SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

DESARROLLO DE SOFTWARE CON
VERIFICADORES DEDUCTIVOS AUTOMATICOS

Paqui Lucio

Dpto de Lenguajes y Sistemas Informaticos.

a1

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

Valencia, 15 de Diciembre de 2016

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

From Turing to Hoare Logic

m Turing 1949: Checking a large routine

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

From Turing to Hoare Logic

m Turing 1949: Checking a large routine
Programs can be mathematically described and analyzed.

m Naur 1966: Proof of algorithms by general snapshots
The need for a proof arises because we want to convince
ourselves that the algorithm we have written is correct.

m Floyd 1967: Assigning meaning to programs
A “formally verified” program is one whose correctness can be
proved mathematically.

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

From Turing to Hoare Logic

m Turing 1949: Checking a large routine
Programs can be mathematically described and analyzed.

m Naur 1966: Proof of algorithms by general snapshots
The need for a proof arises because we want to convince
ourselves that the algorithm we have written is correct.

m Floyd 1967: Assigning meaning to programs
A “formally verified” program is one whose correctness can be
proved mathematically.

m Hoare 1969: An axiomatic basis for computer programming
A ‘“correctness proof’ is made w.r.t. a mathematical
description (or specification) of what the program is intended
to do (for all possible values of its input).

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

m Is program P correct? = Does P satisfy its specification S?

m P is written in a programming language PL

m S is written in a specification language SL

m Axiomatic semantics of PL: Set of rules for establishing that P
satisfies S

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

m Is program P correct? = Does P satisfy its specification S?

m P is written in a programming language PL
While-Programs
m S is written in a specification language SL
First-Order Formulas

m Axiomatic semantics of PL: Set of rules for establishing that P
satisfies S

Hoare Formal System (a.k.a.Hoare Logic)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

While-Programs

Null: skip
(Simoultaneous) Assignment: xi,...,%Xp :=t1,...,ty
Sequential Composition: P Py
Conditional: if b then P else P,
Iteration: while bdo P
Example: r := 0;
while (r+1)*(r+1) <x
do
r :=r+l

Paqui Lucio

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

First-Order Logic (FOL)

m First-order syntax:

pu=p) | | w1 Apa| w1V |pr = @2 | V() | Tz (e)

Vn((n > 2 A even(n)) —
JxJy(prime(z) A prime(y) An =z +y))

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

First-Order Logic (FOL)

m First-order syntax:

pu=p) | | w1 Apa| w1V |pr = @2 | V() | Tz (e)

Vn((n > 2 A even(n)) —
JxJy(prime(z) A prime(y) An =z +y))

m ©[t/T] stands for the formula that results by (simultaneously)
replace every free occurrence of each x; in ¢ by ;.

Jz(xxy = 2x2)[y+1,x—1/x,y] = Fz((y+1)x(x—1) = 2x2)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

First-Order Logic (FOL)

m First-order syntax:

pu=p) | | w1 Apa| w1V |pr = @2 | V() | Tz (e)

Vn((n > 2 A even(n)) —
JxJy(prime(z) A prime(y) An =z +y))

m ©[t/T] stands for the formula that results by (simultaneously)
replace every free occurrence of each x; in ¢ by ;.

Jz(xxy = 2x2)[y+1,x—1/x,y] = Fz((y+1)x(x—1) = 2x2)

m A formula is valid if it is true in any model (i.p. for any value
of its variables).

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Axiomatic Semantics

m Hoare triple {¢} P{¢} says that if program P is started in (a
state satisfying) , then P terminates (if it does) in a state

that satisfies 1.
{m<n}j:=m+n)/2{m<j<n}

{False} skip {Vn((n > 2 A even(n)) —
JxFy(prime(x) A prime(y) An=x+7y))}

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Hoare Formal System

=Y o =1 {p1}P{y}
{vit/7]} 7 =t {¢} {¢}skip{v} {otP{y}

{etPi{a} {a}Pp{}
{p}Pr; Pa{1p}

{onbpPI{Y} {p A b} Pa{y}
{¢}if b then P; else P, {9}

{Inv ANb}P{Inv} (InvA—=b)— 1
{Inv}while b do P{¢}

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

v

fo>0}
r := 0;
while (r+1)x(r+1) <x
//invariant 77?7
do
r := r+l
{rxr<x<(r+1)x(r+1)}

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

while (r+1)x(r+1) <x
//invariant 777
do
r :=r+l
{rxr<x<(r+1)x(r+1)}
r<x<r+1

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

{ 0}
r 0;
while (r+1)x(r+1) <x
//invariant 77?7
do
r :=r+l
{rxr<x<(r+1)x(r+1)}
r<x<r+1

i I\/

x [rl(r+1)*(r+1)<x
1310 1x1<13
131 2+x2<13
13]2 3x3 <13
1313 4%x4>13

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

{ 0}
r 0;
while (r+1)x(r+1) <x
//invariant 77?7
do
r :=r+l
{rxr<x<(r+1)x(r+1)}
r<x<r+1

i I\/

x [rl(r+1)*(r+1)<x

130 1x1<13

131 2x2<13 invariant rxr < x
13| 2 3x3<13

133 4%x4>13

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

{x>0}
r:=0; while (r+1)%(r+1) < x do r:=r+1
{rsr<x<(r+1)x(r+1) }

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

{x=0}
r:=0; while (r+1)*(r+1) < x do r:=r+1
{rsr<x<(r+1)x(r+1) }

{otPi{a} {a}Pof{v}
{o}Pr; Po{v'}

{(0x0=)0<x}r:=0;{rsr <x} {rr<x}

while (r+1)x(r+1) < x do r:=r+1

{mr <x < (rH1)x(r+1) ¢

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

{x=0}
r:=0; while (r+1)*(r+1) < x do r:=r+1
{rsr<x<(r+1)x(r+1) }

{otPi{a} {a}Pr{v}
{o}Pi; Po{v}
{(0x0=)0<x}r:=0; {rsr <x} {rr<x}
S —— while (r+1)%(r+1) <x do r:=r+1
{U"[?/W]} T:=t{v} {rer < x < (r+1)%(r+1) §

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

{x=0}
r:=0; while (r+1)*(r+1) < x do r:=r+1
{rsr<x<(r+1)x(r+1) }

{otPi{a} {a}Po{v}
{0} P P{v}

{(0x0=)0<x}r:=0; {rsr <x} {rr<x}
- while (r+1)#(r+1) < x do r:=r+l
WA =1 0] Lrer £x < (e)s(ee)) 3

{Inv AbYP{Inv} (InvA=b)— 1

{rer < x A (r1)x(r+1) < x } {Inv}while b do P{¢'}
ro=r+l;
{rr<x) (ot < x A((FD)x(r+1) <) -

rsr < x < (r41)(r+1)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

{x=0}
r:=0; while (r+1)*(r+1) < x do r:=r+1
{rsr<x<(r+1)x(r+1) }

{otPi{a} {a}Po{v}
{0} P P{v}

{(0x0=)0<x}r:=0; {rsr <x} {rr<x}
- while (r+1)#(r+1) < x do r:=r+l
WA =1 0] Lrer £x < (e)s(ee)) 3

{Inv AbYP{Inv} (InvA=b)— 1

{rer < x A (r1)x(r+1) < x } {Inv}while b do P{¢'}
ro=r+l;
{rr<x) (ot < x A((FD)x(r+1) <) -

rsr < x < (r41)(r+1)

v = o1 {pP{Y}
{p}P{}

{(r+1)x(r+1) < x }re=r+1; {rer < x } |(r*r < XA (r+1)x(r+1) < x) = (r+1)%(r+1) < x |

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

{x=0}
r:=0; while (r+1)*(r+1) < x do r:=r+1
{rsr<x<(r+1)x(r+1) }

{otPi{a} {a}Po{v}
{0} P P{v}

{(0x0=)0<x}r:=0; {rsr <x} {rr<x}
- while (r+1)#(r+1) < x do r:=r+l
WA =1 0] Lrer £x < (e)s(ee)) 3

{Inv AbYP{Inv} (InvA=b)— 1

{rer < x A (r1)x(r+1) < x } {Inv}while b do P{¢'}
ro=r+l;
{rr<x) (ot < x A((FD)x(r+1) <) -

rsr < x < (r41)(r+1)

v = o1 {pP{Y}
{p}P{}

{(r+1)x(r+1) < x }re=r+1; {rer < x } |(r*r < XA (r+1)x(r+1) < x) = (r+1)%(r+1) < x |

Wi/ 7 =1 (1)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

From Hoare Logic to VCG

“Thus the practice of proving programs would seem to lead to
solution of three of the most pressing problems in software and
programming, namely, reliability, documentation, and
compatibility. However, program proving, certainly at present,
will be difficult even for programmers of high caliber; and may
be applicable only to quite simple program designs.”

C. Antony R. Hoare
An axiomatic basis for computer programming

1969

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Dijkstra Weakest Precondition

The idea firstly appears in the paper Guarded commands,
nondeterminacy and formal derivation of programs, E.W. Dijkstra, 1975.

m Hoare Logic:
Given a precondition ¢, a code fragment P and a postcondition 1),
is {o} P{y} true?

m Dijkstra Weakest Precondition:
Given a code fragment P and postcondition v, find the unique
formula wp (P, ¢) which is the weakest precondition for P and .

weakest: ¢ — wp(P,) is valid for any ¢ such that
{@}P{1} is true.

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Dijkstra Weakest Precondition

The idea firstly appears in the paper Guarded commands,
nondeterminacy and formal derivation of programs, E.W. Dijkstra, 1975.

m Hoare Logic:
Given a precondition ¢, a code fragment P and a postcondition 1),
is {o} P{y} true?

m Dijkstra Weakest Precondition:
Given a code fragment P and postcondition v, find the unique
formula wp (P, ¢) which is the weakest precondition for P and .

weakest: ¢ — wp(P,) is valid for any ¢ such that
{@}P{1} is true.

Each experienced mathematician knows that achievements depend
critically on the availability of suitable notations.
E.W. Dijkstra, My hopes of computing science, 1979

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

S
= wp(x =%,) = Y[t/%]

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

For example:

wp(x,y:=y+1,x—1, 2xy=0)
=@y+1)x(x—1)=0

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

For example:

wp(x,y:=y+1,x—1, 2xy=0)
=@y+1)x(x—1)=0
=(y=-1)V(@=1)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

For example:

wp(x,y:=y+1,x—1, 2xy=0)
=@y+1)x(x—1)=0
=@y=-1)V(r=1) is weaker than z =1

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

m wp(X =1, ¥) = P[t/%]

For example:

wp(x,y:=y+1,x—1, 2xy=0)
=y+D*(xz—-1)=0
=(y=-1)V(x=1) is weaker than z =1
is weaker than (y = —1) A (x =1)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

X = €, ¥) = UfE/3]
m wp(Py; Py, 1) = wp(Py, wp(P2, ¥))

For example:

wp(x:=y+1; y:=x-1, zxy =0)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

. wp(x = . ¥) = ¥[E/3]
m wp(Py; Py, 1) = wp(Py, wp(P2, ¥))

For example:

wp(x:=y+1; y:=x-1, zxy =0)
= wp(x:=y+1, wp(y:=x-1, x x y = 0))

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

. wp(x = . ¥) = ¥[E/3]
m wp(Py; Py, 1) = wp(Py, wp(P2, ¥))

For example:

wp(x:=y+1; y:=x-1, zxy =0)
= wp(x:=y+1, wp(y:=x-1, x x y = 0))
= wp(x:=y+1, zx (x — 1) = 0)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

. wp(x = . ¥) = ¥[E/3]
m wp(Py; Py, 1) = wp(Py, wp(P2, ¥))

For example:

wp(x:=y+1; y:=x-1, zxy =0)
= wp(x:=y+1, wp(y:=x-1, x x y = 0))
= wp(x:=y+1, zx (x — 1) = 0)
=y+1)*xy=0

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

. wp(x = . ¥) = ¥[E/3]
m wp(Py; Py, 1) = wp(Py, wp(P2, ¥))

For example:

wp(x:=y+1; y:=x-1, zxy =0)
= wp(x:=y+1, wp(y:=x-1, x x y = 0))
= wp(x:=y+1, zx (x — 1) = 0)
=y+1)*y=0
=(y=-1)V(y=0)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(X =%, ¢) = Y[t/X]

= wp(P1; P2, ¥) = wp(P1, wp(P2,)

m wp(if b then Py else Py,) = (b — wp(Py,) A
(mb — wp(P2, 1))

For example:

wp(if x >y then z:=x else z:=y, z = maz(x,y))

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(X =%, ¢) = Y[t/X]

= wp(P1; P2, ¥) = wp(P1, wp(P2,)

m wp(if b then Py else Py,) = (b — wp(Py,) A
(mb — wp(P2, 1))

For example:

wp(if x > y then z:=x else z:=y, z = max(x,y))
= (x >y — wp(z:=x, z = max(z,y))) A
(—(z > y) = wp(z:=y, 2 = maz(z,y)))

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(X =%, ¢) = Y[t/X]

= wp(P1; P2, ¥) = wp(P1, wp(P2,)

m wp(if b then Py else Py,) = (b — wp(Py,) A
(mb — wp(P2, 1))

For example:

wp(if x >y then z:=x else z:=y, z = maz(x,y))
= (x >y — wp(z:=x, 2 = maz(z,y))) A
(=(z = y) = wp(z:=y, z = max(z,y)))
= (r >y =z =maz(z,y)) A (-(z = y) = y = mazx(z,y))

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(x =%, ¢) = ¢Y[t/x]

® wp(P1;Pa,) = wp(P1, wp(P2, ¥))

m wp(if b then P; else Py,) = (b — wp(Py,) A
(=b — wp(P2, ¥))

= wp(skip, ¢) = ¢

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(x =%, ¢) = ¢Y[t/x]
= wp(P1; P2, ¥) = wp(P1, wp(P2, 1))
m wp(if b then P; else Py,) = (b — wp(Py,) A
(=b — wp(P2, ¥))
wp(skip, ¢) = ¢
m wp(while b do P, 1)) = « provided that

(e A b) = wp(P,a)
(e A=) —)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(x =%, ¢) = ¢Y[t/x]
= wp(P1; P2, ¥) = wp(P1, wp(P2, 1))
m wp(if b then P; else Py,) = (b — wp(Py,) A
(=b — wp(P2, ¥))
wp(skip, ¢) = ¢
m wp(while b do P, 1)) = « provided that

(e A b) = wp(P,a)
(e A=) —)

wp(while (r+1)*(r+1) < x do r := r+1,
rsr < x < (r+1)x(r+1)) = r¢r < x provided that

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(x =%, ¢) = ¢Y[t/x]
= wp(P1; P2, ¥) = wp(P1, wp(P2, 1))
m wp(if b then P; else Py,) = (b — wp(Py,) A
(mb — wp(P2, 1))
wp(skip, ¢) = ¢
m wp(while b do P, 1)) = « provided that

(e A b) = wp(P,a)
(e A=) —)

wp(while (r4+1)x(r+1) < x do r := r+1,
rxr<x < (r+1)%(r+1)) = r«r < x provided that

B (rxr < x A (r+1)*(r+1) < x) = wp(r:=r+1, rxr < x)
m(rxr <xAS((r41)x(r+1) < x)) = rsr < x < (r+1)%(r+1)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(x =%, ¢) = ¢Y[t/x]
= wp(P1; P2, ¥) = wp(P1, wp(P2, 1))
m wp(if b then P; else Py,) = (b — wp(Py,) A
(mb — wp(P2, 1))
wp(skip, ¢) = ¢
m wp(while b do P, ¢/) = « provided that

(a A b) — wp(P,a)
(e A=) —)

wp(while (r+1)x(r+1) < x do r := r+1,
rxr<x < (r+1)%(r+1)) = r«r < x provided that

B (rsr < x A (r+1)*(r+1) < x) = (r+1)%(r41) < x
m(rxr <xA((r41)x(r+1) < x)) = rsr < x < (r+1)%(r+1)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(X =%, ¢) = ¢P[t/x]

= wp(P1; P2, 1) = wp(P1, wp(P2, 1))

m wp(if b then Py else Py, ¢0) = (b — wp(P1, ¥)) A
(mb — wp(P2, ¥))

wp(skip, ¢) =

wp(while b do P, 1)) = « provided that
m (@ ADb) = wp(P,«)

m (aA=b) =

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

= wp(x =%, ¢) = Y[t/x]
m wp(P1;Pg, ¥) = wp(P1, wp(P2, ¢))
m wp(if b then Py else Py,) = (b — wp(Py,) A
(=b — wp(P2, ¥))
wp(skip,) = ¢
wp(while b do P, 1)) = « provided that

(e AD) = wp(P,c)
(v A=) — o)

{o}P{y} iff

m o — wp(P,) and

m all the provisos for calculating wp(P, 1)
are valid (implications) formulas.

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Verification Condition Generation

VCG({p}P{v}) = { v = wp(P.¥) } U ve(P, ¥)

where

ve(x =%, ¥) = ve(skip, ¥) = 0

vc(P1; Py, 1) = ve(Py, wp(P2,) U ve(Pa, 1))

vc(if b then Py else Py, ¥) = ve(Py, ¥) U ve(Py, 1)
ve(

while b do P, ¢) =
{ (Inv A b) — wp(P,Inv),
(Inv A =b) — 9 }
U ve(P,Inv)

Inw is the (inferred/user-defined) invariant of the iteration
while b do P

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

VCG computes the set of all the FOL-implications of a Hoare
proof-tree.

VCG ({x>0}
r=0;
while (r+1)%(r4+1) < xdo r:=r+1
{rxr<x<(r+1)x(r+1) })

{ (rxr < x A (rH1)%(r4+1) < x) — (r+1)*(r+1) < x,
(rer < x A=((r+1)%(r4+1) < x)) = rsr < x < (r+1)*(r+1) }

RootApprox.dfy

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

file:RootApprox.mp4

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

From VCG to Current Deductive Verification Tools

m Hoare's Verification Grand Challenge:

m This contribution ... revives an old challenge: the construction
and application of a verifying compiler that guarantees
correctness of a program before running it.

m Correctness of computer programs is the fundamental concern
of the theory of programming and of its application in
large-scale software engineering.

Tony Hoare

The Verifying Compiler: A Grand Challenge for Computing Research
2003

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

m Deductive Verification:

m Logical reasoning (deduction) is used to prove properties.
m Expressive (at least first-order) logic.
m Contract-based specifications (standard approach)

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

m Deductive Verification:

m Logical reasoning (deduction) is used to prove properties.
m Expressive (at least first-order) logic.
m Contract-based specifications (standard approach)

m Arquitectures in deductive verification:
On top of interactive proof assistants
Isabelle/HOL, Coq, HOL Ligth, PVS, ...
H Automatic Program Verifiers

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

m Deductive Verification:
m Logical reasoning (deduction) is used to prove properties.
m Expressive (at least first-order) logic.
m Contract-based specifications (standard approach)
m Arquitectures in deductive verification:
On top of interactive proof assistants
Isabelle/HOL, Coq, HOL Ligth, PVS, ...
H Automatic Program Verifiers
Program logics for a specific target language
ACL2, KeY, KIV, VeriFun, ...
VCG + Automatic theorem provers (SMT-solver)
Spark, Verifast, Dafny, Why, Frama-C, ...

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Syntax-error report

(Annotated) Program
method RootApprox (x:int) returns (r:int)
requi X >= 0

quires

ensures rer <= x < (P+1)*(r+1)
a{

Syntactically Correct Program

method RootApprox (x:int) returns (r:int)
requi =0
ensures r¥r <= x < (P+1)*(r+1)
L
=0; =0;
while (r+1)*(r41) <= while (r41)%(r41) <=
invariant rer invariant rr
1 {
R StH R
i g
}

| (r¥r <= x && (r+1)*(r+1) <= x) > (r+1)*(r+1) <=x

(r*r <= x && I((r+1)*(r+1) <= x)) > r*r<=x < (r+1)*(r+1) |
Semantic-error report

Automated Theorem Prover

|

Correct Program

method RootApprox (x:int) returns (r:int)
requires x >=

ensures r*r <= x < (r41)*(r+1)
a{

ri=o;

while (F+1)*(r+1) <= x
invariant rr <= x
o= orel;

Paqui Lucio

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Example: A more interesting invariant

Binary Search

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

file:BinarySearch.mp4

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

“The future looks bright for the collaboration of verification
and reasoning. Recent advances in both fields and increasingly
tight interaction have already given rise to industrially relevant
verification tools. We predict that this is only the beginning,
and that within a decade tools based on verification
technology will be as useful and widespread for software
development as they are today in the hardware domain.”

Bernhard Beckert & Reiner Hihnle

Reasoning and Verification: State of the Art and Current Trends!
IEEE Intelligent System

2014

1This paper provides a representative selection of 27 verification systems.

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Timsort is broken by S. de Gouw, F. de Boer, and J. Rot (2015)

Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever
combination of ideas from merge sort and insertion sort, and designed to perform well on
real world data. TimSort was first developed for Python, but later ported to Java (where it
appears as java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the
designer of Java Collections who also pointed out that most binary search algorithms
were broken). TimSort is today used as the default sorting algorithm for Android SDK,
Sun’s JDK and OpenJDK. Given the popularity of these platforms this means that the
number of computers, cloud services and mobile phones that use TimSort for sorting is
well into the billions.

Fast forward to 2015. After we had successfully verified Counting and Radix sort
implementations in Java (J. Autom. Reasoning 53(2), 129-139) with a formal

verification tool called KeY, we were looking for a new challenge. TimSort seemed to

fit the bill, as it is rather complex and widely used. Unfortunately, we weren’t able to
prove its correctness. A closer analysis showed that this was, quite simply, because
TimSort was broken and our theoretical considerations finally led us to a path towards
finding the bug (interestingly, that bug appears already in the Python

implementation). This blog post shows how we did it. Continue reading —

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

http://envisage-project.eu/author/stijn-de-gouw/

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Dafny is an automatic program verifier (VCG 4+ SMT-solver).

Dafny is being developed by Microsoft Research.

Dafny 1.9.8 (August 31, 2016) is the 14th stable release,
since Oct 30, 2012.

Dafny encourages using best-practice programming styles, in
particular the design by contract approach.

Dafny provides

m Design-time feedback
m Fluid interaction

for accessible integrated verification.

Dafny generates executable (.NET) code, omitting
specification (ghost) constructs.

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Using assert and assume in software development

m assert
m Dafny first tries to prove ¢, and if successful, then ¢ can be
used in the rest of proof.
m Provides a non-instantiable lemma ¢:
A property that is previously and separately proved and helps
to prove other properties.

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Using assert and assume in software development

m assert
m Dafny first tries to prove ¢, and if successful, then ¢ can be
used in the rest of proof.
m Provides a non-instantiable lemma ¢:
A property that is previously and separately proved and helps
to prove other properties.
B assume @
m Dafny assumes that ¢ is true: without proving ¢ it is enabled
to use ¢ in the current proof.
m Dafny does not consider verified any file with one assume.

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Using assert and assume in software development

m assert
m Dafny first tries to prove ¢, and if successful, then ¢ can be
used in the rest of proof.
m Provides a non-instantiable lemma ¢:
A property that is previously and separately proved and helps
to prove other properties.
B assume @
m Dafny assumes that ¢ is true: without proving ¢ it is enabled
to use ¢ in the current proof.
m Dafny does not consider verified any file with one assume.
m In verified software development:
m assume ¢ for checking if ¢ is the required property;
m If OK then change from assume to assert;
m If "assertion violation” then ¢ must be proved in a lemma or
some previous assert(s) must be inserted.

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

Example: The development of a verified quicksort

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

file:Quicksort.mp4

SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VERIFIERS

The beauty of a theorem from mathematics,
the preciseness of an inference rule in logic,
the intrigue of a puzzle,
and the challenge of a game — all are present
in the field of automated reasoning.

(Larry Wos, 1988)

Eskerrik g
ko >
as , ’Eg Gracies

Gnﬁcms.“'THANI(
it VOU

! BOLZINMeRC

Paqui Lucio SOFTWARE DEVELOPMENT WITH AUTOMATIC DEDUCTIVE VER

