
Software Development with Automatic Deductive Verifiers 1/ 35

Desarrollo de Software con
Verificadores Deductivos Automáticos

Paqui Lucio

Dpto de Lenguajes y Sistemas Informáticos.

Valencia, 15 de Diciembre de 2016

Paqui Lucio Software Development with Automatic Deductive Verifiers 1/ 35

Software Development with Automatic Deductive Verifiers 2/ 35

From Turing to Hoare Logic

Turing 1949: Checking a large routine
Programs can be mathematically described and analyzed.

Naur 1966: Proof of algorithms by general snapshots
The need for a proof arises because we want to convince
ourselves that the algorithm we have written is correct.

Floyd 1967: Assigning meaning to programs
A “formally verified” program is one whose correctness can be
proved mathematically.

Hoare 1969: An axiomatic basis for computer programming
A “correctness proof” is made w.r.t. a mathematical
description (or specification) of what the program is intended
to do (for all possible values of its input).

Paqui Lucio Software Development with Automatic Deductive Verifiers 2/ 35

Software Development with Automatic Deductive Verifiers 2/ 35

From Turing to Hoare Logic

Turing 1949: Checking a large routine
Programs can be mathematically described and analyzed.

Naur 1966: Proof of algorithms by general snapshots
The need for a proof arises because we want to convince
ourselves that the algorithm we have written is correct.

Floyd 1967: Assigning meaning to programs
A “formally verified” program is one whose correctness can be
proved mathematically.

Hoare 1969: An axiomatic basis for computer programming
A “correctness proof” is made w.r.t. a mathematical
description (or specification) of what the program is intended
to do (for all possible values of its input).

Paqui Lucio Software Development with Automatic Deductive Verifiers 2/ 35

Software Development with Automatic Deductive Verifiers 2/ 35

From Turing to Hoare Logic

Turing 1949: Checking a large routine
Programs can be mathematically described and analyzed.

Naur 1966: Proof of algorithms by general snapshots
The need for a proof arises because we want to convince
ourselves that the algorithm we have written is correct.

Floyd 1967: Assigning meaning to programs
A “formally verified” program is one whose correctness can be
proved mathematically.

Hoare 1969: An axiomatic basis for computer programming
A “correctness proof” is made w.r.t. a mathematical
description (or specification) of what the program is intended
to do (for all possible values of its input).

Paqui Lucio Software Development with Automatic Deductive Verifiers 2/ 35

Software Development with Automatic Deductive Verifiers 3/ 35

Is program P correct? ≡ Does P satisfy its specification S?

P is written in a programming language PL

S is written in a specification language SL

Axiomatic semantics of PL: Set of rules for establishing that P
satisfies S

Paqui Lucio Software Development with Automatic Deductive Verifiers 3/ 35

Software Development with Automatic Deductive Verifiers 4/ 35

Is program P correct? ≡ Does P satisfy its specification S?

P is written in a programming language PL

While-Programs

S is written in a specification language SL

First-Order Formulas

Axiomatic semantics of PL: Set of rules for establishing that P
satisfies S

Hoare Formal System (a.k.a.Hoare Logic)

Paqui Lucio Software Development with Automatic Deductive Verifiers 4/ 35

Software Development with Automatic Deductive Verifiers 5/ 35

While-Programs

Null: skip

(Simoultaneous) Assignment: x1, . . . , xn := t1, . . . , tn

Sequential Composition: P1;P2

Conditional: if b then P1 else P2

Iteration: while b do P

Example: r := 0;
while (r+1)∗(r+1) ≤ x

do

r := r+1

Paqui Lucio Software Development with Automatic Deductive Verifiers 5/ 35

Software Development with Automatic Deductive Verifiers 6/ 35

First-Order Logic (FOL)

First-order syntax:

ϕ ::= p(t) | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ∀x(ϕ) | ∃x(ϕ)

∀n((n > 2 ∧ even(n))→
∃x∃y(prime(x) ∧ prime(y) ∧ n = x+ y))

ϕ[t/x] stands for the formula that results by (simultaneously)
replace every free occurrence of each xi in ϕ by ti.

∃z(x∗y = 2∗z)[y+1, x−1/x, y] = ∃z((y+1)∗(x−1) = 2∗z)

A formula is valid if it is true in any model (i.p. for any value
of its variables).

Paqui Lucio Software Development with Automatic Deductive Verifiers 6/ 35

Software Development with Automatic Deductive Verifiers 6/ 35

First-Order Logic (FOL)

First-order syntax:

ϕ ::= p(t) | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ∀x(ϕ) | ∃x(ϕ)

∀n((n > 2 ∧ even(n))→
∃x∃y(prime(x) ∧ prime(y) ∧ n = x+ y))

ϕ[t/x] stands for the formula that results by (simultaneously)
replace every free occurrence of each xi in ϕ by ti.

∃z(x∗y = 2∗z)[y+1, x−1/x, y] = ∃z((y+1)∗(x−1) = 2∗z)

A formula is valid if it is true in any model (i.p. for any value
of its variables).

Paqui Lucio Software Development with Automatic Deductive Verifiers 6/ 35

Software Development with Automatic Deductive Verifiers 6/ 35

First-Order Logic (FOL)

First-order syntax:

ϕ ::= p(t) | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ∀x(ϕ) | ∃x(ϕ)

∀n((n > 2 ∧ even(n))→
∃x∃y(prime(x) ∧ prime(y) ∧ n = x+ y))

ϕ[t/x] stands for the formula that results by (simultaneously)
replace every free occurrence of each xi in ϕ by ti.

∃z(x∗y = 2∗z)[y+1, x−1/x, y] = ∃z((y+1)∗(x−1) = 2∗z)

A formula is valid if it is true in any model (i.p. for any value
of its variables).

Paqui Lucio Software Development with Automatic Deductive Verifiers 6/ 35

Software Development with Automatic Deductive Verifiers 7/ 35

Axiomatic Semantics

Hoare triple {ϕ}P{ψ} says that if program P is started in (a
state satisfying) ϕ, then P terminates (if it does) in a state
that satisfies ψ.

{m ≤ n} j := (m+ n)/2 {m ≤ j ≤ n}

{False} skip {∀n((n > 2 ∧ even(n))→
∃x∃y(prime(x) ∧ prime(y) ∧ n = x+ y))}

Paqui Lucio Software Development with Automatic Deductive Verifiers 7/ 35

Software Development with Automatic Deductive Verifiers 8/ 35

Hoare Formal System

{ψ[t/x]} x := t {ψ}
ϕ→ ψ

{ϕ}skip{ψ}
ϕ→ ϕ1 {ϕ1}P{ψ}

{ϕ}P{ψ}

{ϕ}P1{α} {α}P2{ψ}
{ϕ}P1;P2{ψ}

{ϕ ∧ b}P1{ψ} {ϕ ∧ ¬b}P2{ψ}
{ϕ}if b then P1 else P2 {ψ}

{Inv ∧ b}P{Inv} (Inv ∧ ¬b)→ ψ

{Inv}while b do P{ψ}

Paqui Lucio Software Development with Automatic Deductive Verifiers 8/ 35

Software Development with Automatic Deductive Verifiers 9/ 35

{x ≥ 0}
r := 0;
while (r+1)∗(r+1) ≤ x

//invariant ???
do

r := r+1

{r∗r ≤ x < (r+ 1) ∗ (r+ 1)}

r ≤
√
x < r+ 1

x r (r + 1) ∗ (r + 1) ≤ x

13 0 1 ∗ 1 ≤ 13
13 1 2 ∗ 2 ≤ 13
13 2 3 ∗ 3 ≤ 13
13 3 4 ∗ 4 > 13

invariant r ∗ r ≤ x

Paqui Lucio Software Development with Automatic Deductive Verifiers 9/ 35

Software Development with Automatic Deductive Verifiers 9/ 35

{x ≥ 0}
r := 0;
while (r+1)∗(r+1) ≤ x

//invariant ???
do

r := r+1

{r∗r ≤ x < (r+ 1) ∗ (r+ 1)}
r ≤
√
x < r+ 1

x r (r + 1) ∗ (r + 1) ≤ x

13 0 1 ∗ 1 ≤ 13
13 1 2 ∗ 2 ≤ 13
13 2 3 ∗ 3 ≤ 13
13 3 4 ∗ 4 > 13

invariant r ∗ r ≤ x

Paqui Lucio Software Development with Automatic Deductive Verifiers 9/ 35

Software Development with Automatic Deductive Verifiers 9/ 35

{x ≥ 0}
r := 0;
while (r+1)∗(r+1) ≤ x

//invariant ???
do

r := r+1

{r∗r ≤ x < (r+ 1) ∗ (r+ 1)}
r ≤
√
x < r+ 1

x r (r + 1) ∗ (r + 1) ≤ x

13 0 1 ∗ 1 ≤ 13
13 1 2 ∗ 2 ≤ 13
13 2 3 ∗ 3 ≤ 13
13 3 4 ∗ 4 > 13

invariant r ∗ r ≤ x

Paqui Lucio Software Development with Automatic Deductive Verifiers 9/ 35

Software Development with Automatic Deductive Verifiers 9/ 35

{x ≥ 0}
r := 0;
while (r+1)∗(r+1) ≤ x

//invariant ???
do

r := r+1

{r∗r ≤ x < (r+ 1) ∗ (r+ 1)}
r ≤
√
x < r+ 1

x r (r + 1) ∗ (r + 1) ≤ x

13 0 1 ∗ 1 ≤ 13
13 1 2 ∗ 2 ≤ 13
13 2 3 ∗ 3 ≤ 13
13 3 4 ∗ 4 > 13

invariant r ∗ r ≤ x

Paqui Lucio Software Development with Automatic Deductive Verifiers 9/ 35

Software Development with Automatic Deductive Verifiers 10/ 35

do

Paqui Lucio Software Development with Automatic Deductive Verifiers 10/ 35

Software Development with Automatic Deductive Verifiers 11/ 35

do

do

Paqui Lucio Software Development with Automatic Deductive Verifiers 11/ 35

Software Development with Automatic Deductive Verifiers 12/ 35

do

do

Paqui Lucio Software Development with Automatic Deductive Verifiers 12/ 35

Software Development with Automatic Deductive Verifiers 13/ 35

do

do

Paqui Lucio Software Development with Automatic Deductive Verifiers 13/ 35

Software Development with Automatic Deductive Verifiers 14/ 35

do

do

Paqui Lucio Software Development with Automatic Deductive Verifiers 14/ 35

Software Development with Automatic Deductive Verifiers 15/ 35

do

do

Paqui Lucio Software Development with Automatic Deductive Verifiers 15/ 35

Software Development with Automatic Deductive Verifiers 16/ 35

From Hoare Logic to VCG

“Thus the practice of proving programs would seem to lead to

solution of three of the most pressing problems in software and

programming, namely, reliability, documentation, and

compatibility. However, program proving, certainly at present,

will be difficult even for programmers of high caliber; and may

be applicable only to quite simple program designs.”

C. Antony R. Hoare
An axiomatic basis for computer programming

1969

Paqui Lucio Software Development with Automatic Deductive Verifiers 16/ 35

Software Development with Automatic Deductive Verifiers 17/ 35

Dijkstra Weakest Precondition

The idea firstly appears in the paper Guarded commands,
nondeterminacy and formal derivation of programs, E.W. Dijkstra, 1975.

Hoare Logic:
Given a precondition ϕ, a code fragment P and a postcondition ψ,
is {ϕ}P{ψ} true?

Dijkstra Weakest Precondition:
Given a code fragment P and postcondition ψ, find the unique
formula wp(P,ψ) which is the weakest precondition for P and ψ.

weakest: ϕ→ wp(P,ψ) is valid for any ϕ such that
{ϕ}P{ψ} is true.

Each experienced mathematician knows that achievements depend
critically on the availability of suitable notations.

E.W. Dijkstra, My hopes of computing science, 1979

Paqui Lucio Software Development with Automatic Deductive Verifiers 17/ 35

Software Development with Automatic Deductive Verifiers 17/ 35

Dijkstra Weakest Precondition

The idea firstly appears in the paper Guarded commands,
nondeterminacy and formal derivation of programs, E.W. Dijkstra, 1975.

Hoare Logic:
Given a precondition ϕ, a code fragment P and a postcondition ψ,
is {ϕ}P{ψ} true?

Dijkstra Weakest Precondition:
Given a code fragment P and postcondition ψ, find the unique
formula wp(P,ψ) which is the weakest precondition for P and ψ.

weakest: ϕ→ wp(P,ψ) is valid for any ϕ such that
{ϕ}P{ψ} is true.

Each experienced mathematician knows that achievements depend
critically on the availability of suitable notations.

E.W. Dijkstra, My hopes of computing science, 1979

Paqui Lucio Software Development with Automatic Deductive Verifiers 17/ 35

Software Development with Automatic Deductive Verifiers 18/ 35

wp(x := t, ψ) = ψ[t/x]

For example:

wp(x, y := y+ 1, x− 1, x ∗ y = 0)
= (y + 1) ∗ (x− 1) = 0
= (y = −1) ∨ (x = 1) is weaker than x = 1

is weaker than (y = −1) ∧ (x = 1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 18/ 35

Software Development with Automatic Deductive Verifiers 18/ 35

wp(x := t, ψ) = ψ[t/x]

For example:

wp(x, y := y+ 1, x− 1, x ∗ y = 0)
= (y + 1) ∗ (x− 1) = 0

= (y = −1) ∨ (x = 1) is weaker than x = 1
is weaker than (y = −1) ∧ (x = 1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 18/ 35

Software Development with Automatic Deductive Verifiers 18/ 35

wp(x := t, ψ) = ψ[t/x]

For example:

wp(x, y := y+ 1, x− 1, x ∗ y = 0)
= (y + 1) ∗ (x− 1) = 0
= (y = −1) ∨ (x = 1)

is weaker than x = 1
is weaker than (y = −1) ∧ (x = 1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 18/ 35

Software Development with Automatic Deductive Verifiers 18/ 35

wp(x := t, ψ) = ψ[t/x]

For example:

wp(x, y := y+ 1, x− 1, x ∗ y = 0)
= (y + 1) ∗ (x− 1) = 0
= (y = −1) ∨ (x = 1) is weaker than x = 1

is weaker than (y = −1) ∧ (x = 1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 18/ 35

Software Development with Automatic Deductive Verifiers 18/ 35

wp(x := t, ψ) = ψ[t/x]

For example:

wp(x, y := y+ 1, x− 1, x ∗ y = 0)
= (y + 1) ∗ (x− 1) = 0
= (y = −1) ∨ (x = 1) is weaker than x = 1

is weaker than (y = −1) ∧ (x = 1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 18/ 35

Software Development with Automatic Deductive Verifiers 19/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

For example:

wp(x:=y+1; y:=x-1, x ∗ y = 0)

= wp(x:=y+1, wp(y:=x-1, x ∗ y = 0))
= wp(x:=y+1, x ∗ (x− 1) = 0)
= (y + 1) ∗ y = 0
= (y = −1) ∨ (y = 0)

Paqui Lucio Software Development with Automatic Deductive Verifiers 19/ 35

Software Development with Automatic Deductive Verifiers 19/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

For example:

wp(x:=y+1; y:=x-1, x ∗ y = 0)
= wp(x:=y+1, wp(y:=x-1, x ∗ y = 0))

= wp(x:=y+1, x ∗ (x− 1) = 0)
= (y + 1) ∗ y = 0
= (y = −1) ∨ (y = 0)

Paqui Lucio Software Development with Automatic Deductive Verifiers 19/ 35

Software Development with Automatic Deductive Verifiers 19/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

For example:

wp(x:=y+1; y:=x-1, x ∗ y = 0)
= wp(x:=y+1, wp(y:=x-1, x ∗ y = 0))
= wp(x:=y+1, x ∗ (x− 1) = 0)

= (y + 1) ∗ y = 0
= (y = −1) ∨ (y = 0)

Paqui Lucio Software Development with Automatic Deductive Verifiers 19/ 35

Software Development with Automatic Deductive Verifiers 19/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

For example:

wp(x:=y+1; y:=x-1, x ∗ y = 0)
= wp(x:=y+1, wp(y:=x-1, x ∗ y = 0))
= wp(x:=y+1, x ∗ (x− 1) = 0)
= (y + 1) ∗ y = 0

= (y = −1) ∨ (y = 0)

Paqui Lucio Software Development with Automatic Deductive Verifiers 19/ 35

Software Development with Automatic Deductive Verifiers 19/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

For example:

wp(x:=y+1; y:=x-1, x ∗ y = 0)
= wp(x:=y+1, wp(y:=x-1, x ∗ y = 0))
= wp(x:=y+1, x ∗ (x− 1) = 0)
= (y + 1) ∗ y = 0
= (y = −1) ∨ (y = 0)

Paqui Lucio Software Development with Automatic Deductive Verifiers 19/ 35

Software Development with Automatic Deductive Verifiers 20/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

For example:

wp(if x ≥ y then z:=x else z:=y, z = max(x, y))

= (x ≥ y → wp(z:=x, z = max(x, y))) ∧
(¬(x ≥ y)→ wp(z:=y, z = max(x, y)))

= (x ≥ y → x = max(x, y)) ∧ (¬(x ≥ y)→ y = max(x, y))

Paqui Lucio Software Development with Automatic Deductive Verifiers 20/ 35

Software Development with Automatic Deductive Verifiers 20/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

For example:

wp(if x ≥ y then z:=x else z:=y, z = max(x, y))
= (x ≥ y → wp(z:=x, z = max(x, y))) ∧

(¬(x ≥ y)→ wp(z:=y, z = max(x, y)))

= (x ≥ y → x = max(x, y)) ∧ (¬(x ≥ y)→ y = max(x, y))

Paqui Lucio Software Development with Automatic Deductive Verifiers 20/ 35

Software Development with Automatic Deductive Verifiers 20/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

For example:

wp(if x ≥ y then z:=x else z:=y, z = max(x, y))
= (x ≥ y → wp(z:=x, z = max(x, y))) ∧

(¬(x ≥ y)→ wp(z:=y, z = max(x, y)))
= (x ≥ y → x = max(x, y)) ∧ (¬(x ≥ y)→ y = max(x, y))

Paqui Lucio Software Development with Automatic Deductive Verifiers 20/ 35

Software Development with Automatic Deductive Verifiers 21/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

wp(skip, ψ) = ψ

wp(while b do P , ψ) = α provided that

(α ∧ b)→ wp(P,α)
(α ∧ ¬b)→ ψ

wp(while (r+1)∗(r+1) ≤ x do r := r+1,
r ∗ r ≤ x < (r+1)∗(r+1)) = r∗r ≤ x provided that

(r∗r ≤ x ∧ (r+1)∗(r+1) ≤ x) → wp(r:=r+1, r∗r ≤ x)

(r∗r ≤ x ∧¬((r+1)∗(r+1) ≤ x)) → r ∗ r ≤ x < (r+1)∗(r+1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 21/ 35

Software Development with Automatic Deductive Verifiers 21/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

wp(skip, ψ) = ψ

wp(while b do P , ψ) = α provided that

(α ∧ b)→ wp(P,α)
(α ∧ ¬b)→ ψ

wp(while (r+1)∗(r+1) ≤ x do r := r+1,
r ∗ r ≤ x < (r+1)∗(r+1)) = r∗r ≤ x provided that

(r∗r ≤ x ∧ (r+1)∗(r+1) ≤ x) → wp(r:=r+1, r∗r ≤ x)

(r∗r ≤ x ∧¬((r+1)∗(r+1) ≤ x)) → r ∗ r ≤ x < (r+1)∗(r+1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 21/ 35

Software Development with Automatic Deductive Verifiers 21/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

wp(skip, ψ) = ψ

wp(while b do P , ψ) = α provided that

(α ∧ b)→ wp(P,α)
(α ∧ ¬b)→ ψ

wp(while (r+1)∗(r+1) ≤ x do r := r+1,
r ∗ r ≤ x < (r+1)∗(r+1)) = r∗r ≤ x provided that

(r∗r ≤ x ∧ (r+1)∗(r+1) ≤ x) → wp(r:=r+1, r∗r ≤ x)

(r∗r ≤ x ∧¬((r+1)∗(r+1) ≤ x)) → r ∗ r ≤ x < (r+1)∗(r+1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 21/ 35

Software Development with Automatic Deductive Verifiers 21/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

wp(skip, ψ) = ψ

wp(while b do P , ψ) = α provided that

(α ∧ b)→ wp(P,α)
(α ∧ ¬b)→ ψ

wp(while (r+1)∗(r+1) ≤ x do r := r+1,
r ∗ r ≤ x < (r+1)∗(r+1)) = r∗r ≤ x provided that

(r∗r ≤ x ∧ (r+1)∗(r+1) ≤ x) → wp(r:=r+1, r∗r ≤ x)

(r∗r ≤ x ∧¬((r+1)∗(r+1) ≤ x)) → r ∗ r ≤ x < (r+1)∗(r+1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 21/ 35

Software Development with Automatic Deductive Verifiers 22/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

wp(skip, ψ) = ψ

wp(while b do P , ψ) = α provided that

(α ∧ b)→ wp(P,α)
(α ∧ ¬b)→ ψ

wp(while (r+1)∗(r+1) ≤ x do r := r+1,
r ∗ r ≤ x < (r+1)∗(r+1)) = r∗r ≤ x provided that

(r∗r ≤ x ∧ (r+1)∗(r+1) ≤ x) → (r+1)∗(r+1) ≤ x

(r∗r ≤ x ∧¬((r+1)∗(r+1) ≤ x)) → r ∗ r ≤ x < (r+1)∗(r+1)

Paqui Lucio Software Development with Automatic Deductive Verifiers 22/ 35

Software Development with Automatic Deductive Verifiers 23/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

wp(skip, ψ) = ψ

wp(while b do P , ψ) = α provided that

(α ∧ b)→ wp(P,α)
(α ∧ ¬b)→ ψ

{ϕ}P{ψ} iff

ϕ→ wp(P,ψ) and

all the provisos for calculating wp(P,ψ)

are valid (implications) formulas.

Paqui Lucio Software Development with Automatic Deductive Verifiers 23/ 35

Software Development with Automatic Deductive Verifiers 23/ 35

wp(x := t, ψ) = ψ[t/x]

wp(P1; P2, ψ) = wp(P1, wp(P2, ψ))

wp(if b then P1 else P2, ψ) = (b→ wp(P1, ψ)) ∧
(¬b→ wp(P2, ψ))

wp(skip, ψ) = ψ

wp(while b do P , ψ) = α provided that

(α ∧ b)→ wp(P,α)
(α ∧ ¬b)→ ψ

{ϕ}P{ψ} iff

ϕ→ wp(P,ψ) and

all the provisos for calculating wp(P,ψ)

are valid (implications) formulas.

Paqui Lucio Software Development with Automatic Deductive Verifiers 23/ 35

Software Development with Automatic Deductive Verifiers 24/ 35

Verification Condition Generation

VCG({ϕ}P{ψ}) = { ϕ→ wp(P ,ψ) } ∪ vc(P,ψ)

where

vc(x := t, ψ) = vc(skip, ψ) = ∅
vc(P1; P2, ψ) = vc(P1, wp(P2, ψ)) ∪ vc(P2, ψ)

vc(if b then P1 else P2, ψ) = vc(P1, ψ) ∪ vc(P2, ψ)

vc(while b do P, ψ) =
{ (Inv ∧ b)→ wp(P,Inv),

(Inv ∧ ¬b)→ ψ }
∪ vc(P ,Inv)

Inv is the (inferred/user-defined) invariant of the iteration
while b do P

Paqui Lucio Software Development with Automatic Deductive Verifiers 24/ 35

Software Development with Automatic Deductive Verifiers 25/ 35

VCG computes the set of all the FOL-implications of a Hoare
proof-tree.

VCG ({ x ≥ 0 }
r:= 0;
while (r+1)∗(r+1) ≤ x do r := r+1
{ r ∗ r ≤ x < (r+1)∗(r+1) })

=

{ (r∗r ≤ x ∧ (r+1)∗(r+1) ≤ x) → (r+1)∗(r+1) ≤ x ,

(r∗r ≤ x ∧¬((r+1)∗(r+1) ≤ x)) → r ∗ r ≤ x < (r+1)∗(r+1) }

RootApprox.dfy

Paqui Lucio Software Development with Automatic Deductive Verifiers 25/ 35

file:RootApprox.mp4

Software Development with Automatic Deductive Verifiers 26/ 35

From VCG to Current Deductive Verification Tools

Hoare’s Verification Grand Challenge:

This contribution ... revives an old challenge: the construction
and application of a verifying compiler that guarantees
correctness of a program before running it.
Correctness of computer programs is the fundamental concern
of the theory of programming and of its application in
large-scale software engineering.

Tony Hoare
The Verifying Compiler: A Grand Challenge for Computing Research

2003

Paqui Lucio Software Development with Automatic Deductive Verifiers 26/ 35

Software Development with Automatic Deductive Verifiers 27/ 35

Deductive Verification:

Logical reasoning (deduction) is used to prove properties.
Expressive (at least first-order) logic.
Contract-based specifications (standard approach)

Arquitectures in deductive verification:

1 On top of interactive proof assistants

Isabelle/HOL, Coq, HOL Ligth, PVS, ...

2 Automatic Program Verifiers

1 Program logics for a specific target language

ACL2, KeY, KIV, VeriFun, ...

2 VCG + Automatic theorem provers (SMT-solver)

Spark, Verifast, Dafny, Why, Frama-C, ...

Paqui Lucio Software Development with Automatic Deductive Verifiers 27/ 35

Software Development with Automatic Deductive Verifiers 27/ 35

Deductive Verification:

Logical reasoning (deduction) is used to prove properties.
Expressive (at least first-order) logic.
Contract-based specifications (standard approach)

Arquitectures in deductive verification:

1 On top of interactive proof assistants

Isabelle/HOL, Coq, HOL Ligth, PVS, ...

2 Automatic Program Verifiers

1 Program logics for a specific target language

ACL2, KeY, KIV, VeriFun, ...

2 VCG + Automatic theorem provers (SMT-solver)

Spark, Verifast, Dafny, Why, Frama-C, ...

Paqui Lucio Software Development with Automatic Deductive Verifiers 27/ 35

Software Development with Automatic Deductive Verifiers 27/ 35

Deductive Verification:

Logical reasoning (deduction) is used to prove properties.
Expressive (at least first-order) logic.
Contract-based specifications (standard approach)

Arquitectures in deductive verification:

1 On top of interactive proof assistants

Isabelle/HOL, Coq, HOL Ligth, PVS, ...

2 Automatic Program Verifiers

1 Program logics for a specific target language

ACL2, KeY, KIV, VeriFun, ...

2 VCG + Automatic theorem provers (SMT-solver)

Spark, Verifast, Dafny, Why, Frama-C, ...

Paqui Lucio Software Development with Automatic Deductive Verifiers 27/ 35

Software Development with Automatic Deductive Verifiers 28/ 35

(Annotated) Program

Compiler

Syntactically Correct Program

(r*r <= x && (r+1)*(r+1) <= x)  (r+1)*(r+1) <= x
(r*r <= x && !((r+1)*(r+1) <= x))  r*r <= x < (r+1)*(r+1)

VCG

Automated Theorem Prover

 Correct Program

Syntax-error report

Semantic-error report

Paqui Lucio Software Development with Automatic Deductive Verifiers 28/ 35

Software Development with Automatic Deductive Verifiers 29/ 35

Example: A more interesting invariant

Binary Search

Paqui Lucio Software Development with Automatic Deductive Verifiers 29/ 35

file:BinarySearch.mp4

Software Development with Automatic Deductive Verifiers 30/ 35

“The future looks bright for the collaboration of verification

and reasoning. Recent advances in both fields and increasingly

tight interaction have already given rise to industrially relevant

verification tools. We predict that this is only the beginning,

and that within a decade tools based on verification

technology will be as useful and widespread for software

development as they are today in the hardware domain.”

Bernhard Beckert & Reiner Hähnle
Reasoning and Verification: State of the Art and Current Trends1

IEEE Intelligent System

2014

1This paper provides a representative selection of 27 verification systems.
Paqui Lucio Software Development with Automatic Deductive Verifiers 30/ 35

Software Development with Automatic Deductive Verifiers 31/ 35

Timsort is broken by S. de Gouw, F. de Boer, and J. Rot (2015)

Paqui Lucio Software Development with Automatic Deductive Verifiers 31/ 35

http://envisage-project.eu/author/stijn-de-gouw/

Software Development with Automatic Deductive Verifiers 32/ 35

Dafny is an automatic program verifier (VCG + SMT-solver).

Dafny is being developed by Microsoft Research.

Dafny 1.9.8 (August 31, 2016) is the 14th stable release,

since Oct 30, 2012.

Dafny encourages using best-practice programming styles, in
particular the design by contract approach.

Dafny provides

Design-time feedback
Fluid interaction

for accessible integrated verification.

Dafny generates executable (.NET) code, omitting
specification (ghost) constructs.

Paqui Lucio Software Development with Automatic Deductive Verifiers 32/ 35

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

Software Development with Automatic Deductive Verifiers 33/ 35

Using assert and assume in software development

assert ϕ
Dafny first tries to prove ϕ, and if successful, then ϕ can be
used in the rest of proof.
Provides a non-instantiable lemma ϕ:
A property that is previously and separately proved and helps
to prove other properties.

assume ϕ
Dafny assumes that ϕ is true: without proving ϕ it is enabled
to use ϕ in the current proof.
Dafny does not consider verified any file with one assume.

In verified software development:
assume ϕ for checking if ϕ is the required property;
If OK then change from assume to assert;
If ”assertion violation” then ϕ must be proved in a lemma or
some previous assert(s) must be inserted.

Paqui Lucio Software Development with Automatic Deductive Verifiers 33/ 35

Software Development with Automatic Deductive Verifiers 33/ 35

Using assert and assume in software development

assert ϕ
Dafny first tries to prove ϕ, and if successful, then ϕ can be
used in the rest of proof.
Provides a non-instantiable lemma ϕ:
A property that is previously and separately proved and helps
to prove other properties.

assume ϕ
Dafny assumes that ϕ is true: without proving ϕ it is enabled
to use ϕ in the current proof.
Dafny does not consider verified any file with one assume.

In verified software development:
assume ϕ for checking if ϕ is the required property;
If OK then change from assume to assert;
If ”assertion violation” then ϕ must be proved in a lemma or
some previous assert(s) must be inserted.

Paqui Lucio Software Development with Automatic Deductive Verifiers 33/ 35

Software Development with Automatic Deductive Verifiers 33/ 35

Using assert and assume in software development

assert ϕ
Dafny first tries to prove ϕ, and if successful, then ϕ can be
used in the rest of proof.
Provides a non-instantiable lemma ϕ:
A property that is previously and separately proved and helps
to prove other properties.

assume ϕ
Dafny assumes that ϕ is true: without proving ϕ it is enabled
to use ϕ in the current proof.
Dafny does not consider verified any file with one assume.

In verified software development:
assume ϕ for checking if ϕ is the required property;
If OK then change from assume to assert;
If ”assertion violation” then ϕ must be proved in a lemma or
some previous assert(s) must be inserted.

Paqui Lucio Software Development with Automatic Deductive Verifiers 33/ 35

Software Development with Automatic Deductive Verifiers 34/ 35

Example: The development of a verified quicksort

QuickSort

Paqui Lucio Software Development with Automatic Deductive Verifiers 34/ 35

file:Quicksort.mp4

Software Development with Automatic Deductive Verifiers 35/ 35

The beauty of a theorem from mathematics,
the preciseness of an inference rule in logic,
the intrigue of a puzzle,
and the challenge of a game – all are present
in the field of automated reasoning.

(Larry Wos, 1988)

Paqui Lucio Software Development with Automatic Deductive Verifiers 35/ 35

