-clauses where a1 occurs in Γ0

1 are of the

form N ∨ a1 U P , where a1 U P is the new selected eventuality. Hence, the next application

of the rule (U Set) does not introduce any occurrence of a1 in the negated context, because

always-clausesand clauses containinga1 U P are both excluded from the context. Moreover,

CNF(� (¬a1 ∨ ¬now(Φ0))) does not contain any other fresh variable (apart from a1). The

reason is that DtNF(� (¬a1∨¬now(Φ0))) is already in conjunctive normal form, so the only

transformation that uses new fresh variables –which is detailed in the proof of Theorem 8–

is left out.

The above reasoning about the construction of Γ0
1 from Γ0

0 can be generalized to the

construction of Γ0
i+1 from Γ0

i with selected eventuality ai U P to obtain a direct descendant

ai+1 U P as follows. When the rule (U Set) is applied to a partition of Γ0
i of the form

Φi ∪ Γ0
i � {ai U P}, then the consequent Γ1

i is the union of Φi and the following five

28

disjoint sets

Ψ1
i = {P ∨ ai ∨ Ni | �

b((ai U P) ∨Ni) ∈ Γi}

Ψ2
i = {P ∨ ◦(ai+1 U P) ∨ Ni | �

b((ai U P) ∨Ni) ∈ Γi}

Ψ3
i = {� (◦(ai U P) ∨ ◦Ni) | � ((ai U P) ∨Ni) ∈ Γi}

Ψ4
i = {� (¬a1 ∨ P0),� (¬a2 ∨ a1), . . . ,� (¬ai ∨ ai−1),� (¬ai+1 ∨ ai)}

Ψ5
i = CNF(� (¬ai+1 ∨ ¬now(Φi)))

where (Ψ4
i \ Ψ4

i−1) ∪ Ψ
5
i corresponds to CNF(def(ai+1, ai, now(Φi))) whenever i ≥ 1 (see

Fig. 5). Now, the fresh variables a1, . . . , ai, ai+1 occur in the above five sets Ψ
j
i . The oc-

currences of fresh variables in Ψ2
i ∪ Ψ4

i ∪ Ψ5
i are not filtered to the negated context in Γ0

i+1

by the reasons explained above for Γ0
1 . Regarding the occurrences of ai in the set Ψ1

i , since

they are not preceded by ◦, no one of them can be filtered to Γ0
i+1. Additionally, Ψ3

i is

empty for all i ≥ 1. To realize this fact, it suffices to check the following three facts.

First, whenever the rule (U Set) is applied to the set Γ0
i−1, by considering the partition

Φi−1 ∪ (Γ0
i−1 � sel ev seti−1), the new literal ◦(ai U P) appears only in now-clauses. Sec-

ond, the remaining basic rules (resolution, subsumption and fixpoint rules), that are applied

to obtain the TRS-closed set Γ∗
i−1 from Γ1

i−1, cannot introduce (in Γ∗
i−1) an always-clause

C such that ◦(ai U P) ∈ Lit(C). Third, since Γ0
i is obtained from Γ∗

i−1 by unnext, then Γ0
i

cannot include an always-clauseC such that ◦(ai U P) ∈ Lit(C).

Consequently, every fresh variable a` is not in Lit(now(Γ0
h)) for all h ≥ ` and all ` ≥ 1.

Therefore, fresh variables do not occur in any context of any application of the rule (U Set).

So that, the successive contexts are exclusively formed by formulas from the closure of Γ0
0 .

Since the set closure(Γ0
0) is finite, if the sequence of descendants of P0 U P were infi-

nite, there would necessarily be two sets Γ0
g and Γ0

h such that g < h and now(Γ0
g \ Γ0

g �

sel ev setg) = now(Γ0
h \ Γ0

h � {ah U P})10. Without loss of generality, we consider g = 0

and h = i. By repeatedly applying the rule (Res) to now(Γ0
0 \ Γ0

0 � {P0 U P}) and

CNF(� (¬a1 ∨ ¬now(Γ0 \ Γ0 � {P0 U P}))), the algorithm SR obtains ¬a1 which re-

solves with � (¬a2 ∨ a1) producing ¬a2. Then ¬a2 resolves with � (¬a3 ∨ a2). At the

end of this process ¬ai−1 resolves with � (¬ai ∨ ai−1) producing ¬ai. This literal re-

solves with every clause in {P ∨ ai ∨ Ni | (ai U P) ∨ Ni ∈ Γi} producing the clauses

in {P ∨ Ni | (ai U P) ∨ Ni ∈ Γi} which subsume the clauses in {P ∨ ◦(ai+1 U P) ∨ Ni |
(ai U P) ∨ Ni ∈ Γi}. Therefore, the selected temporal literal ai+1 U P disappears after the

following unnext-step. Hence, ai+1 U P cannot be the selected eventuality at the next step,

i.e., sel ev seti+1 6= {ai+1 U P}. This is a contradiction because the sequence of descen-

dants of P0 U P has been supposed to be infinite.

In the above proof we have considered that (U Set) is always applied with a non-empty

context. The proof for possibly empty contexts is just a special case. Note also that the

application of the subsumption rule, together with the subsequent use of the unnext operator,

is essential in the above proof.

Theorem 42 The algorithm SR, for each input Γ , terminates giving a resolution proof.

Proof Suppose that SR does not produce �
b⊥. On the one hand, by Lemma 41, SR can-

not generate an infinite sequence of descendants of any selected eventuality. Besides, when

the sequence of descendants of one eventuality finishes because the last one, namely T ,

ceases to be the selected eventuality in Γi for some i ≥ 1 (i.e. sel ev set∗i−1 = {T} and

10 sel ev setg = {P0 U P} if g = 0, and sel ev setg = {ag U P} if g > 0.

29

sel ev seti 6= {T}), then the set now(Γi) is included in closure(Γ) because the fresh vari-

ables introduced by (U Set) only occur in alw(Γi). If the process continues and the algo-

rithm SR selects another eventuality, finiteness of sequences of descendants (Lemma 41)

guarantees the existence of Γg, with g > i, such that now(Γg) is included in closure(Γ). As

the closure is finite, there must exist j and k such that j ≤ k and the set of now-clauses of

Γj is exactly the set of now-clauses of unnext(Γ∗
k).

On the other hand, fairness ensures that the third condition in Definition 31 must be satisfied

at some moment.

Note that the third condition in Definition 31 is persistent in the sense that once it is

satisfied in a derivation, it cannot be broken.

7.4 Complexity

In order to analyze the worst case complexity of the algorithm SR, we first consider the

set closure(Γ) (see Definition 39) of all the possible clauses formed using the literals in

univlit(Γ) (see Definition 38).

Proposition 43 The number of clauses in closure(Γ) is 2n, where n is the number of literals

in univlit(Γ).

Then, the set of all possible sets of clauses that could appear as context when applying

(U Set) has double-exponential size in n.

Proposition 44 Let contexts(Γ) = {∆ | ∆ ⊆ closure(Γ)}, then the number of sets in

contexts(Γ) is 22n

.

Therefore, the worst case complexity of the algorithmSR can be bounded to O(2O(2n)).

Proposition 45 The number of clauses generated by the resolution method is bounded by

O(2O(2n)) and the number of new variables is also bounded by O(2O(2n)) where n is the

number of literals in univlit(Γ).

Proof In the worst case, each clause in closure(Γ) contains a selected eventuality that gener-

ates a sequence of descendants with an eventuality for each possible context in contexts(Γ)

plus a repeated context. That is, each of the 2n initial clauses may generate 1 + 22n

clauses

with new eventualities. So, f(n) = 2n × (1 + 22n

) = 2n + 2n+2n

is the maximum number

of different clauses (with new eventualities) that can appear in a derivation. Since, each new

eventuality is associated to a new variable, 2n + 2n+2n

also bounds the number of fresh

variables. In the worst case, the definition of each new variable generates 2n new clauses.

So that, g(n) = 22.n + 22.n+2n

bounds the number of clauses defining new variables. To

sum up, the worst case is bounded to

2n + f(n) + g(n) = 2n + 2n + 2n+2n

+ 22.n + 22.n+2n

where the leftmost 2n stands for the size of the closure which bounds the initial set of

clauses. That is, in the worst case, the number of clauses is in O(2O(2n)) and the number of

new variables is in O(2O(2n)) .

30

8 Completeness

A resolution method is refutationally complete if, whenever a set of clauses Γ is unsatisfi-

able, a refutation for Γ can be constructed. In our case we prove the refutational complete-

ness of TRS-resolution showing that there exists a model of Γ whenever the resolution proof

D(Γ) obtained by the algorithm SR is a cycling derivation. This result together with the

proof of termination (Theorem 42) shows that our algorithm for systematic resolution (Fig.

7) is complete and, hence, a decision procedure for PLTL.

For the rest of this section we fix the derivation

D(Γ) ≡ (Γ0, Γ
∗
0) Z⇒ (Γ1, Γ

∗
1) Z⇒ . . . Z⇒ (Γj , Γ

∗
j) Z⇒ . . . Z⇒ (Γk, Γ

∗
k)

to be cycling with respect to j and k. In order to prove the existence of a model of Γ from the

existence of D(Γ) we will show that the sets Γ∗
i in D(Γ) can be extended (with literals of

their own clauses) preserving its local consistency. These extensions are literal-closed in the

sense that they contain at least one literal from each clause in Γ∗
i . Remember that the sets Γ∗

i

in D(Γ) are TRS-closed (see Definition 19) which, in particular, means that BTL(Γ∗
i) = ∅.

Actually, inside the collection of all the locally consistent literal-closed (lclc, in short) exten-

sions of each Γ∗
i , we define the subclass of the so-called standard extensions. In particular,

standard lclc-extensions of the sets Γ∗
i in D(Γ) allow us to ensure the model existence. We

define a successor relation on lclc-extensions of the sets Γ∗
i that gives rise to infinite paths

of standard lclc-extensions. These infinite paths can be used to characterize or define PLTL-

structures. Finally we show that at least one of those paths satisfies the suitable conditions

for defining a model of Γ . Hence, this section is divided into a first subsection devoted to

the notion of lclc-extensions of sets of clauses and their main properties, including the ex-

istence of a non-empty subclass of standard lclc-extensions for any locally consistent and

TRS-closed set of clauses. In the second subsection, we define the notion of successor and

prove the existence of infinite paths. Lastly, in the third subsection, we prove the existence

of a model of Γ .

8.1 Extending Locally Consistent TRS-Closed Sets of Clauses

In this subsection we show that every TRS-closed set of clauses has at least one locally

consistent extension that is literal-closed and standard. We gradually define the notions and

prove the results.

Definition 46 A set of clauses Γ is literal-closed iff Γ ∩ Lit(C) 6= ∅ for every C ∈ Γ .11

Besides, lclc(Γ) denotes the collection of all locally consistent sets of clauses bΓ such that

Γ ⊆ bΓ ⊆ Γ ∪ Lit(Γ) and bΓ is literal-closed. We say that each bΓ ∈ lclc(Γ) is an lclc-

extension of Γ .

Note that if �
b⊥ is in Γ then lclc(Γ) = ∅ by local inconsistency. Besides, since only

literals included in some clause in Γ are used to build the elements in lclc(Γ), if no clause

in Γ includes any (basic) temporal literal (i.e. BTL(Γ) = ∅, see Subsection 3.1) then every
bΓ ∈ lclc(Γ) also satisfies that BTL(bΓ) = ∅. In particular, if Γ = ∅ then lclc(Γ) = {∅}.

Next, we show that for every locally consistent set of clauses Γ that does not contain

(basic) temporal literals there exists at least one lclc-extension of Γ .

11 Note that literals in Lit(C) are viewed as singleton clauses.

31

Proposition 47 If Γ is a locally consistent set of clauses such that BTL(Γ) = ∅ then

lclc(Γ) 6= ∅.

Proof We will show that there exists a sequence S = Ω0, Ω1, Ω2, . . . , Ωg such that g ≥ 0,

Ω0 = Γ and Ωh+1 = Ωh ∪ {L} (for every h ∈ {0, . . . , g − 1}) for some L ∈ Lit(C) and

some C ∈ Ωh such that Lit(C) ∩ Ωh = ∅ and Ωh ∪ {L} is locally consistent. In addition,

Ωg ∈ lclc(Γ) whereasΩh 6∈ lclc(Γ) for all h ∈ {0, . . . , g − 1}. Since the number of clauses

is finite, this inductive construction is also finite and shows that lclc(Γ) 6= ∅.

We have to show that, for every h such thatΩh 6∈ lclc(Γ), there exists a locally consistent

Ωh+1 that extends Ωh with a new literal from some clause in Γ . Since Ωh 6∈ lclc(Γ) there

exists (at least one) clause C = �
b(L1 ∨ . . . ∨ Ln) ∈ Ωh such that Li 6∈ Ωh for all

i ∈ {1, . . . , n}. Suppose thatΩh∪{Li} is not locally consistent for all i ∈ {1, . . . , n}. Then,

by Proposition 26, there exists a local refutation Di for Ωh ∪ {Li} that is linear with respect

to Li, for every i ∈ {1, . . . , n}. From these n local refutations we are able to construct a local

refutation D for Ωh that is linear with respect to C, contradicting the assumption that Ωh is

locally consistent. Hence,Ωh ∪ {Li} must be locally consistent for some i ∈ {1, . . . , n}.

Definition 48 Let Γ be a set of clauses such that lclc(Γ) 6= ∅ and let Λ ⊆ Lit(Γ). We say

that Λ represents Γ if bΓ ∩ Λ 6= ∅ for all bΓ ∈ lclc(Γ). If, in addition, for every Λ′ (Λ there

exists bΓ ∈ lclc(Γ) such that bΓ ∩ Λ′ = ∅, then we say that Λ minimally represents Γ .

The following result shows that the minimal representatives of a TRS-closed set of

clauses Γ are included (as clauses) in Γ .

Proposition 49 For every Λ that minimally represents a non-empty locally consistent TRS-

closed set of clauses Γ there is a clause C ∈ Γ such that Lit(C) = Λ.

Proof First we will show that Γ must contain at least one clause C such that Lit(C) ⊆ Λ.

We partition Γ into the following two sets:

Π1 = {C ∈ Γ | Lit(C) ∩ Λ = ∅}

Π2 = {C ∈ Γ | Lit(C) ∩ Λ 6= ∅}

We split the clauses inΠ2 into the sub-clauses formed by literals that do not appear in Λ and

the sub-clauses formed by literals that appear in Λ. These sets of clauses respectively are the

following sets Σ1 andΣ2.

Σ1 = {N | �
b(N ∨ N ′) ∈ Π2, Lit(N) ∩ Λ = ∅ and Lit(N ′) ⊆ Λ}

Σ2 = {N ′ | �
b(N ∨N ′) ∈ Π2, Lit(N) ∩ Λ = ∅ and Lit(N ′) ⊆ Λ}

Since Γ is locally consistent,Π1,Π2 and also their proper subsets are locally consistent.

In addition, Γ is TRS-closed, hence BTL(Γ) = ∅ and every set of clauses considered along

the rest of this proof does not contain any clause that includes any (basic) temporal literal.

Now we show, by contradiction, that ⊥ ∈ Π1 ∪Σ1 and, since Π1 is locally consistent,

it follows that ⊥ ∈ Σ1 and, consequently, there exists a clause C ∈ Γ such that Lit(C) ⊆

Lit(Σ2), i.e., Lit(C) ⊆ Λ.

Let us suppose that ⊥ 6∈ Π1 ∪Σ1. First, suppose that Π1 ∪Σ1 is locally consistent. By

Proposition 47, the set lclc(Π1 ∪ Σ1) is non-empty and for every Ψ ∈ lclc(Π1 ∪ Σ1) the

set Ω = Γ ∪ {L | L ∈ Ψ} is in lclc(Γ) and satisfies Ω ∩ Λ = ∅. This contradicts that Λ

minimally represents Γ .

Second, suppose that Π1 ∪Σ1 is locally inconsistent, there exists some minimal locally

inconsistent subset Φ of Π1 ∪Σ1 (i.e. Φ does not contain locally inconsistent proper subsets

32

of Π1 ∪ Σ1). Since every subset of Π1 is locally consistent, then Φ ∩ Σ1 6= ∅. Let N be

any clause in Φ ∩ Σ1. By Proposition 26, there exists a local refutation D for Φ that is

linear with respect to N . By using the original clauses in Π2 instead of their sub-clauses in

Φ ∩ Σ1, we can build from D a derivation D′ whose last set contains a clause C such that

Lit(C) ⊆ Lit(Σ2). Hence, ⊥ ∈ Σ1 and this contradicts that ⊥ 6∈ Π1 ∪Σ1.

So, since considering ⊥ 6∈ Π1 ∪ Σ1 leads to a contradiction when we consider that

Π1 ∪ Σ1 is locally consistent and when we consider that Π1 ∪ Σ1 is locally inconsistent,

it follows that ⊥ ∈ Π1 ∪ Σ1. Therefore ⊥ ∈ Σ1 because Π1 is locally consistent and,

consequently, there are a clause C ∈ Γ such that Lit(C) ⊆ Λ.

Finally, Lit(C) cannot be a proper subset of Λ because Lit(C) also represents Γ and

that would contradict the minimality of the representation of Γ by Λ (see Definition 48).

Henceforth, Lit(C) = Λ.

Next we introduce the notion of standard lclc-extensions of a set of clauses.

Definition 50 Let Γ be a locally consistent TRS-closed set of clauses. We say that bΓ ∈

lclc(Γ) is standard iff it satisfies the following conditions:

(a) If ◦L ∈ bΓ , then there exists a clause �
b(◦L ∨ ◦N) ∈ Γ

(b) For every propositional literal P ∈ Lit(Γ), if bΓ ∪{P} is locally consistent, then P ∈ bΓ .

(c) If ◦L ∈ bΓ , then bΓ \ {◦L} is not literal-closed.

The following lemma ensures the existence of at least one standard lclc-extension of any

locally consistent TRS-closed set of clauses.

Lemma 51 Let Γ be a locally consistent TRS-closed set of clauses. There exists at least one

standard set in lclc(Γ).

Proof We first prove that there exists Ω ∈ lclc(Γ) that satisfies item (a) in Definition 50.

Second, we show that there exists Σ ⊇ Ω such that Σ ∈ lclc(Γ) and satisfies (a) and (b) in

Definition 50. Third, we show that there exists ∆ ⊆ Σ such that ∆ ∈ lclc(Γ) and satisfies

(a), (b) and (c) in Definition 50.

1. By Proposition 47, lclc(Γ) is non-empty. Now, let us suppose that for every set in lclc(Γ)

there exists a literal of the form ◦L such that ◦L 6∈ Lit(� b
◦N) for every clause �

b
◦N ∈

Γ . Then, for every bΓ ∈ lclc(Γ), there exists some L ∈ bΓ that belongs to the following

set

Ψ = {◦L ∈ Lit(Γ) | ◦L 6∈ Lit(� b
◦N) for every clause �

b
◦N ∈ Γ}

Hence Ψ represents Γ and there should exist some Λ ⊆ Ψ that minimally represents Γ .

Therefore, by Proposition 49, there exists a clause C ∈ Γ such that Lit(C) = Λ. This is

a contradiction because the literals in Ψ , and in particular the literals in Λ, do not belong

to any clause of the form �
b
◦N in Γ . Therefore, there exists some set Ω in lclc(Γ) that

satisfies Definition 50(a).

2. Since Ω is locally consistent and BTL(Ω) = ∅, the sequenceΩ0, Ω1, Ω2, . . . , Ωg in the

proof of Proposition 47 is easily adapted for ensuring that each Ωi satisfies Definition

50(a) and that Ωg satisfies Definition 50(b). So that Σ = Ωg.

3. We show that Σ should contain a subset ∆ that satisfies the lemma. Since Σ belongs to

lclc(Γ), verifies Definition 50(a) and (b) and is a finite set, we can ensure the existence

of a finite sequenceΣ0, Σ1, Σ2, . . . , Σr such that r ≥ 0, Σ0 = Σ, Σr \ {◦L} 6∈ lclc(Γ)

for all ◦L ∈ Σr, and Σh+1 = Σh \ {◦Lh} for some ◦Lh ∈ Σh and Σh+1 ∈ lclc(Γ)

for every h ∈ {0, . . . , r − 1}. Therefore, Σh satisfies Definition 50(a) and (b) for all

h ∈ {0, . . . , r} andΣr additionally satisfies (c). Hence,Σr is the set ∆ we were looking

for.

33

For locally consistent TRS-closed sets, the subclass of their standard lclc-extensions rep-

resents the whole class of their lclc-extensions with respect to sets of next-literals in the

sense shown by the following proposition.

Proposition 52 Let Γ be any locally consistent TRS-closed set of clauses and Λ ⊆ Lit(Γ)

be a set such that every literal in Λ is of the form ◦L. If bΓ ∩ Λ 6= ∅ for every standard set
bΓ ∈ lclc(Γ), then Λ represents Γ .

Proof Consider any Λ that satisfies the hypothesis but does not represent Γ . Hence, there

exists some non-standard set Ψ ∈ lclc(Γ) such that Ψ ∩ Λ = ∅. Now, let

Π = {N | �
b(N ∨N ′) ∈ Γ, Lit(N) ∩ Λ = ∅ and Lit(N ′) ⊆ Λ}

Φ = {N ∈ Π | no clause in Π subsumesN}

Then, Φ is TRS-closed and locally consistent. The former holds because Γ is TRS-closed.

For the latter suppose that Φ is not locally consistent. By Proposition 22, ⊥ ∈ Φ. Hence, by

definition of Φ, there exists a clause C ∈ Γ such that Lit(C) ⊆ Λ. But this contradicts the

assumption Ψ ∩ Λ = ∅ because Ψ is an lclc-extension of Γ and, consequently, Lit(C) ∩ Ψ

cannot be empty.

Since Φ is TRS-closed and locally consistent, by Lemma 51, there is some Ω ∈ lclc(Φ)

that is standard. Hence, considerΣ = Γ ∪{L | L ∈ Ω} for some standardΩ ∈ lclc(Φ). First,

Σ is an lclc-extension of Γ because Lit(Ω) ⊆ Lit(Γ) and because for every clause C ∈ Γ

there exists a clause N ∈ Φ such that Lit(N) ⊆ Lit(C). Second,Σ is standard becauseΩ is

a standard lclc-extension of Φ and Λ contains only literals of the form ◦L, so thatΣ satisfies

Definition 50. Consequently, Σ is a standard lclc-extension of Γ such that Σ ∩ Λ = ∅. This

contradicts that bΓ ∩ Λ 6= ∅ for all standard bΓ ∈ lclc(Γ). Therefore, Λ represents Γ .

8.2 Building Infinite Paths of Standard Lclc-Extensions

In order to build sequences of standard lclc-extensions of the TRS-closed sets Γ∗
i –in the

cycling derivation D(Γ)– that represent models of Γ , such sequences must be coherent with

respect to the meaning of temporal connectives. We mean that, e.g. if ◦p belongs to a set

Ω in the sequence, then p must belong to the set that is the successor of Ω in the sequence.

Similarly, for eventualities where also the selections performed along D(Γ) are relevant. As

a consequence a successor relation is defined for the lclc-extensions of the TRS-closed sets

that appear in the derivation D(Γ):

(Γ0, Γ
∗
0) Z⇒ (Γ1, Γ

∗
1) Z⇒ . . . Z⇒ (Γj , Γ

∗
j) Z⇒ . . . Z⇒ (Γk , Γ

∗
k)

which is cycling with respect to j and k. This successor relation on

{lclc(Γ∗
i) × lclc(Γ∗

i+1) | 0 ≤ i < k} ∪ (lclc(Γ∗
k) × lclc(Γ∗

j))

is presented in Definition 53. Along the rest of this paper, cΓ∗
i denotes a member of lclc(Γ∗

i).

Definition 53 Let i = h + 1 if h ∈ {0, . . . , k − 1} and let i = j if h = k, we say that cΓ∗
i

is a successor of cΓ∗
h

or that cΓ∗
h

is a predecessor of cΓ∗
i if for every ◦L ∈ cΓ∗

h
there is some

S ∈ nxcloi(◦L) such that S ⊆ cΓ∗
i , where nxcloi is defined as follows

– nxcloi(◦P) = {{P}} where P is a propositional literal.

34

– nxcloi(◦◦L) = {{◦L}}

– nxcloi(◦(P1 U P2)) =

8
<
:

{{P2}, {P1,◦(P1 U P2)}} if P1 U P2 6∈ sel ev seti
{{P2}, {P1,◦(aU P2)}} otherwise

where aU P2 ∈ sel ev set∗i

– nxcloi(◦�P) =

8
<
:

{{P}, {◦�P}} if ◦�P 6∈ sel ev seti
{{P}, {◦(aU P)}} otherwise

where aU P ∈ sel ev set∗i

– nxcloi(◦(P1 RP2)) = {{P2, P1}, {P2,◦(P1 RP2)}}

– nxcloi(◦�P) = {{P,�P}, {P,◦�P}}.

The set of successors of a given set cΓ∗
h

is denoted by succ(cΓ∗
h
).

The definition of nxcloi(◦�P) arises from the fact that the literal ◦�P can be either

a singleton now-clause or a literal properly contained in a clause C. In the first case, Γi

contains the always-clause �P which will not be affected by the rule (�Fix). Consequently,

in such a case Γ∗
i contains necessarily �P . However, in the second case, the literal ◦�P is

introduced by application of the rule (�Fix) to the clause C.

The existence of infinite paths of standard lclc-extensions is based on the existence of a

predecessor for each standard lclc-extension of a TRS-closed set in the derivation which is a

standard lclc-extension of the previous TRS-closed set in the derivation.

Proposition 54 For every i ∈ {1, . . . , k} and every standard cΓ∗
i ∈ lclc(Γ∗

i), there exists a

standard Γ̂∗
i−1 ∈ lclc(Γ∗

i−1) such that cΓ∗
i ∈ succ(Γ̂∗

i−1).

Proof Let W` = {cΓ∗
`

∈ lclc(Γ∗
`) | cΓ∗

`
is standard } for each ` ∈ {0, . . . , k}. If there exists

some Γ̂∗
i−1 ∈ Wi−1 such that Γ̂∗

i−1 does not contain any clause of the form ◦L, then cΓ∗
i ∈

succ(Γ̂∗
i−1) for all cΓ∗

i . Otherwise, every set Γ̂∗
i−1 ∈ Wi−1 contains at least one clause of

the form ◦L. We proceed by contradiction. Let us suppose that cΓ∗
i is a member of Wi such

that cΓ∗
i 6∈ succ(Γ̂∗

i−1) for all Γ̂∗
i−1 ∈ Wi−1. Hence, there exists at least one ◦L in every

Γ̂∗
i−1 ∈ Wi−1 such that S 6⊆ cΓ∗

i for all S ∈ nxcloi(◦L). Therefore, the set

Λ = {◦L | ◦L ∈
S

Γ̂∗

i−1
∈Wi−1

Γ̂∗
i−1 such that S 6⊆ cΓ∗

i for all S ∈ nxcloi(◦L)}

satisfies that Λ∩ Γ̂∗
i−1 6= ∅ for all Γ̂∗

i−1 ∈Wi−1. Therefore, by Proposition 52, Λ represents

Γ∗
i−1 and, consequently there exists some set Ω ⊆ Λ that minimally represents Γ∗

i−1. By

Proposition 49, there exists a clauseC = �
b(◦L1∨ . . .∨◦Lr) in Γ∗

i−1 such that Lit(C) = Ω

and r ≥ 1. Since unnext({C}) ⊆ Γi , then the clause C′ = L1 ∨ . . . ∨ Lr is in Γi. Now, let

{S1 , . . . , Sn} =
r[

g=1

nxcloi(◦Lg)

(note that n ≥ 1) and let {C1, . . . , Cm} be the set of all clauses of the form L1 ∨ . . . ∨ Ln

such that Lh ∈ Sh for all h ∈ {1, . . . , n}. By subsumption, Γ∗
i contains a non-empty set

of (non-empty) clauses {D1, . . . ,Dm} such that Lit(Dt) ⊆ Lit(Ct) for all t ∈ {1, . . . , m}.

35

By construction S 6⊆ cΓ∗
i for all S ∈ nxcloi(◦Lg) and all g ∈ {1, . . . , r}. Hence, for each

pair (g, S) such that g ∈ {1, . . . , r} and S ∈ nxcloi(◦Lg), we can choose at least one literal

L such that L ∈ S and L 6∈ cΓ∗
i . As a consequence, there exists a clause Dt ∈ Γ∗

i with

t ∈ {1, . . . ,m} such that Lit(Dt) ⊆ Lit(Ct) where Dt ∩ cΓ∗
i = ∅. This contradicts the fact

that cΓ∗
i contains at least one literal from each clause in Γ∗

i .

Proposition 55 For every i ∈ {1, . . . , k} and every standard cΓ∗
i , there exists a sequence

cΓ∗
0 ,

cΓ∗
1 , . . . ,

cΓ∗
i of standard sets such that cΓ∗

h ∈ succ(Γ̂∗
h−1) for every h ∈ {1, . . . , i}.

Proof By Lemma 51 and Proposition 54.

Proposition 56 For every standard cΓ∗
j there exists at least one standard cΓ∗

k
such that cΓ∗

j =

succ(cΓ∗
k).

Proof The proof is very similar to the one of Proposition 54, but using that now(Γj) =

now(unnext(Γ∗
k)) instead of Γi = unnext(Γ∗

i−1) and also using the fact that the set {N |

�◦N ∈ Γ∗
k } is contained into the set now(unnext(Γ∗

k)) (by definition of the unnext opera-

tor).

Now, we are going to construct a pre-model of Γ by means of sequences of standard

lclc-extensions of the sets in D(Γ) which will be ordered by the successor relation. For that,

we need some notation on such sequences. For g and h, where 0 ≤ g ≤ h ≤ k, we denote

by D(Γ)[g..h], the set of all intervals of standard lclc-extensions cΓ∗
g , Γ̂

∗
g+1 , ...,

cΓ∗
h

such that

cΓ∗
i ∈ succ(Γ̂∗

i−1) for every i ∈ {g + 1, . . . , h}. The functions first and last respectively

return the first and the last set of a given interval. We use superscripts notation to denote

subsequences of an interval s ∈ D(Γ)[g..h] as follows. For n and m such that g ≤ n ≤ m ≤

h, the subsequence sn..m denotes the subsequence formed by the sets cΓ∗
n , Γ̂

∗
n+1 , . . . ,

cΓ∗
m of

s. In particular, if n = mwe write sn instead of sn..n and intentionally confuse the sequence

of one set with the set itself. For s ∈ D(Γ)[g..h] , we denote by range(s) the set of natural

numbers {n | g ≤ n ≤ h}. Since D(Γ) is cycling with respect to j and k, the two sets

of intervals D(Γ)[0..j−1] and D(Γ)[j..k] are respectively called initial and inner. Note that,

since j could be 0, the set D(Γ)[0..j−1] could be empty, but D(Γ)[j..k] is non-empty for any

D(Γ).

Proposition 57 For each standard cΓ∗
j there exists s ∈ D(Γ)[j..k] such that cΓ∗

j ∈ succ(last(s)).

Proof By Propositions 55 and 56.

Note that in the above proposition cΓ∗
j and first(s) can be different.

Now, we define when a sequence of elements from D(Γ)[j..k] forms a cycle, which is

called a D(Γ)-cycle. Then we prove that there exists at least one D(Γ)-cycle.

Definition 58 A D(Γ)-cycle is a finite non-empty sequence s0, s1, . . . , sn such that

(i) si ∈ D(Γ)[j..k] for all i ∈ {0, . . . , n}

(ii) first(si+1) ∈ succ(last(si)) for all i ∈ {0, . . . , n− 1} and

(iii) first(s0) ∈ succ(last(sn)).

Proposition 59 There exists at least one D(Γ)-cycle.

36

Proof By Lemma 51, there exists at least one standard set in lclc(Γ∗
j). Let us consider any

standard cΓ∗
j in lclc(Γ∗

j). By Proposition 57, there exists an interval r0 ∈ D(Γ)[j..k] such that

cΓ∗
j ∈ succ(last(r0)). Additionally, by repeatedly applying Proposition 57, we can build an

infinite sequence of intervals r0, r1, . . . in D(Γ)[j..k] such that first(ri−1) ∈ succ(last(ri))

for every i ≥ 1. Since D(Γ)[j..k] is finite, rg = rh must hold for some g and h such that

0 ≤ g < h. Then, the reverse of the sequence rg , . . . , rh−1 , i.e. the sequence rh−1, . . . , rg

is a D(Γ)-cycle.

Note that the minimal cycles consist of exactly one interval s ∈ D(Γ)[j..k] such that

first(s) ∈ succ(last(s)).

8.3 Model Existence

In this subsection we prove that there exists at least one model of Γ on the basis of the

cycling derivation D(Γ). First, we define a graph structure GD(Γ) whose nodes are inter-

vals in D(Γ)[0..j−1] and D(Γ)[j..k]. There is a (directed) edge (s, s′) in GD(Γ) whenever

first(s′) ∈ succ(last(s)). Note that every node in GD(Γ) is related to a node from D(Γ)[j..k].

Second, we define a notion of self-fulfilling path in this graph. Then, we prove that GD(Γ)

contains at least one strongly connected component (a D(Γ)-cycle) that is self-fulfilling. Fi-

nally, we define a model of Γ on the basis of this strongly connected component in GD(Γ) .

Definition 60 We associate to D(Γ) the graph GD(Γ) that is formed by the following set of

nodes SD(Γ) and the following edge-relationRD(Γ) on SD(Γ):

– SD(Γ) = D(Γ)[0..j−1] ∪ D(Γ)[j..k]

– sRD(Γ)s
′ iff s′ ∈ D(Γ)[j..k] and first(s′) ∈ succ(last(s)).

Paths and strongly connected components in GD(Γ) are defined as usual in graph theory.

The notion of D(Γ)-cycle (see Definition 58) has an obvious extension to GD(Γ) . Therefore,

by Proposition 59, the graph GD(Γ) has at least one cycle. The minimal graphsGD(Γ) consist

of exactly one node n with one edge from n to n.

We would like to remark that, from a locally consistent literal-closed set, interleaved

unnext-steps and TRS-steps could yield a TRS-refutation. As a consequence, there could

exist some interval s in SD(Γ) such that no s′ ∈ SD(Γ) satisfies sRD(Γ)s
′ and, hence, there

could exist lclc-extensions that do not belong to any interval in SD(Γ) .

The paths in GD(Γ) are formed by standard lclc-extensions of TRS-closed sets which

do not include any (basic) temporal literal. Consequently, any occurrence of an eventuality

in the states of GD(Γ) must be preceded by a ◦ connective. This fact leads us to define the

following notion of eventuality fulfillment in the paths of GD(Γ).

Definition 61 Let π = s0, s1, . . . be a path in GD(Γ) such that ◦(P1 U P2) ∈ sig for some

g ≥ 0 and i ∈ range(sg). We say that π fulfills ◦(P1 U P2) iff either

– there exists h ∈ range(sg) such that h > i, P2 ∈ shg and P1 ∈ s`g for all ` ∈ {i +

1, . . . , h− 1}, or

– there exist r > g and h ∈ range(sr) such that P2 ∈ shr and P1 ∈ s`z for all (z, `) such

that g < z < r and ` ∈ range(sz) and P1 ∈ s`r for all ` ∈ {j, . . . , h − 1} and P1 ∈ s`g
for all ` ∈ {i+ 1, . . . ,m} where m is the maximum in range(sg).

A path π is self-fulfilling iff π fulfills every ◦(P1 U P2) that occurs in any of its sets. Besides,

a D(Γ)-cycle σ in GD(Γ) is self-fulfilling if the path σω is self-fulfilling.

37

Since ◦� P and ◦(eP U P) are equivalent, the fulfillment notion for ◦� P is a particular

case of Definition 61.

The next three propositions are auxiliary results about the fulfillment of eventualities,

which are useful for proving the Lemma 65. Note that, by means of rule (� Set), the literal T

in every selected ◦T is always an until-formula. Consequently, in the next two propositions,

only this kind of eventualities are considered.

Proposition 62 Let s be an interval in D(Γ)[g..k] for some g ∈ {0, . . . , k−1}. If ◦(Pg U P) ∈

sg and Pg U P ∈ sel ev setg+1 , then P ∈ si for some i ∈ {g + 1, . . . , k}.

Proof Let us suppose that P 6∈ si for every i ∈ {g + 1, . . . , k}. Then, since s is an interval,

si ∈ succ(si−1) for every i ∈ {g+1, . . . , k}. Hence, by Definition 53, there exists a sequence

of literals of the form Pg+1 U P, . . . , Pk U P such that sel ev set∗h = {Ph U P} for every

h ∈ {g + 1, . . . , k} and Ph U P is the direct descendant of Ph−1 U P in D(Γ) for every

h ∈ {g+1, . . . , k}. Since sk is standard, by item (a) in Definition 50, there exists a clause of

the form ◦N ∈ Γ∗
k such that ◦(Pk U P) ∈ Lit(◦N). Consequently, since D(Γ) is a cycling

derivation with respect to j and k, there exists N ∈ Γj such that Pk U P ∈ Lit(N). This

contradicts the fact that Pk is (according to the rule (U Set)) a fresh variable that cannot

appear in the set Γj .

Proposition 63 Let s be an interval in D(Γ)[g..h] for some g and h such that 0 ≤ g < h ≤

k − 1. If ◦(Pg U P) ∈ sg, Pg U P ∈ sel ev setg+1 and P 6∈ si for all i ∈ {g + 1, . . . , h},

then Pg ∈ si for all i ∈ {g + 1, . . . , h}.

Proof If h = g + 1 then Pg ∈ sh because sh is a successor of sg (see Definition 53). Now,

in the case of h ≥ g + 2, let us suppose that there exists some r ∈ {g + 2, . . . , h} such

that Pg 6∈ sr. Since s is an interval, s` ∈ succ(s`−1) for every ` ∈ {g + 1, . . . , h}. Hence,

by Definition 53, there exists a sequence of literals of the form Pg+1 U P, . . . , Ph U P such

that P` U P is the direct descendant of P`−1 U P in D(Γ), sel ev set∗` = {P` U P} and

{P`−1,◦(P` U P)} ⊆ s` for every ` ∈ {g + 1, . . . , h}. Then, Pr−1 ∈ sr . Additionally,

by construction of D(Γ), there exists either a clause of the form Ci = � (¬Pi ∨ Pi−1) or

Ci = �¬Pi in sr for every i ∈ {g + 1, . . . , r}.12 Since we are supposing that Pg 6∈ sr , then

{¬Pg+1, . . . ,¬Pr} ⊆ sr must hold because sr is literal-closed. Then, ¬Pr−1 is also in sr .

Therefore {Pr−1,¬Pr−1} ⊆ sr , which contradicts the fact that sr is locally consistent.

Proposition 64 Let π = s0, s1, . . . , sn be a D(Γ)-cycle. If there exists a literal ◦(P0 U P) ∈
univlit(Γ) such that ◦(P0 U P) ∈ si` for some ` ∈ {0, . . . , n} and some i ∈ {j, . . . , k}, and

the path πω does not fulfill ◦(P0 U P), thenP0 U P 6∈ sel ev setg and {P0, ◦(P0 U P)} ⊆ s
g
h

for every h ∈ {0, . . . , n} and every g ∈ {j, . . . , k}.

Proof Since π is a D(Γ)-cycle and πω does not fulfill ◦(P0 U P), we can ensure, by Def-

initions 58, 53 and 61 that P0 ∈ s
g
h

and P 6∈ s
g
h

for every h ∈ {0, . . . , n} and every

g ∈ {j, . . . , k}. Therefore, by using Proposition 62 and Proposition 63, we can ensure that

P0 U P 6∈ sel ev setg for every g ∈ {j, . . . , k}, since otherwise πω would fulfill ◦(P0 U P).

Consequently, by Definition 53 and Definition 58, we can ensure that {P0, ◦(P0 U P)} ⊆ s
g
h

for every h ∈ {0, . . . , n} and every g ∈ {j, . . . , k}.

Next, we prove that every D(Γ)-cycle in GD(Γ) is self-fulfilling. As a consequence, we

know that there exists at least one self-fulfilling infinite path in the graph GD(Γ).

12 The form of the clause respectively depends on whether the context is empty or not when the rule

(U Set) is applied to Γi.

38

Lemma 65 For any cycling derivation D(Γ), the graph GD(Γ) contains at least one self-

fulfilling D(Γ)-cycle.

Proof By Proposition 59 there is at least one D(Γ)-cycle in GD(Γ) . We show, by contradic-

tion, that every D(Γ)-cycle in GD(Γ) is self-fulfilling. For that, let us suppose that there is a

D(Γ)-cycle π = s0, s1, . . . , sn in GD(Γ) that is non-self-fulfilling, i.e., the path πω does not

fulfill a literal ◦(P0 U P) ∈ si` for some ` ∈ {0, . . . , n} and some i ∈ {j, . . . , k}. Then, by

Proposition 64, P0 U P 6∈ sel ev setg for every g ∈ {j, . . . , k} and {P0,◦(P0 U P)} ⊆ si` for

every ` ∈ {0, . . . , n} and every i ∈ {j, . . . , k}. Since s
g
h

is standard for every ` ∈ {0, . . . , n}

and every i ∈ {j, . . . , k}, we conclude that, for every i ∈ {j, . . . , k}, the set Γ∗
i contains a

clauseC = �
b
◦N such that ◦(P0 U P) ∈ Lit(C) and, consequently,P0 U P ∈ Lit(now(Γi))

for every i ∈ {j, . . . , k}. Therefore, by Definition 31(3), D(Γ) is not a cycling derivation,

which is a contradiction.

The particular case of Lemma 65 for eventualities of the form � P follows easily.

Next, we introduce pre-models as a kind of paths along GD(Γ) .

Definition 66 PMod(GD(Γ)) is the collection of all finite paths π = s0, s1, s2, . . . , sn in

GD(Γ) such that

(a) s0 ∈ D(Γ)[0..j−1] and σ = s1, s2, . . . , sn ∈ cycles(GD(Γ)), if D(Γ)[0..j−1] 6= ∅
(b) π = s0, s1, . . . , sn ∈ cycles(GD(Γ)), if D(Γ)[0..j−1] = ∅

where cycles(GD(Γ)) is the collection of all the self-fulfilling cycles in GD(Γ) .

As a direct consequence of Propositions 55 and 59 and Lemma 65, there exists at least

one pre-model in the graph GD(Γ).

Proposition 67 PMod(GD(Γ)) is non-empty.

Finally, the above pre-model allows us to construct a model of Γ . This proves the com-

pleteness of our TRS-resolution system.

Theorem 68 For any set of clausesΓ , if Γ is unsatisfiable then there exists a TRS-refutation

for Γ .

Proof Suppose that there is no TRS-refutation for Γ , then the algorithm SR in Fig. 7

produces a cycling derivation D(Γ). By Proposition 67, there exists a pre-model π =

s0, s1, s2, . . . , sn in PMod(GD(Γ)). If D(Γ)[0..j−1] = ∅ we define σ as the infinite path

πω . Otherwise σ = s0 · ρω where ρ = s1, s2, . . . , sn. Now, we define the PLTL-structure

Mσ = (σ, VMσ
) where the states are the standard lclc-extensions that form the intervals in

σ which can be seen as

Ω
0
0 , . . . , Ω

r
0 , Ω

j
1, . . . , Ω

k
1 , Ω

j
2, . . . , Ω

k
2 , . . . , Ω

j
n, . . . , Ω

k
n, Ω

j
` , . . . , Ω

k
` , . . .

where r = j−1 and ` = 1 if D(Γ)[0..j−1] 6= ∅, whereas r = k and ` = 0 if D(Γ)[0..j−1] = ∅.

Additionally, Ω
g
h

is in lclc(Γ∗
g) and VMσ

(Ωg
h
) = {p ∈ Prop | p ∈ Ω

g
h
} for every g ∈

{0, . . . , k} and every h ∈ {0, . . . , n}. It is routine to see that 〈Mσ, Ω
i
h〉 |= C holds for all

C ∈ Γ∗
i . Since any lclc-extension contains at least one literal ofC, this is made by structural

induction on the form of the literal and using Definition 53 and the fact that σ is self-fulfilling

(by Lemma 65). In particular, Mσ is a model of Γ∗
0 and, by Propositions 27 and 28, the set

Γ0 is satisfiable. Hence, since Γ = Γ0, the set of clauses Γ is satisfiable.

39

9 Related Work

In this section we describe the contributions in the literature that are more closely related to

our approach to clausal temporal resolution. First, we explain the relation with the tableau

method ([17,19]) that inspired TRS-resolution. And then, we discuss and compare the four

clausal resolution methods ([8,1,36,12]) that are more similar to TRS-resolution.

9.1 The TTM Tableau Method [17,19]

The TRS-resolution method is strongly inspired in the TTM tableau method introduced in

[17,19]. Indeed, the TRS-rule (U Set) is a clausal variant of the TTM-rule (U)2. In [18,19],

the idea behind the rule (U)2 is used for achieving cut-freeness (in particular, invariant-

freeness) in the framework of sequent calculi for PLTL. In [19], a cut-free sequent calculus

that is dual to the one-pass tableau method TTM is presented.

The crucial point –in both rules (U)2 and (U Set)– is the fact that whenever a set of

formulas∆∪{ϕU ψ} is satisfiable, there must exist a model M (with states s0, s1, . . .) that

is minimal in the following sense:

M satisfies either∆ ∪ {ψ} or ∆ ∪ {ϕ, ◦((ϕ ∧ ¬∆)U ψ)}

In other words, in a minimal model M such that 〈M, s0〉 6|= ψ, the so-called context ∆

cannot be satisfied from the state s1 until the state where ψ is true. Regarding tableaux, the

rule (U)2 –which is crucial in our approach for getting a one-pass method– allows to split

a branch containing a node labelled by ∆ ∪{ϕU ψ} into two branches respectively labelled

by∆∪{ψ} and∆∪{ϕ, ◦((ϕ∧¬∆)U ψ)}. Hence, the negation of the successive contexts∆

will be required by the postponed eventuality. Provided that the number of possible contexts

∆ is finite, the fulfillment of ψ cannot be indefinitely postponed, without getting a contra-

diction. Of course, the procedure must fairly select an eventuality to ensure termination.

Tableau rules handle general formulas, whereas resolution needs a preliminary transforma-

tion to the clausal language before the rules can be applied. The rule (U Set) introduced in

this paper is an adaptation –to the clausal language setting– of the tableau rule (U)2. That

is, (U Set) is applied to a set of clauses and the eventuality is inside a clause whereas in

(U)2 the eventuality is itself a formula.

Regarding worst-case complexity, the upper bound given in [19] coincides with the one for

TRS-resolution (see Proposition 45). The computational cost of introducing the negation of

the context in postponed eventualities not only depends on the size of the context but also

on its form. There are syntactically detectable classes of formulas that can be disregarded

when negating the context. In particular the most remarkable class is formed by formulas

of the form �ϕ. Since often most of the clauses are formulas of the form �ϕ where ϕ is in

some normal form, the rule (U Set) is specifically well suited for clausal resolution.

9.2 The Resolution Method of Cavali & Fariñas del Cerro [8]

The complete resolution method presented in [8] deals with a language that is strictly less

expressive than full PLTL since only the temporal connectives ◦, � and � are allowed. The

normal form is based only on distribution laws, and renaming is not used to remove any

nesting of operators. Consequently, their translation into the normal form does not introduce

40

new variables, at the price of achieving little reduction of nesting of classical and temporal

connectives. A formula in Conjunctive Normal Form is a conjunction of clausesC1∧. . .∧Cr

where every clause Cj has the following recursive structure

L1 ∨ . . . ∨ Ln ∨ �δ1 ∨ . . . ∨ � δm ∨ � κ1 ∨ . . . ∨ � κh

Here each Lj is of the form ◦
i
p or ◦

i¬p with p being a propositional atom, each δj is

a clause and each κj is a conjunction where every conjunct is a clause. The resolution

method is based on considering different cases in order to check whether formulas that must

be satisfied at the same state are contradictory or not. For instance, for deciding whether

Σ = {�ϕ,�ψ} is unsatisfiable, the unsatisfiability of Σ′ = {�ϕ,ψ} is analyzed. This case

actually represents a jump to an indeterminate state, i.e. the number of states between the

state s where Σ is satisfied and the state s′ where Σ′ is satisfied is unknown. Similarly,

in order to decide whether {� ϕ,�ψ} is unsatisfiable, the unsatisfiability of {� ϕ,ψ} and

{ϕ,� ψ} is analyzed. Also formulas of the form ϕ ∨ ◦ϕ ∨ . . . ∨ ◦
i
ϕ and of the form ¬ϕ ∧

◦¬ϕ ∧ . . . ∧ ◦
i−1¬ϕ ∧ ◦

i
ϕ are considered for dealing with �ϕ and formulas of the form

ϕ∧◦ϕ∧ . . .∧◦i
ϕ for dealing with �ϕ. However, there is not a clear algorithm to construct

derivations and, therefore, complexity cannot be analyzed. In our approach, the nesting of

connectives in the normal form is much more restricted. Our resolution method is based

on reasoning “forwards in time” state by state (without uncontrolled jumps). And, finally,

our method is complete for full PLTL and we provide a terminating algorithm to construct

derivations. In [7] an extension of the resolution method presented in [8] is shown and the

full expressiveness of PLTL is achieved by means of the connectives ◦ and P (“precedes”)

such that ϕP ψ is equivalent to the until-formula (¬ψ)U (ϕ ∧ ¬ψ), but the completeness

result for the extended method is not provided.

9.3 The Nonclausal Resolution Method of Abadi & Manna [1]

A nonclausal resolution method for full PLTL is presented in [1] (see also [2]). Eventuali-

ties are expressed by means of the connectives � and P (“precedes”). Since they deal with

general formulas (instead of clauses), the provided rules enable the manipulation and sim-

plification of subformulas at any level but with some restrictions for preserving soundness.

The resolution rule is of the form

ϕ[χ], ψ[χ] 7−→ ϕ[true] ∨ ψ[false]

where the occurrences of the subformula χ in ϕ and ψ that are replaced with true and

false, respectively, are all in the scope of the same number of ◦’s and are not in the scope

of any other modal operator in either ϕ or ψ. They also use modality rules, such as e.g.

�ϕ,�ψ 7−→ � ((�ϕ)∧ψ) and �ϕ,� ψ 7−→ � ((� ϕ)∧ψ)∨� (ϕ∧�ψ), that makes this non-

clausal method very different from our proposal. However, they also introduce induction

rules for dealing with eventualities. These induction rules are very close to our rule (U Set).

Here, for simplicity and clarity, we only describe the induction rule for �, which in terms of

the present paper says

∆,∆′,� ϕ 7−→ ∆,∆′,� (¬ϕ ∧ ◦(ϕ ∧ ¬∆)) if ` ¬(∆ ∧ ϕ)

where ∆ and∆′ are set of formulas. This rule states that if ∆ and ϕ cannot hold at the same

time but ϕ eventually holds, then there must be a sate sj where ϕ does not hold and at the

next state sj+1 the formulas ϕ and ¬∆ hold. Hence, the above ∆ (called a fringe in [1])

resembles our context, but the technical handling of fringes in [1] is quite different from

41

our treatment of contexts. The first important difference is that induction rules use an aside

condition (see ` ¬(∆ ∧ ϕ) above) for choosing the fringe ∆. In our approach, contexts are

syntactically determined without any auxiliary derivation. Second, in (U Set) accumulation

of the contexts is made in the non-eventuality part of the until-formula, i.e. the left-hand

subformula of the until-formula. Indeed, the consequent of the TRS-rule (� Set) introduces

an until-formula with the negated context in the left-hand subformula. In contrast, negated

fringes are accumulated in the eventuality part. Third, the method in [1] does not impose any

deterministic or systematic strategy to apply the induction rules although the completeness

proof outlines a strategy based on the finiteness of the set of possible fringes. We provide,

by means of the algorithm SR, a systematic method. Additionally, in our method when a

context is repeated, the derivation of a refutation is straightforward, whereas in [1] obtain-

ing a refutation after a repetition is not so direct. The reason is that our forward reasoning

approach keeps a better structure for detecting the contradiction between a context and its

negation. This fact can be seen by looking at the following example {p,� (¬p ∨ ◦p),� ¬p}.

In our method a refutation is easily achieved when the context {p} is repeated (see Example

33). However, by using the induction rule in [1] with ∆ = {p} and ∆′ = {� (¬p ∨ ◦p)},

they get

{p,� (¬p ∨ ◦p),� (¬¬p ∧ ◦(¬p ∧ ¬p))}.

Applying some other rules, which we cannot detail here, this set is transformed into

{p,◦p,◦� (¬p ∨ ◦p),� (p ∧ ◦¬p)}.

The resolution rule is not enough for achieving a contradiction from the latter set. Fourth, [1]

does not address the problem of satisfiable input sets, whereas we ensure the existence of a

model for any satisfiable input through the notion of cycling derivation. Finally, complexity

is not discussed in [1,2] and is difficult to assess due to the lack of a clear strategy for

applying the rules.

9.4 Venkatesh’s Temporal Resolution [36]

The resolution method presented in [36] is very similar to ours in everything but the way of

dealing with eventualities. The normal form and even the way in which the new variables

are used during the translation process are the same as ours. The resolution rule and the way

of unwinding temporal literals –in the case of our rules (U Fix) and (RFix)– follow the

same idea. Also the approach of reasoning forwards, i.e., jumping to the next state carrying

the clauses that must be necessarily satisfied in the next state, appears in both methods.

However, in sharp contrast to our TRS-resolution, the method in [36] needs invariant property

generation for dealing with eventualities that can unwind indefinitely (or whose fulfillment

can be delayed indefinitely). More precisely, cyclic sequences of sets of clauses that contain

the so-called persistent eventualities –eventualities that can be unwound indefinitely and

cannot be satisfied– must be detected and the persistent eventualities must be removed.

Detecting those cycles can be seen as finding an invariant property χ that ensures that a given

eventuality ϕU ψ cannot be fulfilled because �¬ψ follows from χ. Finding the invariant

property requires an additional process whose development is not tackled in [36], therefore

the complexity of the method cannot be directly assessed. Instead of invariant properties, we

use the concept of context –in the applications of the rule (U Set)– for preventing indefinite

unwinding of eventualities.

42

9.5 Fisher’s Temporal Resolution [12]

The resolution method presented in [12] is also for full PLTL. The structure of a formula in

the Separated Normal Form (SNF) is �C1 ∧ . . .∧�Cr and since it is equivalent to � (C1 ∧

. . . ∧ Cr), the calculations are made using only the so-called PLTL-clauses C1, . . . , Cr ,

without � . Each Cj is of one of the following three forms

start → δ κ→ ◦ δ κ→ � λ

where → denotes the connective for logical implication, start is a nullary connective that

is only true in the initial state, δ is a disjunction of propositional literals, κ is a conjunction

of propositional literals and λ is a propositional literal. The use of start makes possible

to differentiate the clauses that refer only to the first state and the clauses that refer to all

the states. Additionally, in SNF only the temporal connectives ◦ and � are kept, since any

clause involving one of the remaining connectives (U , � , etc.) is expressed by a set of

new clauses whose only temporal connectives are ◦ and � . The three kinds of clauses are

called, respectively, initial PLTL-clauses, step PLTL-clauses and sometime PLTL-clauses.

Resolution between the former two kinds of clauses is a straightforward generalization of

classical resolution but the so-called temporal resolution rule for sometime PLTL-clauses is

more complicated:

κ0 → ◦ δ0, . . . , κn → ◦ δn, κn+1 → � λ

SNF(κn+1 → (¬κ0 ∧ . . . ∧ ¬κn)Wλ)

where the unless or weak until connective W is defined as ϕWψ ≡ (ϕU ψ) ∨ �ϕ. Addi-

tionally the following loop side conditions must be valid

δj → ¬λ and δj → (κ0 ∨ . . . ∨ κn) for every j ∈ {0, . . . , n}

The idea is that if the set Ω = {κ0 → ◦ δ0, . . . , κn → ◦ δn} satisfies the loop side condi-

tions, then it follows that (κ0 ∨ . . . ∨ κn) → ◦�¬λ. In such a case Ω is called a loop in � λ

and κ0 ∨ . . . ∨ κn is called a loop formula (also called invariant) in ¬λ. So the method is

based on searching for the existence of these invariant properties. This task requires special-

ized graph search algorithms (see [14,10]) and is the most intricate part of this approach.

The worst-case complexity is discussed in [14], where the translation to SNF is proved to be

linear in the length of the input, whereas resolution is doubly exponential in the number of

proposition symbols. An improved and simplified version of the resolution method in [12]

can be found in [9]. The main differences with respect to TRS-resolution method are three.

First, although the technique of renaming complex subformulas by a new proposition sym-

bol is used in both approaches, in our normal form the temporal connectives U and R are

kept. Second, we follow the approach of reasoning forwards and jumping to the next state

when necessary, whereas the method presented in [12] involves reasoning backwards. Actu-

ally, contradictions are achieved at the initial state. Third, the most remarkable difference is

the way of dealing with eventualities, since we dispense with invariant generation by means

of the rule (U Set).

10 Conclusion

We have presented a new method for temporal resolution that is sound and complete for

PLTL and does not require invariant generation. We have provided the conversion of any

formula to clausal form, a resolution system called TRS that extends classical resolution, and

43

an easily implementable algorithm that decides the satisfiability of any set of clauses. More-

over, together with its yes/no answer, the algorithm provides an (un/)satisfiability proof.

That is, either a systematic refutation or a canonical model of the set of clauses that has

been given as input.

We believe that the presented work opens many interesting topics for future research.

The extension of our resolution method to more expressive logics is a wide area of work. In

particular, we hope that the presented method gives an opportunity to develop the first reso-

lution method for Full Computation Tree Logic CTL?. Although the first complete tableau

system for CTL? has been recently published in [30], a resolution procedure for CTL? is not

known yet. Additionally, the extension of TRS-resolution to first-order linear temporal logic

(shortly, FLTL), besides its own relevance, could produce a new class of decidable frag-

ments of FLTL along with their associated decision procedures based on TRS-resolution.

For instance, one may consider the clausal FLTL-language that is obtained from our clausal

language by allowing, as atoms, predicate symbols applied to first-order terms, instead of

propositional variables. A syntactical restriction of this clausal FLTL-language would be

decidable provided that the set of all possible different contexts –in any application of the

rule (U Set)– were ensured to be finite in the restricted language. Moreover, particular syn-

tactical restrictions could allow to specialize the general TRS-procedure in order to gain

efficiency. The TRS-resolution method could also be applied to other extensions of PLTL

like spatial, dynamic, etc. Regarding the opposite case of restricting the language (instead of

extending it), we would like to remark that temporal logic programming languages could be

obtained as concrete subsets of our clausal language and their operational semantics could

be defined in terms of TRS-resolution. Indeed, we already have some results in this direction.

The development of practical automated reasoning tools based on TRS-resolution constitutes

a broad area of present and future work. At the moment, a preliminary prototype is avail-

able online in http://www.sc.ehu.es/jiwlucap/TRS.html. This prototype is a direct

implementation of the transformation to CNF and the algorithm SR. There is only a small

amount of nondeterminism in SR. Moreover, the form of nondeterminism in SR is some-

times called angelic nondeterminism, in the sense that backtracking is not required to ensure

termination. The crucial actions upon which the implementation of SR depends are the fair

selection of eventualities, the application of each rule, and the test for termination. We plan

to gradually improve this prototype and to compare it with other available automated reason-

ers for PLTL. In particular with the temporal resolution prover TRP++ [25] that implements

the method introduced in [12], which is very close to TRS-resolution. We are also interested

in comparison with the implementations of the tableau-based methods presented in [27,

34] that are available in the Logics Workbench Version 1.1 (http://www.lwb.unibe.ch)

and with our own TTM Theorem Prover (http://www.sc.ehu.es/jiwlucap/TTM.html),

which implements the method introduced in [17,19]. We are also considering the possibility

of combining TRS-resolution with the one-pass tableau method (inside our TTM Theorem

Prover) to produce a kind of hyper tableaux that would be also interesting for practical im-

plementation purposes.

Finally, the accurate study of complexity of TRS-resolution seems to be also interesting.

Acknowledgements We would like to thank the referees for their careful reading and many helpful com-

ments leading to significant improvements of the paper.

44

References

1. M. Abadi and Z. Manna. Nonclausal temporal deduction. In R. Parikh, editor, Logic of Programs,

volume 193 of Lecture Notes in Computer Science, pages 1–15. Springer, 1985.

2. M. Abadi and Z. Manna. Nonclausal deduction in first-order temporal logic. J. ACM, 37(2):279–317,

1990.

3. P. Abate, R. Goré, and F. Widmann. One-pass tableaux for computation tree logic. In Proceedings of the

14th international conference on Logic for programming,artificial intelligence and reasoning, LPAR’07,

pages 32–46, Berlin, Heidelberg, 2007. Springer-Verlag.

4. B. Banieqbal and H. Barringer. Temporal logic with fixed points. In B. Banieqbal, H. Barringer, and

A. Pnueli, editors, Temporal Logic in Specification, Altrincham, UK, April 8-10, 1987, Proceedings,

volume 398 of Lecture Notes in Computer Science, pages 62–74. Springer, 1987.

5. M. Baudinet. Temporal logic programming is complete and expressive. In Conference Record of the

Sixteenth Annual ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas.,

pages 267–280, 1989.

6. A. Bolotov and M. Fisher. A clausal resolution method for CTL branching-time temporal logic. J. Exp.

Theor. Artif. Intell., 11(1):77–93, 1999.

7. A. R. Cavalli. A method of automatic proof for the specification and verification of protocols. Computer

Communication Review, 14(2):100–106, 1984.

8. A. R. Cavalli and L. F. del Cerro. A decision method for linear temporal logic. In R. E. Shostak,

editor, 7th International Conference on Automated Deduction, Napa, California, USA, May 14-16, 1984,

Proceedings, volume 170 of Lecture Notes in Computer Science, pages 113–127. Springer, 1984.

9. A. Degtyarev, M. Fisher, and B. Konev. A simplified clausal resolution procedure for propositional linear-

time temporal logic. In Automated Reasoning with Analytic Tableaux and Related Methods, International

Conference, TABLEAUX 2002, Copenhagen, Denmark, July 30 - August 1, 2002, Proceedings, volume

2381 of Lecture Notes in Computer Science, pages 85–99. Springer, 2002.

10. C. Dixon. Search strategies for resolution in temporal logics. In M. A. McRobbie and J. K. Slaney,

editors, Automated Deduction - CADE-13, 13th International Conference on Automated Deduction, New

Brunswick, NJ, USA, July 30 - August 3, 1996, Proceedings, volume 1104 of Lecture Notes in Computer

Science, pages 673–687. Springer, 1996.

11. E. Eder. Relative complexities of first-order calculi. Artificial Intelligence, 1992.

12. M. Fisher. A resolution method for temporal logic. In J. Mylopoulos and R. Reiter, editors, Proceedings

of the 12th International Joint Conference on Artificial Intelligence (IJCAI), Sydney, Australia., pages

99–104, 1991.

13. M. Fisher. An Introduction to Practical Formal Methods Using Temporal Logic. John Wiley & Sons,

Ltd, June, 2011.

14. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Trans. Comput. Log., 2(1):12–56,

2001.

15. D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal logic (vol. 1): mathematical foundations and

computational aspects. Oxford University Press, Inc., New York, USA, 1994.

16. D. M. Gabbay, M. A. Reynolds, and M. Finger. Temporal logic (vol. 2): mathematical foundations and

computational aspects. Oxford University Press, Inc., New York, USA, 2000.

17. J. Gaintzarain, M. Hermo, P. Lucio, and M. Navarro. Systematic semantic tableaux for PLTL. In

E. Pimentel, editor, Proceedings of the Seventh Spanish Conference on Programming and Computer

Languages (PROLE 2007), Selected Papers, volume 206 of Electronic Notes in Theoretical Computer

Science, pages 59–73, 2008.

18. J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. A cut-free and invariant-free sequent

calculus for PLTL. In J. Duparc and T. A. Henzinger, editors, Computer Science Logic, 21st International

Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15,

2007, Proceedings, volume 4646 of Lecture Notes in Computer Science, pages 481–495. Springer, 2007.

19. J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. Dual systems of tableaux and sequents

for PLTL. Journal of Logic and Algebraic Programming, 78(8):701–722, 2009.

20. V. Goranko, A. Kyrilov, and D. Shkatov. Tableau tool for testing satisfiability in ltl: Implementation and

experimental analysis. Electr. Notes Theor. Comput. Sci., 262:113–125, 2010.

21. V. Goranko and D. Shkatov. Tableau-based decision procedure for full coalitional multiagent temporal-

epistemic logic of linear time. In Proceedings of The 8th International Conference on Autonomous

Agents and Multiagent Systems - Volume 2, AAMAS ’09, pages 969–976, Richland, SC, 2009. Interna-

tional Foundation for Autonomous Agents and Multiagent Systems.

22. R. Gore. Tableau methods for modal and temporal logics, pages 297–396. Kluwer Academic Publishers,

1999.

45

23. R. Goré and F. Widmann. An optimal on-the-fly tableau-based decision procedure for pdl-satisfiability.

In Proceedings of the 22nd International Conference on Automated Deduction, CADE-22, pages 437–

452, Berlin, Heidelberg, 2009. Springer-Verlag.

24. G. D. Gough. Decision Procedures for Temporal Logic. Master’s thesis. Department of Computer

Science, University of Manchester, England, 1984.

25. U. Hustadt and B. Konev. Trp++2.0: A temporal resolution prover. In F. Baader, editor, Automated

Deduction - CADE-19, 19th International Conference on Automated Deduction Miami Beach, FL, USA,

July 28 - August 2, 2003, Proceedings, volume 2741 of Lecture Notes in Computer Science, pages 274–

278. Springer, 2003.

26. U. Hustadt and R. A. Schmidt. An empirical analysis of modal theorem provers. Journal of Applied

Non-Classical Logics, 9(4), 1999.

27. G. Janssen. Logics for digital circuit verification - theory, algorithms, and applications, phd thesis,

eindhoven university of technology, the netherland, 1999.

28. R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising tableaux. STUDIA LOGICA,

76(1):91–134, 2004.

29. O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability and completeness. Logic

Journal of the IGPL, 8(1), 2000.

30. M. Reynolds. A tableau for ctl. In FM 2009: Formal Methods, Second World Congress, Eindhoven, The

Netherlands, November 2-6, 2009. Proceedings, volume 5850 of Lecture Notes in Computer Science,

pages 403–418. Springer, 2009.

31. M. Reynolds and C. Dixon. Theorem-proving for discrete temporal logic. In Handbook of Temporal

Reasoning in Artificial Intelligence, pages 279–314. Elsevier, 2005.

32. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12:23–

41, January 1965.

33. U. Schöning. Logic for Computer Scientists. Birkhäuser Boston-Basel-Berlin, 1989.

34. S. Schwendimann. A new one-pass tableau calculus for PLTL. In Analytic Tableaux and Related

Methods, volume 1397 of Lecture Notes in Computer Science, pages 277–292, 1998.

35. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for büchi automata with apppli-

cations to temporal logic. Theor. Comput. Sci., 49:217–237, 1987.

36. G. Venkatesh. A decision method for temporal logic based on resolution. In S. N. Maheshwari, editor,

Foundations of Software Technology and Theoretical Computer Science, Fifth Conference, New Delhi,

India, December 16-18, 1985, Proceedings, volume 206 of Lecture Notes in Computer Science, pages

272–289. Springer, 1985.

37. P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1–2):72–99, 1983.

