
One-Pass Context-Based Tableaux Systems for
CTL and ECTL
Alex Abuin
Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA),
Arrasate-Mondragón Gipuzkoa, Spain
aabuin@ikerlan.es

Alexander Bolotov
University of Westminster, London, UK
https://www.westminster.ac.uk/about-us/our-people/directory/bolotov-alexander
A.Bolotov@westminster.ac.uk

Montserrat Hermo
University of the Basque Country, San Sebastián, Spain
montserrat.hermo@ehu.es

Paqui Lucio
University of the Basque Country, San Sebastián, Spain
http://www.sc.ehu.es/paqui
paqui.lucio@ehu.eus

Abstract
When building tableau for temporal logic formulae, applying a two-pass construction, we first check
the validity of the given tableaux input by creating a tableau graph, and then, in the second “pass”,
we check if all the eventualities are satisfied. In one-pass tableaux checking the validity of the
input does not require these auxiliary constructions. This paper continues the development of
one-pass tableau method for temporal logics introducing tree-style one-pass tableau systems for
Computation Tree Logic (CTL) and shows how this can be extended to capture Extended CTL
(ECTL). A distinctive feature here is the utilisation, for the core tableau construction, of the concept
of a context of an eventuality which forces its earliest fulfilment. Relevant algorithms for obtaining
a systematic tableau for these branching-time logics are also defined. We prove the soundness and
completeness of the method. With these developments of a tree-shaped one-pass tableau for CTL
and ECTL, we have formalisms which are well suited for the automation and are amenable for the
implementation, and for the formulation of dual sequent calculi. This brings us one step closer
to the application of one-pass context-based tableaux in certified model checking for a variety of
CTL-type branching-time logics.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Temporal logic, fairness, expressiveness, branching-time

Digital Object Identifier 10.4230/LIPIcs.TIME.2020.14

Funding Alexander Bolotov: This author has been supported by the European Union (FEDER
funds) under grant TIN2017-86727-C2-2-R, and by the University of the Basque Country under
Project LoRea GIU18-182.
Montserrat Hermo: This author has been supported by the European Union (FEDER funds) under
grant TIN2017-86727-C2-2-R, and by the University of the Basque Country under Project LoRea
GIU18-182.
Paqui Lucio: This author has been supported by the European Union (FEDER funds) under
grant TIN2017-86727-C2-2-R, and by the University of the Basque Country under Project LoRea
GIU18-182.

© Alex Abuin, Alexander Bolotov, Montserrat Hermo, and Paqui Lucio;
licensed under Creative Commons License CC-BY

27th International Symposium on Temporal Representation and Reasoning (TIME 2020).
Editors: Emilio Muñoz-Velasco, Ana Ozaki, and Martin Theobald; Article No. 14; pp. 14:1–14:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5654-9666
mailto:aabuin@ikerlan.es
https://orcid.org/0000-0001-9966-7558
https://www.westminster.ac.uk/about-us/our-people/directory/bolotov-alexander
mailto:A.Bolotov@westminster.ac.uk
https://orcid.org/0000-0001-5627-501X
mailto:montserrat.hermo@ehu.es
https://orcid.org/0000-0001-7872-2685
http://www.sc.ehu.es/paqui
mailto:paqui.lucio@ehu.eus
https://doi.org/10.4230/LIPIcs.TIME.2020.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 One-Pass Context-Based Tableaux Systems for CTL and ECTL

1 Introduction

In this paper we continue our investigation of tableaux-based deductive techniques for
temporal logic having in mind their potential application in model checking, more specifically,
in certified model checking [16], which aims to generate proofs as certificates of the properties
that are verified, as well as counterexamples for those properties that are invalidated. There
are two known ways to build tableau constructions for temporal logic formulae (for the
survey of tableau method for temporal logic we refer an interested reader to [13]). Two-
pass constructions check the validity of the given tableaux input in two passes - in the
first pass a tableau graph is obtained and the second “pass” checks the satisfiability of
all eventualities. In one-pass tableaux checking the validity of the input does not require
these auxiliary constructions. This paper continues the development of one-pass tableau
method for temporal logics [11, 4], this time for Computation Tree Logic (CTL) and Extended
Computation Tree Logic (ECTL) introduced, respectively, in [6] and [10]. The core tableau
construction is based on the concept of a context of an eventuality, which is a set of formulae
that “accompanies” the eventuality in the label of the node of a tableaux graph. Our specific
tableau rules that involve context force the earliest fulfilment of eventualities. In previous
works such a context-based one-pass tableaux approach has been developed for propositional
linear-time temporal logic, PLTL [11], and for the branching-time logic ECTL# [4], which
introduces a new class of fairness constraints utilising the “until” temporal operator. It
has also been shown how, in the linear-time case, the method, being mingled with a SAT
solver, can be invoked as part of the certified model checking for PLTL [2]. Aiming at similar
developments for branching-time cases, in particular for CTL, we make two observations.

Firstly, the satisfiability of a property ϕ in PLTL can be reduced to checking if a complete
transition system satisfies ¬ϕ (since any counter-model of ¬ϕ is a model of ϕ) and both the
satisfiability and model checking are PSPACE-complete [18]. However, the CTL satisfiability
problem cannot be reduced to the CTL model checking. In particular, a model checking
algorithm for CTL properties (for example [5] implemented in NuSMV) cannot be adapted for
testing CTL satisfiability: the model checking problem for CTL is known to be P-complete [7],
while the satisfiability problem for CTL is EXPTIME-complete [9]. However, any decision
procedure of CTL satisfiability can be used to perform model checking tasks.

Secondly, note that in our previous work one-pass tableaux method was developed for a
richer logic - ECTL# [4]. However, the application of such model checking procedure for CTL
simply based on the existing one-pass tableaux for ECTL# would become too “non-intuitive”
due to the complexity of its rules that are needed for this richer logic. We also note that the
distinguished (and unavoidable) feature of one-pass technique for ECTL# is the utilisation
of two types of context, unlike in the case of PLTL. Here the so-called “outer” (similar to
PLTL) context is a collection of state formulae, and is complemented by so called “inner”
context, a collection of path formulae. Subsequently, the development of a simpler one-pass
method for CTL is an important task. In our tableau method for CTL, similarly to PLTL, we
only need the “outer” context, yet, similar to ECTL# the generated tableaux are AND-OR
trees. Our results provide an intuitive tableau method that serves as a decision procedure of
CTL satisfiability and can also be used in certified model checking of CTL properties hence
the method presented in the paper would enable a subsequent study and implementation
of a certified model checker. With the development of tree-shaped one-pass tableaux for
CTL and ECTL, this paper has proved the effectiveness of the approach which now covers
both linear-time and a range of branching-time logics. Moreover, the results of this paper
give us formalisms which are well suited for the automation and are amenable for the

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:3

implementation, and for the formulation of a dual sequent calculi - all these bring us one step
closer to the application of these developments in certified model checking for a variety of
branching-time logics. Additionally, aiming at the extension of the certified model checking
to the branching-time framework, a proof system, e.g. sequent calculus, is required to check
the proof certificates in the branching-time setting.

Our extensive search for tableau methods for CTL has not shown a great variety of
systems. For example, [3] presents a two-pass tableau, where in the first pass the tableau
rules are applied creating a cyclic graph. In the second pass, “bad loops” are pruned (where
a “bad loop” is a loop containing some eventuality that is not fulfilled along it). In [1, 12]
the authors introduce a single-pass tableaux decision procedure for CTL. It is based on
Schwendimann’s one-pass procedure for PLTL [17]. This tableau method uses an additional
mechanism for collecting information on the set of formulae in the nodes, and passing it,
to subsequent nodes along branches. The information on previously generated nodes helps
detecting “bad loops” without constructing the whole graph. Finally, we note that we have
not found an explicit formulation of a tableaux (one or two pass) method for ECTL.

To ensure that the presentation of quite technical details in the paper is clear and self-
contained, we supply all major technical details in the text. This determines the following
structure of the paper. In §2 we give CTL and ECTL syntax and semantics as sublogics of
CTL?. The formulation of the tableau method is presented in §3, where we first give some
preliminaries and then overview the tableau construction as an AND-OR tree and provide
examples. A systematic tableau construction is introduced in §4. In §5 we show further
extension of the method for ECTL. In §6 we draw the conclusions and prospects of future
work that the presented results open. Finally, in Appendix A we briefly recall the cyclic
models characterization of satisfiability in branching temporal logics. The soundness and
completeness of our tableau methods are proved in Appendix B. Finally, in Appendix C we
depict the complete tableau for the running example in the paper.

2 Syntax and Semantics of CTL and ECTL

The language of branching-time logic extends the language of classical propositional logic
by future time temporal operators ◦ - “at the next moment of time”, ♦ - “eventually”, � -
“always” and U - “until”, together with paths quantifiers A - “for all paths” quantifier, and E
- “there exists a path” quantifier.

The hierarchy of CTL-type family of Branching-time logics (BTL) is defined by releasing
restrictions on the concatenations of temporal operators and paths quantifiers which define
classes of admissible state formulae distinguished for these logics. As in CTL every temporal
operator must be preceded by a path quantifier, this logic cannot express fairness which
requires at least the concatenation of � and ♦. These are tackled by ECTL [9] which enables
simple fairness constraints but not their Boolean combinations. ECTL+ [10] further extends
the expressiveness of ECTL allowing Boolean combinations of temporal operators and ECTL
fairness constraints (but not permitting their nesting). The logic ECTL# [4] extends ECTL+

by allowing the combinations �(AUB) or AU�B, referred to as modalities �U and U�. The
logic CTL?, often considered as the “full branching-time logic” overcomes all these restrictions
on syntax allowing any arbitrary combinations of temporal operators and path quantifiers.
For the sake of generality, as all logics we are interested in are subsumed by CTL?, we first
recall CTL? syntax and then, by restricting it, derive the syntax for each of ECTL#, ECTL+,
ECTL and CTL.

TIME 2020

14:4 One-Pass Context-Based Tableaux Systems for CTL and ECTL

I Definition 1 (Syntax of CTL?). Given Prop is a fixed set of propositions, and p ∈ Prop,
we define sets of state (σ) and path (π) CTL? formulae over Prop as follows: σ ::= T | p |
σ1 ∧ σ2 | ¬σ | Eπ and πCTL? ::= σ | π1 ∧ π2 | ¬π | ◦π | πUπ.

Observe that in Definition 1 for the set of path formulae we deliberately used an index
CTL? and did not use any index for the set of state formulae: the syntax of CTL? sublogics
we will define later, will be distinguished exactly by specific to these logics path formulae
constructions, while the set of state formulae is preserved from the definition of CTL? syntax.
Other usual Boolean operators can be derived from those introduced in the standard way while
the “release” (R), ♦ and � operators can be defined as follows: ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2),
♦ϕ ≡ TUϕ, and �ϕ ≡ ¬♦¬ϕ.

We consider a Kripe-style semantics of CTL?: a Kripke structure, K, is a triple (S,R,L)
where S 6= ∅ is a set of states, R ⊆ S × S is a total binary relation, called the transition
relation, and L : S → 2Prop is a labelling function. Our Kripke structures are labelled directed
graphs that correspond to Emerson’s R-generable structures, i.e. the transition relation R
is suffix, fusion and limit closed [8]. A path x through a Kripke structure K is an infinite
sequence of states si, si+1, si+2 . . . such that (sj , sj+1) ∈ R for any j ≥ i. A fullpath x

through a Kripke structure K is an infinite sequence of states s0, s1, s2 . . . , where s0 is the
root. Given a path x = si, si+1, . . . and a state sk ∈ x such that k > i, we denote its finite
prefix x≤k = si, si+1 . . . , sk and its infinite suffix x≥k = sk, sk+1, The notation K �x(i)
denotes a Kripke structure with the set of states of K restricted to those that are R-reachable
from x(i) and fullpaths(K) is the set of all fullpaths in K. Given the structure K = (S,R,L),
the relation |= evaluates path formulae in a given path x and state formulae at the state index
i of x and is defined on atoms by K, x, i |= p iff p ∈ L(x(i)). Omitting standard definitions
for Booleans, we present the relation |= for temporal connectives and path quantifier E:

K, x, i |= Eπ iff there exists a path y ∈ fullpaths(K �x(i)) such that K, y |= π.

K, x, i |= ◦π iff K, x, i+ 1 |= π.

K, x, i |= π1Uπ2 iff there exists k ≥ i with K, x≥k |= π2 and K, x≥j |= π1 for all 0 ≤ j ≤ k − 1.

For any set Σ of state formulae, K, x, i |= Σ iff K, x, i |= σ, for all σ ∈ Σ. Moreover, if for
any fullpath x ∈ fullpaths(K), we have K, x, 0 |= Σ, then we simply write K |= Σ. For a state
formula ϕ, the set of its models, Mod(ϕ), is formed by all triples (K, x, i) such that K, x, i |= ϕ.
Then ϕ is satisfiable (Sat(ϕ)) if Mod(ϕ) 6= ∅, otherwise ϕ is unsatisfiable (UnSat(ϕ)). For
state formulae ϕ and ϕ′, if Mod(ϕ) = Mod(ϕ′) then ϕ and ϕ′ are logically equivalent denoted
as ϕ ≡ ϕ′. Satisfiability and logical equivalence are generalised to sets of state formulae Σ,
in the natural way (formally by substituting ϕ with Σ in the relevant definitions and stating
that Σ is satisfied when all its formulae are satisfied).

For each of BTL logics ECTL#, ECTL+, ECTL and CTL its syntax is defined over a fixed
set of propositions Prop, such that the definition of state formulae is the same as for CTL?

(Def. 1), and the eventuality ♦ϕ is the abbreviation for TUϕ. The specific for these logics
restrictions on the CTL? grammar in Definition 1 generate the corresponding sets for path
formulae, as in Definition 2. For technical convenience, here we define � as the basic language
operator.

I Definition 2 (Paths formulae for ECTL#,ECTL+, ECTL and CTL).
πECTL# ::= σ | π1 ∧ π2 | ¬π | ◦σ | σU(σ ∧ ♦σ) | �(σ ∨ �σ) | σU(�σ) | �(σUσ)
πECTL+ ::= σ | π1 ∧ π2 | ¬π | ◦σ | σUσ | �σ | �♦σ | ♦�σ.

πECTL ::= σ | ¬π | ◦σ | σUσ | �σ | �♦σ | ♦�σ.

πCTL ::= σ | ¬π | ◦σ | σUσ | �σ.

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:5

IDefinition 3 (Literals). Let Prop be a fixed set of CTL (ECTL) propositions, and let ρ ∈ Prop.
Then the set of CTL(ECTL) literals is defined as Lit ::= F | T | ρ | ¬ρ.

It is well known that any given branching-time formula ϕ can be converted to a formula
NNF(ϕ) - the Negation Normal Form of ϕ obtained by pushing negations inwards until they
only apply to literals. The conversion is based on well-known equivalences which ensure that
ϕ and NNF(ϕ) have exactly the same models, i.e. are logically equivalent. Consequently,
we assume that inputs for the tableaux procedure in CTL and ECTL are given in NNF. For
simplicity, we will write ∼ϕ instead of NNF(¬ϕ). Also, for a finite set Φ = {ϕ1, . . . , ϕn}, we
let ∼Φ = NNF(¬

∧n
i=1 ϕi).

Further, it is important to note that the nesting of “pure path formulae”, totally un-
restricted in CTL?, is now restricted in its sublogics by relevant grammar cases for paths
formulae. For example, a CTL? formula (1) is not an ECTL# formula. Rewriting it as
A(TU(◦p ∧ E◦¬p)) we can see

A♦(◦p ∧ E◦¬p) (1)

that ◦p ∧ E◦¬p is neither a state formula nor of the form �σ. Note that the validity of (1)
which is indicative for CTL?, is directly linked to the limit closure property [8]. Similarly, a
ECTL# formula A((pU�q) ∧ (sU�¬q)) is not an ECTL+ formula because pU�q and sU�¬q,
hence their conjunction, are not admissible ECTL+ formulae. Further, an ECTL+ formula
(2) does not belong to ECTL

E(�♦q ∧♦�¬q) (2)

as �♦q ∧ ♦�¬q is not an admissible ECTL path formula. Finally, the fairness constraint (3)
expressible in ECTL cannot be constructed in CTL syntax as every temporal operator

E�♦q (3)

in a CTL formula must be preceded by a path quantifier. Note that it is important to
distinguish the problem if a formula of a superlogic belongs to a sublogic and the problem
if a formula of a superlogic can be expressed in a sublogic. For example, E(�♦q ∨ ♦�¬q),
similarly to formula (2) does not belong to ECTL but unlike (2), it is expressible in this logic,
as E(�♦q ∨ ♦�¬q) ≡ E�♦q ∨ E♦�¬q which is an ECTL formula if we define ∨ via ∧.

Table 1 Classification of context-based tableaux systems for CTL-type logics and relevant difficult
cases of concatenations of temporal operators and path quantifiers.

BTL Logics E�♦q E(�♦q ∧ ♦�¬q) A((pU�q)
∨ (sU�¬r))

A♦(◦p ∧ E◦¬p) One-pass
Tableaux

B(U ,◦) (CTL) X X X X This paper

B(U ,◦,�♦) (ECTL)
√

X X X This paper

B+(U ,◦,�♦) (ECTL+)
√ √

X X
√

B+(U ,◦,U�) (ECTL#)
√ √ √

X
√

B?(U ,◦) (CTL?)
√ √ √ √

X

Table 1 represents BTL logics classified by their expressiveness using “B” for “Branching”,
followed by the set of only allowed modalities as parameters; B+ indicates admissible Boolean
combinations of the modalities and B? reflects “no restrictions” in either concatenations

TIME 2020

14:6 One-Pass Context-Based Tableaux Systems for CTL and ECTL

of the modalities or Boolean combinations between them following the notation initially
proposed in [8] and further tuned in [15]. The top row of the figure represents the indicative
formulae (1)-(3) for the listed logics. The last column in Table 1 reflects the development of
the context-based one-pass tableaux technique for CTL-type logics: the method has been
developed for ECTL# ([4] where the motivation was to tackle complex cases of fairness).
In this paper we introduce the technique for CTL and ECTL, while the case of ECTL+ can
be tackled effectively by the technique developed for ECTL#. Indeed, ECTL+ and ECTL#

have similar cases of the Boolean combination of eventualities in the scope of A and E,
namely disjunctions of the eventualities in the scope of the A quantifier and conjunctions
of eventualities in the scope of the E quantifier, see [4] for details. Thus, Table 1 also
reflects syntactical cases of concatenations of temporal operators and path quantifiers that
are difficult for context-based one-pass tableaux. To tackle these cases, in addition to α- and
β-rules, that are standard to the tableaux, novel β+-rules which use the context to force
the eventualities to be fulfilled as soon as possible, were introduced. As ECTL# is more
expressive than ECTL+ in allowing new type of fairness constraints that use the U operator,
the relevant rules introduced in [4] would cover all difficult concatenations of operators in
ECTL+. Hence, simply treating the case of one-pass context-based tableaux for ECTL+ as
solved by the relevant development for a richer logic ECTL#, in this paper we concentrate on
bridging the gap in our roadmap in supplying BTL logics by this technique, by developing the
method for CTL and ECTL. The ultimate target of this roadmap - the one-pass context-based
tableaux for CTL? remains extremely difficult and an open problem.

3 Context-based One-pass Tableau Method for CTL

We precede the presentation of the method by the introduction of a number of important
concepts. Firstly, we introduce a concept of basic modality which reflects the restrictions
on forming the basic admissible combinations of temporal operators in the scope of a path
quantifier. Recall that formulae of CTL and ECTL logics are written in NNF. Abbreviating
by Q either of the path quantifiers A or E, we consider a basic modality of CTL or ECTL
logic to be of the form QT, where T is a temporal operator. The structure QT is generated
by the grammar rules for these logics in Def. 2. We can identify all basic modalities in a
given formula ϕ by finding its most embedded modality(es), say M1, then looking at the
next basic modality in which M1 is embedded, etc. For example, basic modalities for CTL
are structures Q◦,QU , and Q� while for ECTL these will be Q◦,QU , Q�, Q♦� and Q�♦. If
we analyse a CTL formula E◦A◦p then the most embedded basic modality, M1, would be
A◦p, which is embedded as E◦M1. These are generalised in Definition 4.

I Definition 4 (ECTL#,ECTL+, ECTL and CTL Basic Modalities).
MECTL ::= c | Q◦M | Q(MUM) | Q�M | Q�♦M | Q♦�M.
MCTL ::= c | Q◦M | Q(MUM) | Q�M.

where c stands for a purely classical formula (we can consider a purely classical formula as a
zero-degree basic modality) and M stands for any basic modality of CTL in the definition of
MCTL and of ECTL in the definition of MECTL. Note that we have “derived” cases of basic
modalities for ♦M and MRM. In what follows, every CTL modality QU or Q♦ is called
eventuality.

CTL tableau rules are based on fixpoint characterisation of its basic modalities: (in the
equations below ν and µ stand for “minimal fixpoint” and “maximal fixpoint” operators,
respectively)

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:7

E�ϕ = νρ(ϕ ∧ E◦ρ) E(ϕRψ) = νρ(ψ ∧ (ϕ ∨ E◦ρ))
A�ϕ = νρ(ϕ ∧ A◦ρ) A(ϕRψ) = νρ(ψ ∧ (ϕ ∨ A◦ρ)) (4)

E♦ϕ = µρ(ϕ ∨ E◦ρ) E(ϕUψ) = µρ(ψ ∨ (ϕ ∧ E◦ρ))
A♦ϕ = µρ(ϕ ∨ A◦ρ) A(ϕUψ) = µρ(ψ ∨ (ϕ ∧ A◦ρ)) (5)

This fixpoint characterisation of basic CTL and ECTL modalities as maximal or minimal
fixpoints give rise to their analytical classification as α- or β-formulae which are associated,
in the tableau with α- and β-rules: Q�, and QR as maximal fixpoints are classified as
α-formulae while Q♦ and QU as minimal fixpoints are β-formulae. This is also reflected in
the known equivalences:

E�ϕ = ϕ ∧ E◦E�ϕ E(ϕRψ) = ψ ∧ (ϕ ∨ E◦E(ϕRψ))
A�ϕ = ϕ ∧ A◦A�ϕ A(ϕRψ) = ψ ∧ (ϕ ∨ A◦A(ϕRψ)) (6)

E♦ϕ = ϕ ∨ E◦E♦ϕ E(ϕUψ) = ψ ∨ (ϕ ∧ E◦E(ϕUψ))
A♦ϕ = ϕ ∨ A◦A♦ϕ A(ϕUψ) = ψ ∨ (ϕ ∧ A◦A(ϕUψ)) (7)

The tableau method determines if a given set of CTL state formulae is satisfiable or not. We
precede the formal introduction of the technique by its informal overview. The initial node of
the tableaux is labelled by a CTL formula in NNF. To expand the root, and any subsequent
node, we apply one of the following rules: α- and β-rules, the “next-state” rule, which reflects
a “jump” from a “state” to a “pre-state”, and, finally, characteristic to our approach, β+-rules,
where the use of the context (of an eventuality) is essential. The use of the context in these
rules, which is a collection of state formulae accompanying the eventuality in the label of the
node, forces the soonest fulfillment of eventualities. We apply α-, β-, and β+-rules repeatedly
until we reach a node labelled by F or by an inconsistent set of formulae, or a node whose
labels have already occurred within the path under consideration. In the former case the
expansion of the given branch terminates with ⊥ as its leaf. In the latter case, a repetitive
node in the branch means that the branch has a loop – where some subformulae of the given
formula are satisfied forever – which could be “bad” or “good”. A loop is “bad” when it has
a node which contains an unfulfilled eventuality, i.e. none of the nodes of the loop satisfies
it. In our procedure, the application of β+-rules to eventualities is essential to distinguish
between “good” and “bad” loops - if β+-rules have already been applied to every eventuality
occurring in the branch then we have a ’good loop’ and this branch represents a model for
the given formula. Otherwise, we choose an eventuality to which a corresponding β+-rule
has not been applied.

I Definition 5 (Syntactically Consistent Set of Formulae). A set Σ of state formulae σ is
syntactically consistent abbreviated as Σ> if F 6∈ Σ and {σ,∼ σ} 6⊆ Σ for any σ; otherwise, Σ
is inconsistent denoted as Σ⊥.

I Definition 6 (Tableau, Consistent Node, Closed branch). A tableau for a set of CTL state
formulae Σ is a labelled tree 〈T, τ,Σ〉, where T is a tree, and τ is a mapping of the nodes of
T to the state formulae, elements of Σ, such that the following two conditions hold: (i) The
root is labelled by the set Σ. (ii) For any other node m ∈ T , its label τ(m) is a set of state
formulae obtained as the result of the application of one of the rules in Figures 1, 2 and 4 to
its parent node n. Given the applied rule is R, we term m an R-successor of n. A node n of

TIME 2020

14:8 One-Pass Context-Based Tableaux Systems for CTL and ECTL

a tree T is consistent, abbreviated as n>, if its label, τ(n), is a syntactically consistent set of
formulae (see Def. 5), else n is inconsistent, abbreviated as n⊥. If a branch b of τ , contains
n⊥ ∈ b, then b is closed else b is open.

(∧) Σ, σ1 ∧ σ2

Σ, σ1, σ2
(Q�) Σ,Q�σ

Σ, σ,Q◦Q�σ

(∨) Σ, σ1 ∨ σ2

Σ, σ1 | Σ, σ2
(QU) Σ,Q(σ1Uσ2)

Σ, σ2 | Σ, σ1,Q◦Q(σ1Uσ2)

(QR) Σ,Q(σ1Rσ2)
Σ, σ1, σ2 | Σ, σ2,Q◦Q(σ1Rσ2) (Q♦) Σ,Q♦σ

Σ, σ | Σ,Q◦Q♦σ

Figure 1 α- and β-Rules.

The rules in Figure 1 follow the standard for the tableaux classification of rules into
α-rules and β-rules that for the formulae with CTL modalities are based on their analytic
classification reflected in Equations (6)-(7). Thus, if a node, n, in the tableau graph is
labelled by a set of formulae, Σ, ϕ, and a designated formula for the application of tableau
rules, ϕ, is an α-formula - Q� or QR , then a corresponding α-rule applies, while if ϕ is a
β-formula - Q♦ or QU then a corresponding β-rule applies. In the latter case we treat Σ
as a (possibly empty) context for the eventuality ϕ. These applications of α- and β-rules
generate a set of formulae in the conclusion as a label for the successor node, n+ 1, in case
of an α-rule, or as labels of two successors of n, in case of a β-rule.

When a node n is labelled by an elementary set of formulae – i.e. a set which exclusively
formed by literals and formulae of the form Q◦σ – then this structure is analogous to the
construction to a “state” in the terminology of [19]; it enables us to construct the successors
of n corresponding to “pre-states” [19]. According to the next proposition we are guaranteed
to reach such a tree structure, where the last node of every branch, at this stage of the
construction, is a state.

I Proposition 7. Any set of CTL state formulae has a tableau T such that the last node of
every branch is labelled by an elementary set of state formulae.

Proof. Repeatedly apply to every expandable node any applicable α- or β-rule until all
expandable nodes are elementary. Then, the next-state rule must be applied to every
expandable node. J

(Q◦) Σ,A◦σ1, . . . ,A◦σ`,E◦σ′1, . . . ,E◦σ′k,
σ1, . . . , σ`, σ

′
1 & . . . & σ1, . . . , σ`, σ

′
k

where Σ is a set of literals.

Figure 2 Next-state Rule. (“&” joins AND-successors in the conclusion.)

Proposition 7 enables the application of the so-called “next-state rule” depicted in Figure 2.
Applying this rule we split the current branch at node n where the set Σ,A◦σ1, . . . ,A◦σ`,E◦σ′1,
. . . ,E◦σ′k is satisfied, into k branches (i.e. into the number of branches equal to the number of
E◦ constraints) where the successors of n along these branches are AND-successors, and are
labelled each by a different set σ1, . . . , σ`, σ

′
i, for i ∈ {1, . . . , k}. This rule splits branches in a

“conjunctive” way, and we use the symbol & to represent the generation of AND-successors of

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:9

node n. Thus, the graphs generated by the tableaux with the application of the “next-state”
rule are AND-OR trees. The subsequent construction of a tableau, additionally, involves
rules that are applied to so called “uniform sets of formulae”.

I Definition 8 (Uniform Set of Formulae). A set of CTL state formulae Σ is uniform iff Σ is
exclusively formed by literals and basic CTL modalities and it has at most one E-formula.

Applying Proposition 7 to construct a tableau with all its expandable nodes labelled by
elementary sets of formulae, and then applying the rule (Q◦) (to every expandable node),
and finally, repeatedly applying (to every expandable node) the rules (∧) and (∨), we can
prove Proposition 9 which states that we can also reach the stage where the last nodes of
tableaux branches are labelled by uniform sets of formulae.

I Proposition 9. Any set of CTL state formulae Σ has a tableau T such that labels of all its
expandable nodes are uniform sets of formulae.

I Definition 10 (Uniform Tableau). For any set Σ of CTL state formulae, the tableau for Σ
provided by Proposition 9 is denoted Uniform_Tableau(Σ).

Now we illustrate the procedure by a running example and in the subsequent text will
gradually explain its main steps with illustrative figures for some parts. The whole tableau
is depicted in Appendix C.

A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q

A◦A(FR¬q),E◦E(pUq),E◦¬q

A(FR¬q),E(pUq) A(FR¬q),¬q

(∧)

(Q◦)

Figure 3 Example of uniform tableau.

I Example 11. The given set of formulae {A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q} is not uniform.
Hence, by applying the rules (∧) and (◦), we obtain the tableau in Figure 3. The two AND-
successors created by the “next-state” rule (Q◦) are respectively labelled by the uniform sets:
A(FR¬q),E(pUq) and A(FR¬q),¬q.

We extend our set of tableau rules with the new two rules named as β+-rules (Figure 4).
Note that the (Q♦)+ rule can be derived from the application of the (QU)+ to the CTL
formula TUσ. These rules, similarly to β-rules, also split a branch into two branches. These
two β+-rules are the only rules in our system that make use of the context - their application
force the eventualities to be satisfied as soon as possible (from the point of the tableau
construction where an eventuality is selected to be expanded with a β+-rule). The context is
given by the sets Σ that contain state formulae. In the conclusion of a β+-rule we add to the
conclusion of the corresponding β-rule, a conjunct ∼ Σ′. Recall that this is an NNF of the
negation of the conjunction of all formulae in Σ′ that are left from Σ after performing the
set-theoretical difference constraint indicated in the formulation of the rule. The idea now is
that ∼ Σ′ should also be satisfied until σ2 becomes satisfied. This prevents the repetition of
the context while σ2 is “delayed”. Note that Σ′ does not include the A� (with any prefix of

TIME 2020

14:10 One-Pass Context-Based Tableaux Systems for CTL and ECTL

sequence of A◦) because these formulas would be necessarily repeated along any branch -
indeed, if we use ∼ Σ instead of ∼ Σ′ we will generate a branch for each A� that will be
immediately closed.

(QU)+ Σ,Q(σ1Uσ2)
Σ, σ2 | Σ, σ1,Q◦Q((σ1∧ ∼Σ′)Uσ2) (Q♦)+ Σ,Q♦σ

Σ, σ | Σ,Q◦Q((∼Σ′)Uσ)

where Σ′ = Σ \ {(A◦)iA�σ | i ≥ 0 and (A◦)iA�σ ∈ Σ} and (A◦)i stands for i times A◦.

Figure 4 β+-Rules.

I Definition 12 (Next-Step Variant). A state formula Q(∼Σ′Uσ) obtained by the application
of a β+-rule to formula Q(σ1Uσ2) or Q♦σ is called the next-step variant of Q(σ1Uσ2).

A(FR¬q), E(pUq)

A(FR¬q), q A(FR¬q), p,E◦ E((p ∧ E(TUq))Uq)
(EU)+

Figure 5 Application of rule (EU)+ (we mark in grey the eventuality to which the β+-rule
applies).

I Example 13. Figure 5 reflects the application of the rule (EU)+ to the left-most expandable
node in Figure 3 (labelled by E(pUq),A(F R¬q)). Here, the context of the eventuality
E(pUq) is the AR -formula. The rule (EU)+ splits the tableau into two branches. The
left successor is labelled by q,A(F R¬q) and the right successor is labelled by p,E◦E(p ∧
E(TUq))Uq),A(F R¬q), where the middle formula E◦E(p ∧ E(TUq))Uq) is the next-step
variant of the eventuality E(pUq) and it contains the NNF of the negation of the context for
this eventuality, i.e. E(TUq) = NNF¬A(F R¬q).

4 Systematic Tableau Construction

In this section we define an algorithm, Asys, that constructs a systematic tableau. Let us
observe that, due to the rule (Q◦), any open tableau should have a collection of open branches
including all the (Q◦)-successors of any node labelled by an elementary set of formulae.
These collections of branches are called bunches. Any open bunch of the systematic tableau,
constructed by the algorithm Asys introduced in this section, enables the construction of a
model for the initial set of formulae.

The algorithm Asys constructs an expanded tableau (see Definition 25) for the given
input. Asys applied to the input Σ0, denoted as Asys(Σ0), returns a systematic tableau
Asys

Σ0
. Intuitively, “expanded” means “complete” in the sense that any possible rule has

been already applied at every node. Though the best way to implement this algorithm
is a depth-first construction, for clarity, we formulate it as a breadth-first construction of
a collection of subtrees. The procedure Uniform_Tableau, in the above Algorithm 1, was
introduced in Definition 10 along with the notion of a uniform set of state formulae. The
notation T1[`← T2] stands for the tableau T1 where the expandable ` is substituted by the
tableau T2. In particular, T [`←Uniform_Tableau(Σ)] is the tableau T where the expandable
` is substituted by the Uniform_Tableau(Σ). Procedure Eventuality_Selection chooses an

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:11

Algorithm 1 Systematic Tableau Construction.

1: procedure systematic_Tableau(Σ0) . where Σ0: set of CTL state formulae
2: if Σ0 is not uniform then T := Uniform_Tableau(Σ0)
3: while T has at least one expandable node do
4: . Invariant: Any expandable node of T is labelled by an uniform set
5: Choose any node ` in T such that τ(`) is expandable . τ(`) is uniform
6: if there is no eventuality in τ(`) then T := T [`←Uniform_Tableau(τ(`))]
7: else
8: Eventuality_Selection(τ(`))
9: Apply_β+-rule(τ(`))
10: Let `1, `2 the two children of `
11: for i = 1 .. 2 do
12: if `i is expandable and τ(`i) is not uniform then
13: T := T [`i ←Uniform_Tableau(τ(`i))]

eventuality to which the corresponding β+-rule ((QU)+ or (Q♦)+) can be applied. Procedure
Apply_β+-rule(Σ) applies the corresponding β+-rule to the selected eventuality, it also keeps
as . the next-step variant (Definition 12) of such eventuality.

E(pUq) ,A(FR¬q)

q,A(FR¬q)

q,F,¬q q,¬q,A◦A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,F,¬q

p,E◦ E((p ∧ E(TUq))Uq) ,¬q,A◦A(FR¬q)

E((p ∧ E(TUq))Uq) ,A(FR¬q)

q,A(FR¬q)

q,F,¬q q,¬q,A◦A(FR¬q)

p ∧ E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

(EU)+

(AR)

⊗ ⊗

(AR)

⊗

(◦)

(EU)+

(AR)

⊗ ⊗

(∧)

⊗

Figure 6 A closed tableau for {E(pUq),A(FR¬q)}.

I Example 14. The application of the Algorithm 1 to the set {E(pUq),A(FR¬q)} shown in
Figure 6 selects the eventuality E(pUq) and applies the rule (EU)+ as explained in Example
13. The left successor node is labelled by q,A(F R¬q). Further expansion of this node by
applying the rule (AR) generates two inconsistent successor nodes. Applying the AR -rule

TIME 2020

14:12 One-Pass Context-Based Tableaux Systems for CTL and ECTL

to the right successor, we obtain the left successor node which is inconsistent and a right
successor whose label is an elementary set. Thus, we apply the “next-state” rule generating
the successor labelled by the set of two formulae - arguments of E◦ and A◦. In this “pre-state”
we select the eventuality EU and generate two successor nodes applying again the β+-rule.
The left successor is subsequently expanded by two inconsistent successors of the AR -rule.
The right successor is expanded by the ∧-rule and then, since NNF(¬E(TUq)) = A(FR¬q),
the node is syntactically inconsistent, because it contains E(TUq)) and ∼ E(TUq)) (see
Definition 5).

A tableau for E(pUq),A(F R¬q) is also exhibited in [1, 12]. Note the direct correspondence
between our context-based tableau (Figure 6) and the one in [1, 12]- they have exactly the
same nodes. The right-most branch, in our case, closes by (syntactical) inconsistency, likewise
all the other branches. The difference is that, in this branch, the inconsistency comes from
the use of the context in the selected eventuality. The corresponding branch in the tableau in
[1, 12] is closed by the detection of a “bad loop”. Intuitively, whenever the tableau in [1, 12]
detects a “bad loop”, our tableau is closed by contradiction.

When the input is a satisfiable set, the systematic tableau aims to obtain a loop-node
that makes branches eventuality-covered. Next, we define both concepts.

I Definition 15 (Loop-node). Let b be a tableau branch and ni ∈ b (0 ≤ i). Then ni is a
loop-node if there exists nj ∈ b (0 ≤ j < i) such that τ(ni) ⊆ τ(nj). We say that nj is a
companion node of ni.

I Definition 16 (Eventuality-covered Branch). A tableau branch b = n0, n1, . . . , ni is eventu-
ality-covered if ni is a loop-node, with a companion node nj (0 ≤ j < i), both labelled by a
uniform set Σ such that every eventuality in τ(ni) is selected in some node nk (j ≤ k < i).

The procedure Eventuality_Selection performs in some fair way that ensures that any open
branch will ever be eventuality-covered.

I Definition 17 (Non-expandable Node). A node n is non-expandable if τ(n) = Σ⊥ or n is a
loop-node of branch b which is eventuality-covered. Otherwise, n is expandable.

Consequently, an expandable node is either a node that is not a loop-node or a loop-node
whose branch is not eventuality-covered.

I Definition 18 (Bunch in a Tableau, Closed Bunch and Tableau). A bunch b is a collection
of branches that is maximal with respect to (Q◦)-successor, i.e. every (Q◦)-successor of any
node in b is also in b. A bunch b is a closed bunch if, and only if, at least one of its branches
is closed, otherwise it is open. A tableau is closed if, and only if, all its bunches are closed.

Therefore, any open tableau has at least one open bunch, formed by one or more open
branches. Open branches are ended in a loop node. Open bunches represent models,
specifically cyclic models as defined in Appendix A.

5 Extending the Tableau from CTL to ECTL

In this section we explain a (relatively easy) way to extend the CTL tableau method to the
more expressive logic ECTL. This is achieved by adding the new rules given in Figure 7. The
α-rule (Q�♦) and the β-rule (Q♦�) that respectively correspond to the following logical
equivalences for the basic modalities that extend CTL to ECTL:

E�♦σ ≡ E♦σ ∧ E◦E�♦σ E♦�σ ≡ E�σ ∨ (E♦σ ∧ E◦E♦�σ)
A�♦σ ≡ A♦σ ∧ A◦A�♦σ A♦�σ ≡ A�σ ∨ (A♦σ ∧ A◦A♦�σ)

(8)

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:13

There are no additional β+-rules: eventualities Q♦σ introduced by the rules in Figure 7 are
CTL-modalities handled by the β+-rules of the method for CTL.

(Q�♦) Σ,Q�♦σ
Σ,Q♦σ,Q◦Q�♦σ

(Q♦�) Σ,Q♦�σ

Σ,Q�σ | Σ,Q♦σ,Q◦Q♦�σ

Figure 7 Rules for extending CTL to ECTL.

To complete the extension, let us recall that in [4] some (subsumption-like) simplification rules
are needed to ensure the termination of the tableau method for the logic ECTL#. Though
the method for CTL does not need any of such rules, the handling of the more expressive
modalities in ECTL – by the rules in Figure 7 – combined with our β+-rules, requires the
following simplification rule:

(<QU) {Q((σ1 ∧ χ)Uσ2),Q(σ1Uσ2)} −→ {Q((σ1 ∧ χ)Uσ2)} (9)

By means of this rule, any next-step variant of an eventuality ϕ subsumes the original
eventuality ϕ that could appear repeatedly after the application of one of the rules in
Figure 7.

p,E�♦p,A♦�p

p,E�♦p,A�p

p, E♦p ,E◦E�♦p,A�p

p,E◦E�♦p,A�p

p,E◦E�♦p,A◦A�p

E�♦p,A�p

p,E◦ E(¬pUp) ,E◦E�♦p,A�p

p,E�♦p, A♦p ,A◦A♦�p

(A♦�)

(E�♦)

(E♦)+

(A�)

(Q◦)

...

...

Figure 8 ECTL tableau for {p,E�♦p,A♦�p} (
... means this branch expansion is not depicted).

I Example 19. Figure 8 shows an open tableau with the application of the two rules added
to extend CTL to ECTL. We outline a single branch where the ECTL-rules of Figure 7
exclusively apply in the first two steps whilst the rest of steps always apply CTL-rules. We
only show the left-most branch because it is an expanded open branch from which the model
〈p〉ω can be constructed.

6 Conclusion

We introduced a one-pass context-based tableau method for temporal logics CTL and ECTL,
providing the soundness and completeness arguments and illustrating the method on a
number of examples. The distinctive feature of the method presented in the paper, is that the
core tableau construction is based on the concept of a context of an eventuality. The method

TIME 2020

14:14 One-Pass Context-Based Tableaux Systems for CTL and ECTL

developed in the paper is much simpler than the analogous technique obtained earlier for a
richer logic - ECTL# where two types of context (both outer and inner contexts) are used.
The construction in this paper only uses the “outer” context, however, similar to ECTL#,
generates tableaux as AND-OR trees.

Our results provide intuitive tableau methods that serve as decision procedures of CTL
and ECTL satisfiability. The results of this paper also give us formalisms which are well
suited for the automation and are amenable for the implementation, and for the formulation
of a dual sequent calculi. All these enable a potential application of the developed tableau
methods in certified model checking.

The two tableau methods presented here have double-exponential time worst case com-
plexity. Indeed, a trivial adaptation of [11] allows us to say that the so-called closure – the
set of all formulas that could appear in a tableau – has in the worst case size O(2O(2n)),
where n is the input formula size (this complexity characterisation matches the one of [1, 12]).
However, in practice the worst case is very unusual. More often, for example when the
context of an eventuality mostly contains modalities A� (which is typical in reactive systems
specifications), the number of possible contexts is much smaller and consequently performance
is much better.

References
1 P. Abate, R. Goré, and F. Widmann. One-pass tableaux for computation tree logic. In

N. Dershowitz and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, pages 32–46, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. doi:
10.1007/978-3-540-75560-9_5.

2 A. Abuin, A. Bolotov, U. Díaz-de-Cerio, M. Hermo, and P. Lucio. Towards certified model
checking for PLTL using one-pass tableaux. In Johann Gamper, Sophie Pinchinat, and Guido
Sciavicco, editors, 26th International Symposium on Temporal Representation and Reasoning,
TIME 2019, October 16-19, 2019, Málaga, Spain, volume 147 of LIPIcs, pages 12:1–12:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.TIME.2019.12.

3 M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta Inf.,
20(3):207–226, September 1983. doi:10.1007/BF01257083.

4 A. Bolotov, M. Hermo, and P. Lucio. Branching-time logic ECTL# and its tree-style one-
pass tableau: Extending fairness expressibility of ECTL+. Theoretical Computer Science,
813:428–451, 2020. doi:10.1016/j.tcs.2020.02.015.

5 J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–170, 1992.
doi:10.1016/0890-5401(92)90017-A.

6 E. M. Clarke and E. A. Emerson. Using Branching Time Temporal Logic to Synthesise
Synchronisation Skeletons. Science of Computer Programming, pages 241–266, 1982. doi:
10.1016/0167-6423(83)90017-5.

7 E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263,
1986. doi:10.1145/567067.567080.

8 E. A. Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science (Vol. B), pages 995–1072. MIT Press, Cambridge, USA, 1990.

9 E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences, 30(1):1–24, 1985. doi:
10.1016/0022-0000(85)90001-7.

10 E. A. Emerson and J. Y. Halpern. Sometimes and not never revisited: On branching versus
linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/4904.4999.

https://doi.org/10.1007/978-3-540-75560-9_5
https://doi.org/10.1007/978-3-540-75560-9_5
https://doi.org/10.4230/LIPIcs.TIME.2019.12
https://doi.org/10.1007/BF01257083
https://doi.org/10.1016/j.tcs.2020.02.015
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1145/567067.567080
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1145/4904.4999

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:15

11 J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. Dual systems of tableaux
and sequents for PLTL. Journal of Logic and Algebraic Programming, 78(8):701–722, 2009.
doi:10.1016/j.jlap.2009.05.001.

12 R. Goré. And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and CPDL. In
Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, Automated Reasoning -
7th International Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, volume 8562 of Lecture Notes in
Computer Science, pages 26–45. Springer, 2014. doi:10.1007/978-3-319-08587-6_3.

13 R. Goré. Tableau methods for modal and temporal logics. In Marcello D’Agostino, Dov M.
Dov Gabbay, Reiner Hähnle, and Joachim Posegga, editors, Handbook of Tableau Methods,
pages 297–396. Springer, Netherlands, Dordrecht, 1999.

14 R. Kashima. An axiomatization of ECTL. J. Log. Comput., 24(1):117–133, 2014. doi:
10.1093/logcom/ext005.

15 N. Markey. Temporal logics. Course notes, Master Parisien de Recherche en Informatique, Paris,
France, 2013. URL: http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/NM-coursTL13.
pdf.

16 A. Mebsout and C. Tinelli. Proof certificates for SMT-based model checkers for infinite-state
systems. In Proceedings of the 16th Conference on Formal Methods in Computer-Aided Design,
FMCAD ’16, pages 117–124, 2016. doi:10.1109/FMCAD.2016.7886669.

17 Stefan Schwendimann. A new one-pass tableau calculus for pltl. In International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods, pages 277–291. Springer,
1998. doi:10.1007/3-540-69778-0_28.

18 A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J. ACM,
32(3):733–749, 1985. doi:10.1145/3828.3837.

19 P. Wolper. The tableau method for temporal logic: An overview. Logique Et Analyse,
28(110-111):119–136, 1985.

A Interpretation of CTL-type Logics Over Cyclic Structures

In this appendix we define cyclic models and discuss their ability to characterise satisfiability
in branching temporal logics.

I Definition 20 (Cyclic Sequence, Cyclic Path and Cyclic Kripke structure). Let z be a
finite sequence of states z = s0, s1, . . . , sj such that, for every 0 ≤ k < j, (sk, sk+1) ∈ R.
Then, z is cyclic iff there exists si, 0 ≤ i ≤ j such that (sj , si) ∈ R. Let z be a finite
cyclic sequence, the subsequence si, . . . , sj of z is called a loop and si is called the cycling
element. We denote the loop as 〈si, . . . , sj〉ω. A cyclic path over z is an infinite sequence
path(z) = s0, s1, . . . , si−1〈si, si+1, . . . , sj〉ω. A Kripke structure K is cyclic if every fullpath
is a cyclic path over a cyclic sequence of states.

Cyclic paths are also known as ultimately periodic paths.
The fact that CTL (ECTL) satisfiability can be reduced to the interpretation over cyclic

models only is derived from the existence of the finite model property [9], see also [14].
Hence, for any CTL (ECTL) formula ϕ, such that Mod(ϕ) 6= ∅, there always exists a model
K ∈ Mod(ϕ) such that K is cyclic. Therefore, when speaking about the satisfiability in CTL
(hence ECTL) we can consider cyclic Kripke structures.

TIME 2020

https://doi.org/10.1016/j.jlap.2009.05.001
https://doi.org/10.1007/978-3-319-08587-6_3
https://doi.org/10.1093/logcom/ext005
https://doi.org/10.1093/logcom/ext005
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/NM-coursTL13.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/NM-coursTL13.pdf
https://doi.org/10.1109/FMCAD.2016.7886669
https://doi.org/10.1007/3-540-69778-0_28
https://doi.org/10.1145/3828.3837

14:16 One-Pass Context-Based Tableaux Systems for CTL and ECTL

B Soundness and Completeness

Since CTL and ECTL are sublogics of ECTL# and the tableau method presented here is the
adaptation of the method in [4], in this section we essentially adapt to CTL the soundness
and completeness proofs developed in [4]. We firstly prove the soundness and completeness
of the tableau method for CTL, and then we extend both results to ECTL.

To prove the soundness of our tableau method for CTL (Theorem 22), we show that every
tableau rule in Figures 1, 2 and 4 are sound (or preserve satisfiability) in the sense of the
next Lemma 21.

I Lemma 21 (Soundness of the Tableau Rules for CTL). Consider all the rules in Figures 1,
and 2 and 4.

1. For any α-rule Σ
Σ′ : Sat(Σ) if and only if Sat(Σ′).

2. For any β- and β+-rule Σ
Σ1|Σ2

: Sat(Σ) if and only if Sat(Σ1) or Sat(Σ2).

3. If Σ is a set of consistent literals, then Sat(Σ,A◦σ1, . . . ,A◦σ`,E◦σ′1, . . . ,E◦σ′k) if and
only if Sat(σ1, . . . , σ`, σ

′
i) for all 1 ≤ i ≤ k.

Proof. All the items follows very easily by the “systematic” application of the semantic
definitions of the modalities, except the “if” direction for the two of β+-rules. We will prove
here the “if” direction of the rules (QU)+ for Q = E and Q = A, because the rules (Q♦)+

are particular cases by abbreviation ♦σ = TUσ.
For the “if” direction of rule (EU)+, let K |= Σ,E(σ1Uσ2) and let x be the path in K such
that K, x, i |= Σ,E(σ1Uσ2). Then, let j be the least i ≥ 0 such that K, x, i |= σ2. If j = i = 0,
then K, x, 0 |= Σ, σ2. Otherwise, if j > 0 then K, x,m |= σ1, for all 0 ≤ m < j. Consider k
to be the greatest such m for which K, x, k |= Σ. Hence, K, x, h |=∼Σ, for all h such that
k + 1 ≤ h < j. In particular, by definition of Σ′ (obtained from Σ) it is easy to see that
K, x, h |= σ for every σ ∈ (Σ\Σ′) and for all h such that 0 ≤ h < j. Therefore, K, x, h |=∼Σ′,
for all h such that k + 1 ≤ h < j. Thus, K, x, k |=, σ1,E◦E((σ1∧ ∼Σ′)Uσ2).
For the “if” direction of rule (AU)+, let us suppose that

UnSat(Σ, σ2) and UnSat(Σ, σ1,A◦A((σ1∧ ∼Σ′)Uσ2)).

We will show that UnSat(Σ,A(σ1Uσ2)). For that, let us consider any arbitrary K such that
K |= Σ to show that K 6|= A(σ1Uσ2). By the above unsatisfiability hypothesis, if K |= Σ,
then both K 6|= σ2 and K 6|= σ1 ∧ A◦A((σ1∧ ∼ Σ′)Uσ2). Then, there are two possible
cases. First, if K |= ¬σ1 ∧ ¬σ2, then it is obvious that K 6|= A(σ1Uσ2). Second, if K |=
¬σ2∧¬A◦A((σ1∧ ∼Σ′)Uσ2), then there exists x1 ∈ fullpaths(K) and i1 > 0 that satisfy both
K, x1, j |= ¬σ2 for all j such that 0 ≤ j ≤ i1, and K, x1, i1 |= ¬σ1 ∨Σ′. Since all the formulae
in Σ \ Σ′ are satisfied in all states along all paths, indeed K, x1, i1 |= ¬σ1 ∨ Σ. Therefore,
if K, x1, i1 |= ¬σ1, then obviously K 6|= A(σ1Uσ2). Otherwise, if K, x1, i1 |= Σ, applying the
same reasoning for K �x1(i1) as we did above for K, we can conclude that there should be a
path x2 ∈ fullpaths(K �x1(i1)) and some i2 > 0 such that either K �x1(i1), x2, j |= ¬σ2 for all
j such that i1 ≤ j ≤ i2 and K �x1(i1), x2, i2 |= ¬σ1 ∨ Σ. Hence, if K �x1(i1), x2, i1 |= ¬σ1,
then trivially K 6|= A(σ1Uσ2). Otherwise, K �x1(i1), x2, i1 |= Σ. Hence, there are two possible
scenarios: 1.) After a finite number of iterations we get a path y = x≤i1

1 x≤i2
2 · · ·x≤ik

k such
that K, y, j |= ¬σ2 for all j such that 0 ≤ j ≤ ik and K, y, ik |= ¬σ1. 2.) The infinite iteration
of the second case yields a path y = x≤i1

1 x≤i2
2 · · ·x≤ik

k · · · (that exists by the limit closure
property) such that K, y, i |= ¬σ2 for all i ≥ 0. In both scenarios we have K 6|= A(σ1Uσ2)
holds for any arbitrary K that satisfies Σ. Thus, UnSat(Σ,A(σ1Uσ2)). J

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:17

I Theorem 22 (Soundness of the Tableau Method for CTL). Given any set of state formulae
Σ, if there exists a closed tableau for Σ then UnSat(Σ).

Proof. In a closed tableau for Σ, the set of formulae labelling at least one leaf in each bunch
is inconsistent and therefore unsatisfiable. Then, by Lemma 21, the labelling of the root
node, Σ, is unsatisfiable. J

Next, we prove the refutational completeness of the tableau method for CTL (Theorem 29).
For that, we firtsly define the notion of stage and prove some auxiliary properties on the
stages and bunches of the systematic tableau, that are necessary to prove that every open
bunch in the systematic tableau represents a model of the initial set of formulae (Lemma 28).

I Definition 23 (Stage). Given a branch, b of a tableau T , a stage in T is every maximal
subsequence of successive nodes ni, ni+1, . . . , nj in b such that τ(nk) is not a (Q◦)-child of
τ(nk−1), for all k such that i < k ≤ j. We denote by stages(b) the sequence of all stages of
b. The successor relation on stages(b) is induced by the successor relation on b. The labelling
function τ is extended to stages as the union of the original τ applied to every node in a
stage.

I Definition 24 (αβ+-saturated Stage). We say that a stage s = ni, . . . , nj in Asys
Σ is

αβ+-saturated if and only if it satisfies the following conditions:
1. For all σ1 ∧ σ2 ∈ τ(s): {σ1, σ2} ⊆ τ(s).
2. For all Q�σ ∈ τ(s): {σ,Q◦Q�σ} ⊆ τ(s).
3. For all σ1 ∨ σ2 ∈ τ(s): σ1 ∈ τ(s) or σ2 ∈ τ(s).
4. For all Q(σ1Rσ2) ∈ τ(s) : {σ1, σ2} ⊆ τ(s) or {σ2,Q◦Q(σ1Rσ2)} ⊆ τ(s).
5. For all Q(σ1Uσ2) ∈ τ(s): σ2 ∈ τ(s) or {σ1,Q◦Q(σ1Uσ2)} ⊆ τ(s) or

{σ1,Q◦Q((σ1∧ ∼Σ′)Uσ2)} ⊆ τ(s)
where Σ′ = (τ(ni) \ {Q(σ1Uσ2)}) \ {(A◦)iA�ϕ | i ≥ 0 and (A◦)iA�ϕ ∈ τ(ni)}.

6. For all Q(♦σ) ∈ τ(s) : σ ∈ τ(s) or {Q◦Q(♦σ)} ⊆ τ(s) or {Q◦Q((∼Σ′)Uσ)} ⊆ τ(s)
where Σ′ = (τ(ni) \ {Q♦σ}) \ {(A◦)iA�ϕ | i ≥ 0 and (A◦)iA�ϕ ∈ τ(ni)}.

I Definition 25 (Expanded Bunch and Tableau). An open branch b is expanded if each stage
s ∈ stages(b) is αβ+-saturated and b is eventuality-covered. A bunch is expanded if all its
open branches are expanded. A tableau is expanded if all its open bunches are expanded.

The construction of the systematic tableau applies exactly one β+-rule to exactly one selected
eventuality (if any) at the first node of the stage, and then applies exhaustively all the
applicable α- and β-rules to the formulas in the stage, until the branch closes, or its leaf
is labelled by an elementary set, or it contains a loop-node. Consequently, the following
Proposition 26 holds which can be trivially proved by construction.

I Proposition 26. Given any set of state formulae Σ, the systematic tableau Asys
Σ is expanded.

Next we prove a crucial property of the systematic tableau management of eventualities
by means of the selection policy.

I Proposition 27. Let b be an open branch of Asys
Σ and let Q(σ1Uσ2) be a formula that is

selected at some stage si ∈ stages(b). Then, there exists some stage sk ∈ stages(b) (for some
k ≥ i) such that σ2 ∈ τ(sk) and σ1 ∈ τ(sj) for all j ∈ {i, . . . , k − 1}.

Proof. By construction, the uniform set labelling the first node at each stage sj (j ≥ i) of b has
the form Σsj ,Q((σ1∧(∼Σsi∧· · · ∧ ∼Σsj−1))Uσ2) where each Σsj is the context of the selected
formula containing the next-step variant of Q(σ1Uσ2) at the first node of each stage sj . Since

TIME 2020

14:18 One-Pass Context-Based Tableaux Systems for CTL and ECTL

no other β+-rule is applied each Σsj is a subset of the finite set formed by all state formulae
that are subformulae of some formula in Σsi

and their negations. Hence, there are a finite
number of different Σsj

. Therefore, after finitely many applications of the β+-rule, Σsh
= Σsj

,
for some h >= i, for some j ∈ {i, . . . , h − 1}, and σ1 ∧ (∼ Σsi ∧ · · · ∧ ∼ Σsh−1) ∈ τ(sh).
In particular, ∼Σsh

∈ τ(sh), hence, Σsh
must be inconsistent. Since b is open, this is a

contradiction. This means that, for some k ≥ i the application of the corresponding β+-rule
should force that σ2 ∈ τ(sk). In addition, by Proposition 26 and Definition 24(5), σ1 ∈ τ(sj)
for all j ∈ {i, . . . , k − 1}. J

I Lemma 28 (Model Existence). Let Σ be any set of formulae. For any expanded bunch H
of Asys

Σ , there exists a Kripke structure KH such that KH |= Σ.

Proof. Let H be any expanded bunch of Asys
Σ . We define KH = (S,R,L) such that

S =
⋃

b∈H stages(b) and for any s ∈ S: L(s) = {p | p ∈ τ(n) ∩ Prop for some node n ∈ s};
and R is the relation induced in stages(b) for each b ∈ H. Any branch in b ∈ H is open,
hence b ends in a loop-node. Moreover, every eventuality has been selected in some stage
of b. Hence, there exists a (possibly empty) uniform set Σ` such that for some i ≥ 0:
b = s0, s1, . . . , si−1, si, si+1, . . . , sj , n`, where each sh stands for a stage and n` is a non-
expandable loop-node labelled by Σ` whose companion node is the first node at stage si. We
are going to prove the following fact:

KH , sa, 0 |= σ for any a ∈ {0, . . . , j} and any formula σ in L(sa)

by structural induction on the formula σ.
The base of the induction, for σ = p ∈ Prop, follows by definition of KH .
The cases where σ has one of the forms σ1 ∧ σ2, Q�σ, σ1 ∨ σ2 and Q(σ1Rσ2) are trivial by
Definition 24 and the induction hypothesis. Hence, to complete the inductive proof we will
show that KH , sa, 0 |= Q(σ1Uσ2) for any Q(σ1Uσ2) ∈ L(sa). The case for all Q♦σ ∈ L(sa)
follows as a particular case by ♦σ ≡ TUσ.
Consider any Q(σ1Uσ2) ∈ L(sa). Since b is eventuality-covered and n` is a loop-node,
Q(σ1Uσ2) must be the selected eventuality at some node between the states sa and sj .
Hence, by Proposition 27 and the definition of KH , there should be a state sk ∈ S (for
some a ≤ k ≤ j) such that σ2 ∈ L(sk) and σ1 ∈ L(sz) for all z ∈ {a, . . . , k − 1}. Then, by
induction hypothesis, KH , sk, 0 |= σ2 and KH , sz, 0 |= σ1 for all z ∈ {a, . . . , k− 1}. Therefore,
KH , sa, 0 |= Q(σ1Uσ2).
To complete the proof, we show that the successor relation between states in KH is well-
defined. For that, consider any tableau node in any stage sa that is labelled by an elementary
set

{Σ,A◦σ1, . . . ,A◦σn,E◦σ′1, . . . ,E◦σ′k}
where Σ is a consistent set of literals, by rule (Q◦), sa has (in KH) a successor state si

a+1,
for each i ∈ {1, . . . , k}, such that L(si

a+1) = {σ1, . . . , σn, σ
′
i}. We can assume (by the above

proved fact) that KH , s
i
a+1, 0 |= {σ1, . . . , σn, σ

′
i} for all i ∈ {1, . . . , k}. Therefore, we can

infer that KH , sa, 0 |= {Σ,A◦σ1, . . . ,A◦σn,E◦σ′1, . . . ,E◦σ′k}. J

Next, we prove the refutational completeness of the tableau method.

I Theorem 29 (Refutational Completeness for CTL). For any set of state formulae Σ, if
UnSat(Σ) then there exists a closed tableau for Σ.

A. Abuin, A. Bolotov, M. Hermo, and P. Lucio 14:19

Proof. Suppose the contrary, that there exists no closed tableau for Σ. Then the systematic
tableau Asys

Σ is open. Hence, there is at least one expanded bunch H in Asys
Σ . By Lemma

28, there exists a Kripke structure KH such that KH |= Σ. Consequently, Sat(Σ). J

Finally, we prove the completeness of our tableau method for CTL.

I Theorem 30 (Termination of the Tableau Method for CTL). For any set of state formulae
Σ , the construction of the expanded tableau Asys

Σ terminates.

Proof. Tableau rules produce a finite branching, hence König’s Lemma, applies. Therefore,
it suffices to prove that every branch is finite. By Proposition 27, the application of a β+-rule
to a selected formula stops after a finite number of steps. Since the number of selectable
eventualities in any open branch is finite, any open branch is eventuality-covered after a finite
number of eventuality selections. Recall that we assume the eventuality selection strategy to
be fair. J

I Theorem 31 (Completeness of the Tableau Method for CTL). For any set of state formulae
Σ, if Σ is satisfiable then there exists a (finite) open expanded tableau for Σ.

Proof. The existence of the systematic tableau Asys
Σ suffices to prove this fact, by Theorem

30. J

Now, we explain how the proofs of these metatheorems for CTL can be extended to ECTL.
Firstly, we extend the soundness of the tableau rules, in the sense of Lemma 21, to the rules
in Figure 7.

I Lemma 32. For any ECTL set of state formulae Σ and any state formula σ:
1. Sat(Σ,Q�♦σ) if and only if Sat(Σ,Q♦σ,Q◦Q�♦σ).
2. Sat(Σ,Q♦�σ) if and only if Sat(Σ,Q�σ) or Sat(Σ,Q♦σ,Q◦Q♦�σ).

Proof. It follows by “systematic” application of the semantic definitions of the modalities
Q�♦ and Q♦� given by the equivalences (8) in Section 5. J

To extend the refutational completeness result to ECTL, we firstly extend the Definition
24 with the following additional conditions for a stage to be αβ+-saturated:
7. For all Q�♦σ ∈ τ(s): {Q♦σ,Q◦Q�♦σ} ⊆ τ(s).
8. For all Q♦�σ ∈ τ(s): {Q�σ} ⊆ τ(s) or {Q♦σ,Q◦Q♦�σ} ⊆ τ(s).
It is obvious that these two additional conditions are satisfied in any stage of the systematic
tableau by construction. Using these conditions, it is routine to prove that KH defined in
Lemma 28 satisfies the fact that: KH , sa, 0 |= σ for any a ∈ {0, . . . , j} and any formula of
the forms Q�♦σ,Q♦�σ that belongs to L(sa). Therefore, refutational completeness (i.e.
Theorem 29) extends to ECTL.

Finally, to extend the termination result (see proof of Theorem 30), it suffices to ensure
that the rules in Figure 7 do not affect the behaviour of the β+-rules on the selected
eventualities in the sense that Proposition 27 is preserved. Since each application of a rule
in Figure 7 introduces a new Q♦σ, in Section 5 we have introduced the simplification rule
(<QU) (see (9) to subsume any occurrence of the eventuality ϕ by any next-step variant of
ϕ. Therefore, Proposition 27 holds and hence Theorem 30 trivially extends to ECTL.

TIME 2020

14:20 One-Pass Context-Based Tableaux Systems for CTL and ECTL

C The Running Example Tableau

In Figure 9 we depict the whole tableau for the running example we use in the paper. Note
that the Q rule at step 2, denoted with a big circle generates two AND-successors, where the
left successor has the closed tableau - this is explained in the paper. Hence, the bunch is
closed, in spite of the open tableau at the right successor of the AND-node.

A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q

A◦A(FR¬q),E◦E(pUq),E◦¬q

E(pUq) ,A(FR¬q)

q,A(FR¬q)

q,F,¬q q,¬q,A◦A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,F,¬q

p,E◦ E((p ∧ E(TUq))Uq) ,¬q,A◦A(FR¬q)

E((p ∧ E(TUq))Uq) ,A(FR¬q)

q,A(FR¬q)

q,F,¬q q,¬q,A◦A(FR¬q)

p ∧ E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

A(FR¬q),¬q

F,¬q ¬q,A◦A(FR¬q)

A(FR¬q)

(∧)

(Q◦)

(EU)+

(AR)

⊗ ⊗

(AR)

⊗

(◦)

(EU)+

(AR)

⊗ ⊗

(∧)

⊗

(AR)

⊗ (Q◦)

Figure 9 A closed tableau for {A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q}.

	Introduction
	Syntax and Semantics of CTL and ECTL
	Context-based One-pass Tableau Method for CTL
	Systematic Tableau Construction
	Extending the Tableau from CTL to ECTL
	Conclusion
	Interpretation of CTL-type Logics Over Cyclic Structures
	Soundness and Completeness
	The Running Example Tableau

