
An Implementation of Constructive Negation ?

J. Álvez1, P. Lucio1, F. Orejas2, E. Pasarella23, and E. Pino2

1 Dpto de L.S.I., Facultad de Informática, Universidad del Páıs Vasco,
Paseo Manuel de Lardizabal, 1, Apdo 649, 20080-San Sebastián, Spain.

2 Dpto de L.S.I., Universidad Politécnica de Catalunya, Campus Nord, Modul C6,
Jordi Girona 1-3, 08034 Barcelona, Spain. {orejas, edelmira, pino}@lsi.upc.es

3 Dpto de Computación y Tecnoloǵıa de la Información , Universidad Simón Boĺıvar,
Aptdo Postal 89000, Caracas 1080, Venezuela. edelmira@ldc.usb.ve

Abstract. In this paper, we present a new procedural interpretation for constructive nega-
tion which is sound and complete with respect to three-valued program completion. Its main
features are twofold: first, it gives a uniform treatment to positive and negative literals in
goals; second, it provides an incremental way to detect failure. This mechanism is a re-
finement of an operational semantics that does not require subsidiary computation trees to
compute answers for negative goals. Instead, such answers are built by solving equality con-
straints which are directly obtained from predicate completion definitions. The constraints
generated during derivations constitute a particular subclass of general equality constraints.
We provide an implementation based on a specialized solver for this class of constraints.
Keywords: constructive negation, operational semantics, implementation, equality con-
straint, constraint solver.

1 Introduction

Constructive negation was introduced in [2]. It was extended, in [3, 7], to a complete and
sound operational semantics for the whole class of normal logic programs. In [8, 19] these re-
sults were generalized to the framework of Constraint Logic Programming (CLP for short,
see [10] for a survey). However, from a practical implementation viewpoint, these opera-
tional semantics proposals lack an easy procedural interpretation. The main reason is that
they are highly non-deterministic in aspects that are crucial for practical implementation
purposes. More concretely, each time a negative literal ¬A is selected in a derivation, a
subsidiary computation tree for its positive counterpart A is activated in order to obtain
some information about ¬A that can be used to proceed with the original derivation. Non-
determinism appears − depending on the approach − either in the way for obtaining such
information or in how it affects the original derivation tree.
Drabent’s proposal [7] requires a non-deterministically defined set S of answers for A, that
could allow calculating another set S′, such that S∪S′ becomes a covering for the constraint
of the original derivation. The answers in S′ (if there exists any) are used to follow with the
original computation.
Chan (in [3]) and Stuckey (in [19]) use frontiers of the subsidiary computation tree for
←A � c. Frontiers are finite set of nodes − which are goals − with exactly one goal belonging
to each non-failed branch of the computation tree. The selection rule is in charge of the
non-deterministic choice of a frontier in the subsidiary tree. Then the negated disjunction
of nodes of this frontier must be manipulated to continue with the original computation.
Besides, the formula obtained by this manipulation makes necessary to extend the proposed
mechanism to the so-called complex goals, which extends the usual notion of goal with
explicit quantification.

? This work has been partially supported by the Spanish Project TIC 2001-2476-C03.

Regarding Fages’s proposal [8], the main and the subsidiary tree are concurrently computed.
When one answer is obtained, in the subsidiary tree, its negation is used to prune the main
tree. In both − the main and the subsidiary tree − could appear new goals with negative
literals. That produces a proliferation of concurrently activated computation trees, each one
affecting − by pruning − the derivations of some other in a non-deterministic way.

To the best of our knowledge there are no working implementation of constructive negation.
We have recently known the preliminary implementation [15] of Muñoz and Moreno-Navarro.
It is based on frontiers of subsidiary trees, but it is operationally different from any of the
above-mentioned proposals. Hence, its correctness and completeness can not be deduced
from the previous results.

We propose a new interpretation of the constructive negation meta-rule that does not require
subsidiary computation trees. Conversely, the idea is to construct the answers of a goal by
solving equality constraints. Goal computation follows the usual top-down CLP scheme
of collecting the answers for the selected literal into the constraint of the goal. The main
difference lies on the way for obtaining the answers for the selected literal. For this, we use
constraint solving instead of the generation of a subsidiary tree. The answers for a (selected)
literal are deterministically obtained in a bottom-up incremental manner. A preliminary
work along the same lines was presented in [17]. The theoretical foundations of our approach
comes from a result of Shepherdson [18] characterizing Clark-Kunen’s completion semantics
in terms of satisfaction of equality constraints, which are generated by two mutually recursive
operators. Shepherdson’s operators (Definition 1) are similar, but not identical, to immediate
consequence operators. For that reason one could suspect that our computations should
necessarily be infinite. However, this is not the case, as Example 14 shows.

In this paper, we first introduce an operational semantics based on the Shepherdson’s charac-
terization. The soundness and completeness of this operational semantics are a consequence
of the results in [18]. Then, we refine it to a purely procedural mechanism and we prove the
soundness and completeness of this refinement. Our formulation provides a uniform treat-
ment for positive and negative literals and a new incremental way to detect failure. Since
it is a purely procedural mechanism, it is amenable for − and very close to − practical
implementation. In fact, we have implemented a prototype which makes use of an equality
constraint solver that takes advantage of the particular form of the constraints generated
during derivations. We have obtained some promising experimental results. We also describe
this implementation.

Outline of the paper. Section 2 contains preliminary definitions and notation. Section 3
is devoted to the operational semantics, its foundations and the main related results. We
also give examples to explain the main problems for refining it into a purely procedural
mechanism. In section 4 we present our refinement for procedural interpretation. The main
ideas behind it are explained and we give examples to illustrate its behavior. We also prove
its soundness and completeness. Section 5 discusses implementation issues, in particular
specialized equality constraint solving and incremental calculation of answers.

2 Preliminaries

We will deal with the usual syntactic objects of first-order languages. These are function
and predicate symbols (in particular, the equality symbol), terms and formulas. Terms are
variables, constants and function symbols applied to terms. Formulas are the logical con-
stants t and f, predicate symbols applied to terms, and composed formulas with connectives
¬,∨,∧,→,↔ and quantifiers ∀, ∃.
A bar is used to denote tuples, or finite sequences, of objects, like x as abbreviation of the
n-tuple of variables x1, . . . , xn. Concatenation of tuples is denoted by the infix · operator,
i.e. x·y represents the concatenation of x and y.

We classify (possibly negated) atoms into (dis)equations and literals depending on the pred-
icate symbol they use: the equality for the former and any uninterpreted predicate symbol
for the latter. If t1, t2 are terms, then t1 = t2 is called an equation and t1 6= t2 (as abbrevi-
ation of ¬(t1 = t2)) is called a disequation. We say that an equation or disequation is flat
whenever (at least) one of its terms is a variable. If t and t

′
are n-tuples of terms then t = t

′

abbreviates t1 = t′1 ∧ . . . ∧ tn = t′n and t 6= t
′
abbreviates t1 6= t′1 ∨ . . . ∨ tn 6= t′n. A literal is

an atom p(t) (called positive literal) or its negation ¬p(t) (called negative literal), where p
is an n-ary predicate symbol (different from equality) and t an n-tuple of terms. By a flat
literal, we mean that t is an n-tuple of variables.

An equality constraint is an arbitrary first-order formula such that equality (=) is the only
predicate symbol occurring in atoms. To avoid confusion, we will use the symbol ≡ for the
metalanguage equality.

Let α be a syntactic object (term, equality constraint, formula, literal, etc), free(α) is the
set of all variables occurring free in α, we write α(x) to denote that free(α) ⊆ x. Let ϕ
be a formula, in particular an equality constraint, and Q ∈ {∃, ∀}, then ϕQ denotes the
existential/universal quantification of ϕ in all its free-variables.

A substitution σ is a mapping from a finite set of variables, called its domain, into the set
of terms. It is assumed that σ behaves as the identity for the variables outside its domain.
The most general unifier of a set of terms {s1, . . . , sn}, denoted mgu(s), is an idempotent
substitution σ such that σ(si) ≡ σ(sj) for all i, j ∈ 1..n and for any other substitution θ
with the same property, θ ≡ σ′ ·σ holds for some substitution σ′.
A basic constraint, denoted by b(x,w), is a conjunction of flat equations of the form x = t(w)
where x and w are disjoint tuples of pairwise distinct variables. In the sequel b(,) is used
as a metavariable for basic constraints − over an specific pair of variable tuples, when
necessary.

A constrained goal is an expression of the form←` � c where ` is a conjunction of positive and
negative flat literals and c is a equality constraint. A basic constrained goal is a constrained
goal ←` � b where b is a basic constraint. As usual in CLP, the symbols comma (,) and
box (�) are syntactic variants of conjunction, respectively used to separate literals and
constraints. Whenever b is t or ` is empty or t, they are omitted in goals.

A normal clause is an expression p(x) :− `(y) � b(x·y, w) where the flat atom p(x) is called
its head, the basic constrained goal :−`(y) � b(x·y, w) is called its body, and the three disjoint
tuples of variables x, y, w are related in the basic constraint b(x·y, w), since it has the form
x = t(w) ∧ y = t

′
(w).

Programs are finite sets of normal clauses. Every program P is built from symbols of a
signature Σ ≡ (FSΣ , PSΣ) of function and predicate symbols, respectively, and variables
from X. We use the term Σ-program whenever the signature is relevant. It is easy to see
that every normal logic program (respect. normal goal) can be rewritten as one of our
programs (respect. basic constrained goal). For example, the program given by the two
clauses: even(0). and even(s(x)) : −¬ even(x)., is rewritten as

even(x) : − � x = 0.
even(x) : −¬ even(y) � x = s(w), y = w.

Given a program P and a predicate symbol p, the set defP (p(x)) consists of all clauses in
P with head predicate p, that is the definition of p in P . For simplicity, we assume that all
clauses with the same head predicate (namely p) use the same head variables (namely x),
but the other variables (in bodies) are assumed to be distinct in different clauses.

To define the semantics of a Σ-program P , Clark [4] proposed completing the definition of
the predicates in P . The predicate completion formula of predicate p∈PSΣ (w.r.t. P) such

that defP (p(x)) ≡ {p(x) :− `
i
(yi) � bi(x·yi, wi) | i ∈ 1..m} for some m ≥ 0 is

∀x(p(x)←→
m∨
i=1

∃yi∃wi(bi(x·yi, wi) ∧ `i(yi)))

In particular, for m = 0 (or defP (p(x)) ≡ ∅) the above disjunction becomes f. Hence,
the formula is equivalent to ∀x(¬p(x)). The Clark’s completion of a program P , namely
Comp(P), consists of the free equality theory 4 FET (Σ) together with the set P ∗ of the
predicate completion formulas for every p∈PSΣ . Then, the standard declarative meaning
of normal logic programs is Comp(P) interpreted in three-valued logic (cf. [11]).
The theory FET(Σ) axiomatizes the usual Herbrand FSΣ-universe. Its decidability, for
finite and infinite signatures, has been proved by different methods (cf. [6, 11, 13, 14, 16,
18]). The decidability problem for FET (Σ) is (in the worst case) a non-elementary problem
(cf. [20]), that means it does not belong to the class NTIME(nm) for any m ∈ ω. In a
strict sense, a decision method for a Σ-theory T is an algorithm that, for any Σ-sentence
ϕ as input, it gives the answer ”yes” if T |= ϕ and the answer ”no” if T |= ¬ϕ. However,
constraints usually are not sentences, since they have free variables. Goals are questions
about their free variables, asking for all their possible values. Hence, solving a constraint
consists in finding the collection of answers for their free variables, which is given by a
logically equivalent constraint that fits some so-called solved form. An equality constraint
solver transforms any equality constraint − possibly with free variables − into its solved
form. The main feature of a solved form is that it is easy to decide its satisfiability. As a
consequence, in CLP, solved forms are feasible computed answers and they determine the
syntactical form of the constraints along derivations. The CLP goal-derivation process has
to combine the solved forms − being computed answers for the selected literal − with the
basic constraints inside the body of program clauses − which have also a prefixed form − to
produce a new equality constraint for the solver. Therefore, the equality constraint solver
can be specialized to a particular class of equality constraints, that could be more efficiently
solved than general equality constraints.

3 BCN Operational Semantics

In this section, we define the BCN operational semantics, introduced in [17], that underlies
our procedural approach and the main related results. We also explain what are the main
problems for a direct procedural interpretation.
The BCN operational semantics is based on the following operators Tn and Fn which asso-
ciate an equality constraint to each conjunction of literals.

Definition 1. The operators Tn and Fn are inductively defined, with respect to a Σ-
program P, as follows:

— For any atom p(x) such that p∈PSΣ and

defP (p(x)) ≡ {p(x) :− `
i
(yi) � bi(x·yi, wi) | i ∈ 1..m} :

T0(p(x)) ≡ f Tn+1(p(x)) ≡
m∨
i=1

∃yi∃wi(bi(x·yi, wi)∧Tn(`i(yi)))

F0(p(x)) ≡ f Fn+1(p(x)) ≡
m∧
i=1

¬∃yi∃wi(bi(x·yi, wi)∧¬Fn(`i(yi)))

— For any n∈IN :

Tn(`
1 ∧ `2) ≡ Tn(`

1
) ∧ Tn(`2) Tn(¬p(x)) ≡ Fn(p(x)) Tn(t) ≡ t

Fn(`
1 ∧ `2) ≡ Fn(`

1
) ∨ Fn(`2) Fn(¬p(x)) ≡ Tn(p(x)) Fn(t) ≡ f

These operators were introduced by Shepherdson ([18]) in order to characterize the (three-
valued) logical consequences of Comp(P). An easy consequence of that characterization,
enough for our purposes, is the following result:

4 also known as Clark’s equational theory (cf.[4]) or the first-order theory of finite trees.

Theorem 2. Let P be a Σ-program, ` a conjunction of literals and c, d constraints, then
the following two facts hold:

(i) Comp(P) |=3 (c→ (` ∧ d))∀ iff FET (Σ) |= (c→ (Tk(`) ∧ d))∀ for some k∈IN
(i) Comp(P) |=3 (c→ (¬` ∨ d))∀ iff FET (Σ) |= (c→ (Fk(`) ∨ d))∀ for some k∈IN

Proof. It is simple consequence of Theorem 6 and Lemma 4.1 of [18], which is also refor-
mulated in Lemma 5.2 of [7].

In particular, Comp(P) |=3 (Tk(`) → `)∀ and Comp(P) |=3 (Fk(`) → ¬`)∀ hold for every
k∈IN . Roughly speaking, we call a k-success (resp. k-failure) of a literal, to any answer (resp.
failure-answer) belonging to the k-iteration of some immediate consequence operator over
such literal. Different immediate consequence operators, providing bottom-up semantics for
normal logic programs, have been proposed (cf. [1, 9, 11, 12, 19]). Intuitively, the equality
constraint Tk(`) represents the k-success of `, whereas Fk(`) gives the k-failures of `. As a
result, the operators T and F are monotonic and coherent, in the following sense:

Proposition 3. (Monotonicity and Coherence of the operators T and F) Let P be
Σ-program and `(x) a flat literal, then for all n∈IN :

(i) FET (Σ) |= (Tn(`(x))→ Tn+1(`(x)))
∀

(ii) FET (Σ) |= (Fn(`(x))→ Fn+1(`(x)))
∀

(iii) FET (Σ) |= (Tn(`(x))→ ¬Fk(`(x)))∀ for all k∈IN
(iv) FET (Σ) |= (Fn(`(x))→ ¬Tk(`(x)))∀ for all k∈IN

Proof. The four items follows − by an easy induction on n − from Definition 1.

The above Theorem 2 establishes the basic requirements for obtaining soundness and com-
pleteness with respect to Clark-Kunen’s completion semantics of the BCN operational se-
mantics that we are going to define next. We want to point out that this semantics is as
far from implementation than close to logical semantics, but it is introduced firstly as a
good vehicle for the presentation of our procedural mechanism. In fact, the later will be
introduced as a refinement that avoids the computational problems of the BCN operational
semantics.

Definition 4. Let P be a Σ-program. A BCN-derivation step is obtained by applying the
following derivation rule:

(R) A goal G′ ≡ ←`1, `2 � d is BCN-derived from a goal G ≡ ←`
1
, `(x), `

2
� c with respect

to P if there exists k > 0 such that the equality constraint d ≡ Tk(`(x))∧ c is satisfiable
in FET (Σ).

A BCN-derivation G
n G′ is a succession of n BCN-derivation steps.

Remark 5. The rule (R), and also the resulting operational semantics, treats positive and
negative literals in exactly the same way. We decided to do that in this paper to simplify
the technical details of the presentation. From the implementation point of view, it would
be more convenient to treat positive literals in the standard way of SLD-resolution. That
means to split the above rule (R) into the following two rules:

(R1) A goal G′ ≡ ←`1, `, `2 � d′ is BCN-derived+ from a goal G ≡ ←`1, p(x), `2 � c with
respect to P , if there exists a (renamed apart) clause p(x) :− ` � d in defP (p(x)) such
that the equality constraint d′ ≡ c ∧ d is satisfiable in FET (Σ).

(R2) A goal G′ ≡ ←`
1
, `

2
� d is BCN-derived− from a goal G ≡ ←`

1
, ¬p(x), `2 � c with

respect to P if there exists k > 0 such that the equality constraint d ≡ Fk(p(x)) ∧ c is
satisfiable in FET (Σ).

Indeed, a preliminary version of this work that considers the rules (R1) and (R2), instead
of the rule (R), was presented in [17]. As we will explain in Remark 17, after the procedural
mechanism has been presented, there is no problem to use the new mechanism only when
the selected literal is negative, whereas the positive ones are left to SLD-resolution. Besides,
in order to explain the technical details independently of this choice, our examples of goals
will not contain any positive literal.

Definition 6. A finite BCN-derivation G
n G′ is a successful BCN-derivation if G′ ≡

← � c. In this case c is called the BCN-computed answer. Finally, a goal G ≡ ←` � c is a
BCN-failed goal if FET (Σ) |= (c→ Fk(`))

∀ for some k > 0.

Soundness and completeness of the BCN operational semantics can be easily proved on the
basis of Theorem 2.

Theorem 7. Let P be a program and G ≡ ←` � c a goal.
1. G is a BCN-failed goal iff Comp(P) |=3 (c→ ¬`)∀
2. If there exists a successful BCN-derivation for G with computed answer ← � c′, then

Comp(P) |=3 (c
′→` ∧ c)∀

3. If there exists a satisfiable equality constraint d such that Comp(P) |=3 (d→ `∧c)∀, then
there exist a BCN-computed answer d′ for G with respect to P , such that FET (Σ) |=
(d→ d′)∀.

Proof. The statement 1 is a trivial consequence of Theorem 2. The statement 2 is proved by
induction on the length of the derivation, using the following easy consequence of Theorem
2: Comp(P) |=3 (Tk(`)→ `)∀ for every k∈IN .
The assumption of the statement 3, by Theorem 2, means that FET (Σ) |= (d→ (Tk(`)∧c))∀
holds for some k ∈ IN . Let us suppose ` ≡ `1, . . . `m. Since d is satisfiable,

∧
j∈J Tk(`j) ∧ c

is also satisfiable for any J ⊆ {1, . . . ,m}. This allows us to build the following derivation
G

m ← � d′ where d′ ≡ c ∧ Tk(`):
←`1, `2, . . . `m � c

1 ←`2, . . . `m � c ∧ Tk(`1) 1 . . .
1 ←`i, . . . `m � c ∧

i−1∧
j=1

Tk(`j)
1 . . .

. . .
1 ←`m � c ∧

m−1∧
j=1

Tk(`j)
1 . . .

1 ← � c ∧ Tk(`);

Obviously, this construction also works by selecting literals in any other order.

The most obvious computational problems of the BCN operational semantics is related to
stop the construction of Tk, when the goal is a BCN-failed goal. This requires checking the
failure condition of Definition 8(a), that is the satisfiability of a constraint

(c→ (Fk(`1) ∨ . . . ∨ Fk(`n)))∀

for some k∈ IN . There are two main problems to do that. First, exhaustive search of such
k ∈ IN could be infinite, although the part (b) of Definition 8 could produce one or more
children for the node. Second, the equality constraint to be checked involves not only the
Fk-constraint for the selected literal, but also for all the literals of the goal. The procedural
interpretation − we will present in the next section, − avoids such problems looking for
failures in an incremental way. At the same time, it avoids some undesirable infinitudes
and repetition of answers that occurs in BCN-computations. In order to illustrate these
problems and motivate the procedural mechanism, we next define BCN-computation trees
and give two simple examples.

Definition 8. A BCN-computation tree for a goal G with respect to P is a tree such that
each node is a goal, the root is G and for any node G′ ≡ ←` � c with selected literal `i:

(a) G′ is a failure leaf if FET (Σ) |= (c→ Fk(`))
∀ for some k∈IN .

(b) Otherwise, the children of G′ are all the goals BCN-derived from it where the selected
literal is `i.

In the following two examples the signature has − as function symbols − the constant 0
(zero) and the unary function s (successor).

Example 9. Let P1 and P2 be the following two programs

P1 ≡ q(x) : − � x = 0 P2 ≡ q(x) : −¬q(y) � x = 0, y = 0

It is easy to see that Tk(¬q(x)) ≡ Fk(q(x)) ≡ x 6= 0 for all k ≥ 1 w.r.t. both programs.
Hence, the goal ←¬q(x) has the same BCN-computation tree w.r.t. both programs. This
tree has an infinite number of branches with the answer ←x 6= 0. From a practical point of
view, an infinite computation could be expected in the case of program P2. However, with
program P1 it does not seem natural to produce an infinite computation, neither to repeat
each iteration the unique answer.

Example 10. Consider the program:

even(x) : − � x = 0.
even(x) : −¬ even(y) � x = s(w), y = w.

The goal ←¬even(x) has a leaf for each satisfiable Tk(¬even(x)) ≡ Fk(even(x)) where
k = 2, 3, . . ., since F1(even(x))) ≡ f and

F2×i(even(x)) ≡ F2×i+1(even(x)) ≡
i∨

j=1

x = s2×j−1(0) for all i ≥ 1

Therefore, the computation tree has an infinite number of branches, as the goal has an
infinite number of answers. However, there are two kinds of non-desirable repetitions. The
first one is that each pair of consecutive answers are identical. The second is that each new
answer includes all the previous ones. The latter happens by monotonicity of the operator
F (see Proposition 3).

4 The Procedural Interpretation

A procedural mechanism, amenable for practical implementation, has to be related to a
feasible equality constraint solver. Along this section we assume an equality constraint
solver that transforms any equality constraint with x as free variables, into a disjunction of
answers for x. An answer for the variables x is either one of the logical constants (t or f), or
an equality constraint of the form ∃w(a(x,w)). Although, the concrete syntactical form of
a(x,w) is not necessary for the contents of this section (it will be given in Section 5), notice
that disequations are required to solve equality constraints such as ¬∃y(x = f(y, y)). We
denote by SolForm(c(x)) the solved form obtained by the solver for the equality constraint
c(x). Whenever SolForm(c(x)) is not one of the logical constants, then it is a disjunction of
answers

∨m
i=1 ∃wi(ai(x,w

i)) where all variables w1, . . . , wm are assumed pairwise distinct.
For simplicity, we consider SolForm(c)≡ t to be the particular case of disjunction of answers
for m = 1 and a1 ≡ t. The solver transforms equality constraints into its solved form in a
correct and complete manner with respect to the free equality theory.

Definition 11. We say that a equality constraint solver is correct and complete with respect
to the theory FET (Σ) iff for every equality constraint c(x) the following two conditions hold:

(a) SolForm(c(x))≡ ∨m
i=1 ∃wi(ai(x, w

i)) iff FET (Σ) |= (c(x) ↔ ∨m
i=1 ∃wi(ai(x,w

i)))∀. In
particular, SolForm(c(x))≡ t iff FET (Σ) |= c(x)∀

(b) SolForm(c(x))≡ f iff FET (Σ) |= (¬c(x))∀, or equivalently FET (Σ) |= ¬(c(x)∃).

In the sequel, we will use a(,) as a metavariable (over an specific pair of variable tuples,
when necessary) and computation trees will be formed by nodes of the form ←` � a(,).
In the rest of this section we refine the BCN operational semantics to a purely procedural
mechanism that makes use of the answers produced by the solver and avoids the problems
discussed in the previous section. Then, we show some examples of computation tree. Finally,
we prove the soundness and completeness of our procedural interpretation.
In order to avoid answer repetition, we use the monotonicity of the operators T and F (see
Proposition 3). The idea is, whenever Tk(`(x)) has been used to obtain computed answers
for `, the equality constraint of the original goal is strengthened with ¬Tk(`(x)) to look for
new answers of the same goal. For instance, consider the goal ←¬even(x) � x 6= 0 and the
program of Example 10. Then, since

T1(¬even(x)) ≡ f and (x 6= 0 ∧ T2(¬even(x))) ≡ x = s(0),

the computed answer x = s(0) is obtained, and other branch with the goal←¬even(x) � x 6=
0, x 6= s(0) is generated. Now, x 6= 0 ∧ x 6= s(0) ∧ T3(¬even(x)) is not satisfiable, but
x 6= 0 ∧ x 6= s(0) ∧ T4(¬even(x)) ≡ x = s(s(s(0))). That generates this new computed
answer and also a new branch with ←¬even(x) � x 6= 0, x 6= s(0), x 6= s(s(s(0))) and so on.
The obtained computation tree is given in Figure 1.

← ¬ HYHQ�[�

← ¬ HYHQ�[��� [≠ 0

←� [s(0) ← ¬ HYHQ�[��� [≠ 0��[≠ s(0)

← ¬ HYHQ�[��� [≠ 0��[≠ s(0)

←� [s(s(s(0))) ← ¬ even(x) � x≠ 0, x≠ s(0),
x≠ s(s(0)),
x≠ s(s(s(0)))

← ¬ T�[�

← ¬ T�[��� [0←� [≠ 0

(w.r.t. 32)

← ¬ T�[��� [0

← ¬ T�[�

← ¬ T�[��� [0

(failure leaf)

←� [≠ 0

(w.r.t. 31)

Fig. 1. Computation trees of Examples 9 and 10

In order to achieve failure detection in an incremental way, notice that the following two
equality constraints:

(c→ (Fk(`
1
) ∨ Fk(`(x)) ∨ Fk(`2)))∀

((c ∧ ¬Fk(`(x)))→ (Fk(`
1
) ∨ Fk(`2)))∀

are logically equivalent. Moreover, by coherence of T and F (see Proposition 3), the addition
of ¬Fk(`) is a coherent strengthening of the goal equality constraint. A failure will be
displayed when

SolForm((c ∧ ¬Fk(`1) ∧ ¬Fk(`(x)) ∧ ¬Fk(`2)))≡ f

This is, by Definition 11, equivalent to FET (Σ) |= (¬c ∨ Fk(`1) ∨ Fk(`(x)) ∨ Fk(`2))∀,
which is, indeed, the required condition. To summarize, in order to converge to the failure
condition, we will add the equality constraint ¬Fk(`) when ` is selected and Tk(`) do not
provide success. The combination of both techniques serves to bound the anomalous breath-
infinitude that was shown in Example 9. That is, for the program P1 of Example 9 we have
that Tk(¬q(x)) ≡ x 6= 0 and Fk(¬q(x)) ≡ x = 0 for all k ≥ 1. Then, the answer T1(¬q(x)) ≡
x 6= 0 constitutes one branch. The other branch starts with the goal ←¬q(x) � x = 0.
Now, x = 0 ∧ Tk(¬q(x)) is not satisfiable for k = 2 (indeed for any k ≥ 2). So that, since
x = 0 ∧ ¬F1(¬q(x)) is not satisfiable, a failure is detected. However, in the case of the
program P2, the tree construction is identical, except that x = 0 ∧ ¬Fk(¬q(x)) ≡ x = 0 for
all k because every Fk(¬q(x)) ≡ f. This gives raise to an infinite branch. Both computation
trees are represented in Figure 1.

Now, we will introduce the procedural mechanism directly defining the construction of a
computation tree for an arbitrary goal, with respect to a program and a rule that selects,
at each step, a literal from the current goal. The goals of a computation tree have answers
as − always satisfiable − equality constraints.

From a procedural point of view, it is useful to keep the natural number k corresponding to
the k-successes (resp. k-failures) that have to be computed next. This information, denoted
by kT (`) (resp. kF (`)), is associated to each literal ` of any goal inside a computation tree.
The collection of all the values associated to both constants for each literal of a goal G is
denoted by K(G).

Definition 12. Let P be a Σ-program, R a selection rule, and G a goal. A computation
tree for G with respect to P and R is a tree whose nodes are pairs (G′, K(G)) inductively
defined as follows. The root is (G,K1(G)) where K1 associates the value 1 to each kT and

kF . For each node with goal G′ ≡ ←`
1
, `(x), `

2
� a(x,w) (where `(x) is the selected literal)

and any K(G′) that associates a pair (n+, n−) of natural numbers to (kT (`(x)), kF (`(x))):

(C1) If SolForm(∃w(a(x,w)) ∧ Tn+(`(x))) ≡
∨m
i=1 ∃wiai(x,w

i) 6≡ f, then it has one child

for each i ∈ 1..m, with goal Gi ≡ ←`
1
, `

2
� ai(x,w

i) and K(Gi) is identical to K(G′)
except that ` has no associated information (it does not appear in G′).

Besides, if SolForm((∃w(a(x, w)) ∧ ¬Tn+(`(x))) ≡
∨m′
j=1 ∃wja′j(x,w

i) 6≡ f, then it has

also one child for each j ∈ 1..m′ with goal G′
j ≡ ←`

1
, `, `

2
� a′j(x,w

j) and K(G′
j) is

identical to K(G′) except that kT (`(x)) is updated to be n+ + 1.

(C2) Otherwise − if case (C1) is not applied − there are the following two possible cases:

(C2a) If SolForm(∃w(a(x,w)) ∧ ¬Fn− (`(x))) ≡ f, then G′ is a failure leaf.

(C2b) If SolForm(∃w(a(x,w))∧¬Fn− (`(x))) ≡
∨m
i=1 ∃wiai(x,w

i) 6≡ f, then it has one

child for each i ∈ 1..m, with goal Gi ≡ ←`
1
, `, `

2
� ai(x,w

i) and K(Gi) is K(G′)
where both kT (`(x)) and kF (`(x)) are respectively updated to be n

++1 and n−+1.

Notice that the constraints in the goals of the tree accumulate ¬Tn(`) for every n such that
the n-successes of ` are obtained in the other branches. Therefore, whenever ` is selected
again, a ∧ Tk(`), is unsatisfiable for all k < kT (`), although it could be satisfiable for
some n > kT (`). The role of the constants kT is to avoid these superfluous calculations
of unsatisfiable constraints. Whereas kF (`) is helpful for adding new constraints ¬Fk(`) to
goals.

Definition 13. Any finite branch of a computation tree for G finished by a leaf of the form
← � a represents a successful derivation and the constraint a is a computed answer for G. A
failure tree is a finite tree such that every leaf is a failure.

The following example illustrates the construction of failure trees. It uses the same signature
with the constant 0 and the unary function s as previous examples.

Example 14. (Inspired by Example 3.12 in [7]). For the program

p(x) : −p(y) � x = w, y = s(w) q(x) : −q(y) � x = 0, y = 0
p(x) : − � x = 0 q(x) : −¬ r(y) � x = w, y = w

r(x) : − � x = 0

we have that:

Tk(¬p(x)) ≡ Fk(p(x)) ≡ f for all k∈IN Tk(¬q(x)) ≡ Fk(q(x)) ≡ f for all k∈IN
Fk(¬p(x)) ≡ Tk(p(x)) ≡ x = 0 for all k ≥ 1 Fk(¬q(x)) ≡ Tk(q(x)) ≡ f for all k∈ {0, 1}

Fk(¬q(x)) ≡ Tk(q(x)) ≡ x 6= 0 for all k ≥ 2

← ¬ S�[����¬ T�[�

← ¬ S�[����¬ T�[��� [�≠ 0

(failure leaf)

NT(¬S�[�) ≡ NF(¬S�[�) ≡ 2

Fig. 2. Failure tree of Example 14

The failure tree of Figure 2 for the goal ←¬p(x),¬q(x) results by selecting its first literal,
since T1(¬p(x)) ≡ f and ¬F1(¬p(x)) ≡ x 6= 0. Then, ¬q(x) is selected. and x 6= 0 ∧
T2(¬q(x))) ≡ f and also x 6= 0 ∧ ¬F2(¬q(x))) ≡ f. It is easy to check that any other fair
selection also produces a failure tree.

Now, we prove the soundness and completeness of the introduced procedural mechanism.
In both theorems and its proofs, to simplify notation, we write goals in the form ←` � a
instead of ←`(x) � a(x,w). and, in formulas, we also write a instead of ∃w(a(x,w)).

Theorem 15. (Soundness) Let P be a Σ-program and G ≡ ←` � a be a goal
1. If G has a failure tree (with respect to P and some selection rule), then

Comp(P) |=3 (a→ ¬`)∀.
2. If there exists a successful derivation for G (with respect to P and some selection rule)

with computed answer a′, then Comp(P) |=3 (a
′ → ` ∧ a)∀.

Proof. It is easy to check, by induction on the construction of computation trees, that
Comp(P) |=3 (

∨r
i=1(m

i∧ai)↔ (m∧a0))∀ holds for any pre-computation tree such that its
root is ←m � a0 and {←mi � ai | i ∈ 1..r} (r ≥ 1) is the (finite) collection of all its leaves.
Using that, in particular, Comp(P) |=3 ((m

i ∧ ai)→ (m ∧ a0))∀ holds for any i ∈ 1..r, the
statement 2 easily follows by induction in the length of the derivation. To prove the statement

1, let {←`
i
� ai | i ∈ 1..r} (r ≥ 1) be the (finite) collection of all leaves of the failure tree

for G. Hence FET (Σ) |= (ai → Fki(`
i
))∀ holds for each i ∈ 1..r and some ki∈IN . Then, by

monotonicity of the operator F (Proposition 3), Comp(P) |=3 ((`
i ∧ ai) → (`

i ∧ Fk(`i)))∀
where k ≡ max{ki|i ∈ 1..r}. Therefore

Comp(P) |=3 (
r∨
i=1

(`
i ∧ ai)→

r∨
i=1

(`
i ∧ Fk(`i)))∀

Additionally, by Theorem 2, we have that Comp(P) |=3 (Fk(`
i
)→ ¬`i)∀, where Fk(`i) is a

equality constraint, so it is a two-valued formula. Then Comp(P) |=3 (
∨r
i=1(`

i ∧ ai)→ f)∀.
Hence Comp(P) |=3 ((` ∧ a)↔ f)∀ or equivalently Comp(P) |=3 (a→ ¬`)∀.
For completeness the classical notion of fairness is needed. A selection rule is fair if and only
if every literal, appearing in an infinite branch, of a computation tree is eventually selected.

Theorem 16. (Completeness) Let P be a Σ-program and G ≡ ←` � a a goal. Then, for
any fair selection rule:

1. If Comp(P) |=3 (a→ ¬`)∀ then the computation tree for G is a failure tree.
2. If there exists a satisfiable constraint c such that Comp(P) |=3 (c→ ` ∧ a)∀ then there

exists n > 0 computed answers a1, . . . , an for G such that FET (Σ) |= (c→ ∨i∈1..n ai)
∀.

Proof. We first prove the statement 2. By Theorem 2, FET (Σ) |= (c→ (Tk(`)∧ a))∀ holds
for some k ∈ IN . Since c is satisfiable, (Tk(`) ∧ a) must be satisfiable. Hence, it suffices to
prove the following

Fact: If FET (Σ) |= (Tk(`)∧a)∃, then there exist n > 0 computed answers a1, . . . , an
for ←` � a (w.r.t. P) such that FET (Σ) |= ((Tk(`) ∧ a)→

∨n
i=1 ai)

∀.
Suppose that ` ≡ `1, . . . , `m. The proof is made by induction on m. The base case (m ≡
0) trivially holds. For the induction step we assume, without loss of generality, that `1
is the selected literal. Since FET (Σ) |= (Tk(`1) ∧ a)∃, then there exists r ≥ 1 answers
a′1, . . . , a

′
r such that SolForm(a ∧ Tk(`1))≡

∨r
i=1(a

′
i). Therefore, the goal G has r children

of the form ←`′ � a′i where `
′ ≡ `2, . . . , `m. By completeness of the solver FET (Σ) |=

((Tk(`1) ∧ a) ↔
∨r
i=1 a

′
i)
∀. Since FET (Σ) |= (Tk(`

′
) ∧∨r

i=1 a
′
i)
∃, then there exists a non-

empty set J ⊆ {1, . . . , m} such that FET (Σ) |= ((Tk(`) ∧ a) ↔
∨
j∈J (Tk(`

′
) ∧ a′j))∀. and

FET (Σ) |= (Tk(`
′
) ∧ a′j)∃ holds for all j ∈ J . By the induction hypothesis, the above

Fact holds for each (Tk(`
′
) ∧ a′j) with j ∈ J . Then, there exist kj > 0 computed answers

aj1, . . . , a
j
kj

for ←`
′
� a′j such that FET (Σ) |= ((Tk(`

′
) ∧ a′j) →

∨kj
h=1 a

j
h)
∀ holds for every

j ∈J . Therefore {← � ajh | j ∈J, h ∈ 1..kj} is a non-empty collection of computed answers
for ←` � a such that

FET (Σ) |= ((Tk(`) ∧ a)→
∨
j∈J

kj∨
h=1

ajh)
∀.

Hence the above Fact and the statement 2 of the Theorem hold.
Finally, we prove the statement 1. By Theorem 2, FET (Σ) |= (a→ Fk(`))

∀ for some k∈IN .
Then, in the computation tree for G, there is no branch finished by a computed answer.
This is because supposing the existence of a branch ended by a computed answer − and
using the Theorems 15 and 2 − we have the contradiction that such computed answer must
be unsatisfiable. Now, let us suppose that the computation tree for G has an infinite branch

that is formed by goals ←`
0
� a0, ←`

1
� a1, ←`

2
� a2, . . . where `

0 ≡ ` , a0 ≡ a and each

`
i ⊆ ` is non-empty. By construction of the tree, FET (Σ) |= (ai+1 → ai)

∀ holds for all i∈IN .
This means − by coherence of the operators T and F (Proposition 3) − that FET (Σ) |=
(ai → ¬Tn(`))∀ for all i ∈ IN . Therefore − by construction of the tree, completeness of
the solver, and fairness in the selection − there is some i ∈ IN , such that the constraints

ai ∧Tn(`) is unsatisfiable for any `∈`i and any n∈IN . This means − by construction of the
tree and fairness − that ai should be successively strengthened (in the considered branch)

with ¬Fn(`j) for every `j ∈ `i and increasing n ∈ IN . Hence, by correctness of the solver,
there exists some j such that FET (Σ) |= (aj → (a0 ∧¬Fk(`i1))∧ . . .∧¬Fk(`imj

)))∀ where

`i1 , . . . , `imj
⊆ `

j ⊆ `. This is a contradiction, since aj should be unsatisfiable because

a0 ≡ a and FET (Σ) |= (a → Fk(`))
∀. As a result, the computation tree for G has neither

a leaf with a computed answer, nor an infinite branch. Therefore, it must be a failure tree.

Remark 17. The presented procedural mechanism can be also used to implement an exten-
sion of SLD-resolution for normal logic programs. That is, we can apply it only when the
selected literal is negative, whereas SLD-resolution is applied to positive literals. In that
case the answers for goals involving positive literals are obtained in a different order but,
by completeness of the SLD-resolution (w.r.t. a fair selection rule), that is equivalent to
use the operator T . In SLD-resolution, a goal ←` � a with selected positive literal p(x),
should be a failure leaf if there is no clause that can be applied to the selected literal. This
happens whenever the conjunction of a with the constraint of any clause with head p(x)
is unsatisfiable. It is very easy to see that this is equivalent to FET (Σ) |= (a → F1(`))

∀.
Hence, a particular case of our failure condition holds.

5 Implementation

The crucial matter for practical implementation is to solve Tk- and Fk-constraints in an
efficient incremental manner. For that, we have to fix a notion of answer (or solved form,
see Section 2), that fulfills two main requirements: its satisfiability must be easily decidable
and they should be user friendly (to be displayed as goal answers). In this section, we first
introduce a notion of answer that satisfies both conditions. Second, we explain the basic
operations for handling answers and the guidelines for efficient incremental solving of Tk-
and Fk-constraints. Finally, we provide some experimental results.
Roughly speaking, answers consists of equations and disequations with some syntactical
restrictions:

Definition 18. An answer for the variables x is either a constant (t, f) or a formula
∃w(a(x,w)) where a(x,w) is a conjunction of both
— flat equations of the form xi = t(w), and
— universal disequations of the form ∀v(wj 6= s(w, v)), where the term s is not a single

variable in v and wj does not occurs in s.
where each xi occurs at most once.

For instance, an answer for the variable x is:

∃w1∃w2(x = f(w1, w2) ∧ w1 6= g(w2) ∧ ∀v1(w2 6= f(w1, v1))) (1)

We represent it, in Prolog-like notation, by x = f(A, B), A 6= g(B), B 6= f(A, ∗D) where
traditional Prolog-variables of the form 〈char〉 represent existential variables, whereas new
variables of the form ∗〈char〉 are associated to universal variables. Notice that the scope of
each universal variable is one single disequation and there is no restriction about repetition
of existential, neither universal, variables. It is obvious that every answer can be represented
in the above explained Prolog-like notation.
In the case of infinite signature, an answer is always satisfiable. In fact, a similar (but
less user friendly) kind of solved form is used in [5], where only infinite signatures are
considered. However, for finite signature, an answer can be unsatisfiable. A simple example
of unsatisfiable answer for the signature {a/0, f/2, g/1} is:

∃w(x = w ∧ w 6= a ∧ ∀v1∀v2(w 6= f(v1, v2)) ∧ ∀v1(w 6= g(v1)) (2)

We have implemented an answer satisfiability check that, in a first step, determines whether
each variable wj has a (possibly empty) finite or an infinite number of candidate values.
To do that, only a part of the disequations have to be taken into account. If the number of
candidates is infinite for all wj , then the answer is satisfiable. If it is empty for some wj , then
the answer is unsatisfiable. Otherwise, this first step obtains the set Wfin of all variables
wj which have a finite set of candidates values and a representation of these candidate
sets. In a second step, this information is used to finish the check, by considering only
the (remainder) disequations such that they involves more that one variable in Wfin. For
instance, the satisfiability of the above two examples of answers are decided at the first step.
In the example (1) both variables w1 and w2 have an infinite set of candidate values. In (2),
the set for w is empty.
Now, we are going to explain the other three basic operations − conjunction, negation and
instantiation − for handling answers:

— The conjunction of (two or more) answers for the variables x produces a disjunction
of answers for x. It is made by unification of the tuples of terms equating identical xi.
If this most general unifier does not exists, the result is f. Otherwise this mgu is ap-
plied to all equations and disequations. Then, disequations are flattened. The resulting
universal disjunctions of flat disequations (on the variables w) are transformed, by the
transformation rule (UD) of Figure 3, into a disjunction of flat equations and disequa-
tions where universal variables are local to one single disequation. Finally, we distribute
and lift the disjunction.

— The negation of an answer for x has the form ∀w(x 6= t(w) ∨ ∨ ∃vj(wj = s(w, vj)))
which is equivalent to

∃w′(x = w′ ∧ ∀v(w′ 6= t(v))) ∨ ∃w(x = t(w) ∧
∨
∃vj(wj = s(w, vj)))

The second disjunct (lifting the internal existential-disjunction and substituting wj in
t(w)) is a disjunction of answers for x. To transform the first one into a disjunction
of answers for x, it is enough to apply the transformation rule (UD) (of Figure 3) to
∀v(w′ 6= t(v)) just as above. Hence, we obtain a disjunction of answers for x.

— The instantiation ∃w(x = t(w)∧∧ ∀v(wj = s(w, v)))[t
′
(z)/x] produces a disjunction of

answers for z. It is performed on the basis of µ ≡ mgu(t(w), t
′
(z)). It is transformed

into ∃w(µ1 ∧ ∧ ∀v((wj 6= s(w, v))µ2) where µ1 ≡ µ � z and µ2 ≡ µ � w. To obtain a
disjunction of answers for z, it suffices to apply µ2, to flat the disequations, and to split
the universal variables using the transformation rule (UD) (of Figure 3).

∀v(wj 6= t(w, v) ∨ d(w, v)) 7−→ ∀v1(wj 6= t(w, v1)) ∨ ∃v1(wj = t(w, v1) ∧ ∀v2d(w, v))
where v1 ≡ free(t) ∩ v and v2 ≡ v \ v1

Fig. 3. Transformation Rule (UD)

The solving of the Tk+1- and Fk+1-constraints needs the previously constructed Tk- and Fk-
constraints for the same literals. Hence, to improve efficiency, Tk(p(x)) and Fk(p(x)) must
be loaded as part of the p’s predicate description in the symbol table, for some prefixed
symbols p and for the last k computed. Besides this, there are three other aspects that
are crucial for efficiency. First, we solve Tk- and Fk-constraints in a incremental way. That
is, we do not recalculate previously obtained answers (remember that both operators are
monotonic). Second, we load a constraint scheme, in order to avoid calculations that are

common for all steps. Third, we solve once the shared sub-constraints of a constraint and
we load the solution of sub-constraints that are shared by two consecutive steps. The last
two aspects are important in the solving of Fk. The constraint scheme for Tk+1(p(x)) is

m∨
i=1

∃yi∃wi(x = t
i
(wi) ∧ yi = si(w) ∧

∧
j

Tk(`
i
j(y

i)))

where each Tk(`
i
j(y

i)) has been loaded as a disjunction of answers for yi :∨
i

∃z(a(k)i (yi, z)) ∨
∨
i

∃z(a(<k)i (yi, z))

which is spitted into the answers a
(k)
i of step k and the answers a

(<k)
i of the previous

steps.
∧
j Tk(`

i
j(y))) could be transformed, by distribution, in a disjunction of conjunction

of answers for y. But, not all of them are new. Hence, we take only the disjuncts that
includes at least one a

(k)
i . In this way, lifting disjunction, we obtain a constraint of the form∨
∃y∃w(x = t(w) ∧ y = t

′
(w) ∧

∧
i

∃z(ai(y, z))))

Therefore, we perform the conjunction of answers for y and the instantiation of y by terms
t
′
(w). This gives a disjunction of answers for w. Lifting this disjunction, and substituting

equations on w into the terms t(w), we obtain a disjunction of answers for x.
The incremental solving of Fk-constraints is technically more intricate. To simplify the
presentation, let us consider a definition of p(x) given by two clauses of the form:

p(x) : − `
1
(y1) � x = t

1
(w1), y1 = s1(w1)

p(x) : − `
2
(y2) � x = t

2
(w2

1), y
2 = s2(w2

1, w
2
2)

and assume that every variable appearing in the y1-equations of the first clause also appears
in its x-equations, whereas the second clause have new variables w2

2 in the y2-equations.
These are the two kinds of clauses that are significant in the solving of an Fk-constraint.
Hence, we hope that the reader can easily infer (from the following explanation for the above
two clauses) how our solver works with m clauses. At the first step F1(p(x)) ≡ c11 ∧ c21
where c11 ≡ ¬∃w1(x = t

1
(w1)) and c21 ≡ ¬∃w2

1(x = t
2
(w2

1)). The constraints c11 and c21 are
both the negation of an answer for x. Hence, they are solved and loaded as a disjunction of
answers for x. To solve the constraint F1(p(x)) we use distribution, disjunction-lifting and
conjunction of answers for x. At the next step5, F=2(p(x)) ≡ (c11 ∧ c22)∨ (c21 ∧ c12)∨ (c12 ∧ c22)
where

c12 ≡ ∃w1(x = t
1
(w1) ∧ F=1(`1)[s1(w1)/y1])))

c22 ≡ ∃w2
1(x = t

2
(w2

1) ∧ ∀w2
2(F=1(`

2
)[s2(w2

1, w
2
2)/y

2])))

are the new sub-constraints of step 2 that are once solved and loaded for the step 3. Now,
for k ≥ 3, the scheme of F=k is

(c11 ∧ c2k ∧ ¬c2k−1) ∨ (c21 ∧ c1k) ∨ (c1k ∧ c2k ∧ ¬c2k−1) ∨ (c1k ∧ c2k−1) ∨ (c1k−1 ∧ c2k ∧ ¬c2k−1)
where c11, c

2
1 are loaded since the first step and c1k−1 and c2k−1 has been solved and loaded

in the previous step, whereas the new sub-constraints of step k are:

c1k ≡ ∃w1(x = t
1
(w1) ∧ F=k−1(`1)[s1(w1)/y1])

c2k ≡ ∃w2
1(x = t

2
(w2

1) ∧ ∀w2
2((F=k−1(`

2
) ∨ . . . ∨ F=1(`2))[s2(w2

1, w
2
2)/y

2])))

5 In what follows, F=k(p(x)) denotes the incremental part of Fk(p(x)) w.r.t. Fk−1(p(x))
and cjk denotes the new sub-constraint generated at step k from the clause j.

Notice that the above scheme for F=k includes several shared sub-constraints (e.g. c
2
k∧¬c2k−1)

that are solved once. Moreover, there are calculations that are common to all steps and we
use the scheme to avoid repetitions. For instance, every conjunction of the form c1n ∧ c2m (in

F=k) such that the terms t
1
(w1) and t

2
(w2

1) are not unifiable, is equivalent to f. In this case,
the corresponding disjunct is removed from the scheme of F=k. Finally, we want to remark
that our strategy for obtaining a disjunction of answers is lazy, in the sense that a constraint
is partially solved until a single satisfiable answer is obtained. Then, in the Prolog-style, it is
displayed to the user, who can ask for more answers. In this case, the remainder constraint
will be treated in the same lazy way. Of course, only satisfiable answers are displayed.

We have implemented a prototype of the BCN procedural mechanism in Sicstus Prolog
v.3.8.x. We have executed it on a Pentium II at 233 MHz taking measurements with the
function statistic/2 of Sicstus Prolog. In Figure 4, we show some experimental results for
the program of Example 10 and also for the following programs6:

(1) sum(0,X,X).

sum(s(X),Y,s(Z)):- sum(X,Y,Z).

even by sum(X):- sum(Y,Y,X).

(2) even number of f(a).

even number of f(f(X,Y)) :- even number of f(X), ¬ even number of f(Y).

even number of f(f(X,Y)) :- ¬ even number of f(X), even number of f(Y).

(3) symmetric(a).

symmetric(g(X)):- symmetric(X).

symmetric(f(X,Y)):- mirror(X,Y).

mirror(a,a).

mirror(g(X),g(Y)):- mirror(X,Y).

mirror(f(X,Y),f(Z,W)):- mirror(X,W), mirror(Y,Z).

Atom T=3 T=4 T=5 T=6 T F=3 F=4 F=5 F=6 F

even(X) 60/1 60/0 50/1 50/0 . . . 0/0 60/1 60/0 50/1 . . .

sum(X,Y,Z) 50/1 60/1 60/1 0/0 . . . 0/2 0/2 50/2 60/2 . . .

even by sum(X) 50/1 50/1 50/1 60/1 . . . 50/1 60/0 60/1 60/0 . . .

even number of f(X) 60/2 50/10 110/ 53260/ . . . 50/1 60/11 110/ 147890/ . . .
326 228826 325 228827

symmetric(X) 60/4 50/14 110/ 12690/ . . . 60/12 60/39 160/ 380/ . . .
184 33674 120 363

Fig. 4. Some Experimental Results

Each item of the array in Figure 4 means “milliseconds of CPU-time / number of answers‘”.
More concretely, the first element specify the milliseconds required for computing all new
satisfiable answers that are obtained at the considered step of the operator. These answers
are, depending on the above-specified operator (T or F), success or fail answers for the left-
hand atom. The second element, says how many satisfiable answers are exactly calculated in
that time. We have prefered to show the time required to compute the whole set of answers,
but remember that answers are displayed as soon as they are obtained.

6 It is worthy to notice the existential variable Y in the third clause of program (1), the recursion through
negation in program (2), and the big search space in programs (2) and (3).

References

1. A. Bossi, M. Fabris, and M. C. Meo. A bottom-up semantics for constructive negation.
In P. Van Hentenryck, editor, Proceedings of the 11th International Conference on Logic
Programming (ICLP ’94), pages 520—534. MIT Press, 1994.

2. D. Chan. Constructive negation based on the completed database. In R. A. Kowalski and
K. A. Bowen, editors, Proceedings of the Fifth International Conference and Symposium
on Logic Programming, pages 111—125, Seatle, 1988. ALP, IEEE, The MIT Press.

3. D. Chan. An extension of constructive negation and its application in coroutining. In
E. Lusk and R. Overbeek, editors, Proceedings of the NACLP’89, pages 477—493. The
MIT Press, 1989.

4. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293—322, New York, 1978. Plenum Press.

5. A. Colmerauer and T.-B.-H. Dao. Expresiveness of full first order constraints in the
algebra of finite and infinite trees. In 6th International Conference of Principles and
Practice of Constraint Programming CP’2000, volume 1894 of Lecture Notes in Com-
puter Science, pages 172—186, 2000.

6. H. Comon and P. Lescanne. Equational problems and disunification. Journal of Symbolic
Computation, 7:371—425, 1989.

7. W. Drabent. What is failure? an approach to constructive negation. Acta Informática,
32:27—59, 1995.

8. F. Fages. Constructive negation by pruning. Journal of Logic Programming, 32(2):85—
118, 1997.

9. M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Program-
ming, 2(4):295—312, 1985.

10. J. Jaffar and J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19,20:503—581, 1994.

11. K. Kunen. Negation in logic programming. Journal of Logic Programming, 4:289—308,
1987.

12. P. Lucio, F. Orejas, and E. Pino. An algebraic framework for the definition of compo-
sitional semantics of normal logic programs. Journal of Logic Programming, 40:89—123,
1999.

13. M. J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite
trees. In Proceedings of the 3rd IEEE Symp. on Logic in Computer Science, pages
348—357, 1988.

14. A. I. Malcev. Axiomatizable classes of locally free algebras. In B. F. Wells, editor,
The Metamathematics of Algebraic Systems (Collected Papers: 1936-1967), volume 66,
chapter 23, pages 262—281. North-Holland, 1971.

15. S. Muñoz and J. J. Moreno-Navarro. Constructive negation for prolog: A real implemen-
tation. In Proc. of the Joint Conference on Declarative Programming APPIA-GULP-
PRODE’2002, pages 39—52, 2002.

16. P. Nickolas. The representation of anwers to logical queries. In Proceedings of the 11th
Australian Computer Science Conference, pages 246—255, 1988.

17. E. Pasarella, E. Pino and F. Orejas. Constructive negation without subsidiary trees.
In Proc. of the 9th Internatonal Workshop on Functional and Logic Programming,
WFLP’2000, Benicassim, Spain. Also available as Technical Report LSI-00-44-R of LSI
Department, Univ. Politécnica de Catalunya, 2000.

18. J.C. Shepherdson. Language and equality theory in logic programming. Technical
Report No. PM-91-02, University of Bristol, 1991.

19. P. J. Stuckey. Negation and constraint logic programming. Information and Computa-
tion, 118(1):12—33, 1995.

20. S. Vorobyov. An improved lower bound for the elementary theories of trees. In Auto-
mated Deduction CADE-13 LNAI 110, pages 275—287. Springer Verlag, 1996.

