
20 1541-1672/14/$31.00 © 2014 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Reasoning and
Verification: State
of the Art and
Current Trends
Bernhard Beckert, Karlsruhe Institute of Technology

Reiner Hähnle, Technische Universität Darmstadt

In this article, the

authors give an

overview of tool-

based verification

of hardware and

software systems and

discuss the relation

between verification

and logical

reasoning.

including program logics for real-word pro-
gramming languages—put verification of in-
dustrial software within reach. At the same
time, suitable theories of abstraction and com-
position of systems make it possible to deal
with complexity. Finally, the availability of ef-
ficient satisfiability modulo theories (SMT)
solvers has increased verification system perfor-
mance and automation. SMT solvers provide
efficient reasoning capabilities over combina-
tions of theories—including integers, lists, ar-
rays, and bit vectors—which is a ubiquitous
subtask of hard- and software verification.

Verification systems are now commer-
cially used to formally verify many indus-
trial applications (see Table 1). Even highly
complex system software can be formally
verified when sufficient effort is spent, as
the L4.verified (www.ertos.nicta.com.au/
research/l4.verified) and Verisoft (www.
verisoftxt.de) projects demonstrate.

Here, we describe how verification is em-
ployed to ensure dependability of real-word

systems, and then offer an overview of the vari-
ous reasoning methods in use today. In keep-
ing with this special issue’s theme, we focus
on verification scenarios requiring a nontrivial
amount of logical reasoning—that is, we don’t
consider static analyses based on type systems,
propagation rules, dependency graphs, and so
on. For the same reason, we don’t discuss run-
time assertion checking. We do place more
emphasis on software (rather than hardware)
verification, which is now growing and matur-
ing rapidly. If it’s still lagging behind hardware
applications or hardware-related applications,
this is partly because the hardware industry
embraced formal methods 20 years ago. An-
other reason is that less expressive—and hence,
decidable—formalisms can be usefully em-
ployed to model hardware, while software veri-
fication requires more expressive formalisms.

Verification Scenarios
Verification scenarios differ in various ways.
The verification target—that is, the formal

Over the past few decades, the reach and power of verification methods

have increased considerably, and we’ve seen tremendous progress

in the verification of real-word systems. Partly, this is due to methodological

 advances: since the beginning of this century, the availability of formalisms—

R e p R e s e n t a t i o n a n d R e a s o n i n g

IS-29-01-beckert.indd 20 26/03/14 9:13 PM

jaNuarY/fEbruarY 2014 www.computer.org/intelligent 21

description of the system that’s actu-
ally being verified—can be an abstract
system model (such as an automa-
ton or a transition system); program
source code, byte code, or machine-
level code; or written in some hard-
ware-description language.

Likewise, the requirement specifi-
cation—the formal description of the
properties to be verified—can take
various forms. Specifications can be
algorithmic (executable), describ-
ing how something is to be done, or
they can be declarative, describing
what the (observable) output should
look like. They might refer only to
the initial and the final state of a sys-
tem run—that is, to the system’s I/O
behavior (“if the input is x, then the
output is x + 1”)—or they might re-
fer to the system’s intermediate states
and outputs (“if in some state the
output is x, then in all later states the
output must be some y with y > x”).

Specification bottleneck
For many years, the term formal veri-
fication was almost synonymous with
functional verification. In the past
decade, it has become increasingly
clear that full functional verification
is an elusive goal for almost all ap-
plication scenarios. Ironically, this
became clear through the advances
of verification technology: with the
advent of verifiers that fully cover
and precisely model industrial lan-
guages and can handle realistic sys-
tems, it’s finally become obvious just
how difficult and time consuming it
is to specify real systems’ functional-
ity. Not verification but specification
is the real bottleneck in functional
verification.1

Because of this, “simpler” veri-
fication scenarios are often used in
practice. These relax the claim to
universality of the verified proper-
ties, thus reducing the complexity
of the required specifications, while

 preserving the verification result’s
usefulness; examples include verifica-
tion methods for finding bugs instead
of proving their absence, and methods
that combine verification and test-
ing. Verifying generic and uniform
properties also reduces the amount of
functional specifications that must be
written.

Finally, the problem of writing spec-
ifications is greatly alleviated if the
specification and the verification tar-
get are developed (or generated) in
tandem. In contrast, writing speci-
fications for legacy systems is much
harder. It’s often difficult to extract
the required system knowledge from
legacy code and its (typically incom-
plete) documentation. More generally,
systems that haven’t been designed
with verification in mind might not
provide an appropriate component
structure. Even if they obey principles
such as information hiding and encap-
sulation, their components might not
be of the right granularity or might
have too many interdependencies.

Handling Complexity
Of course, we must limit the sim-
plification of verification scenarios,
lest they become useless. At some
point, we must face the complexi-
ties of real-world systems. There are
two fundamental approaches, which
are typically combined, to deal with
complex verification targets: abstrac-
tion and (de)composition. Abstrac-
tion considers an abstract model
of the verification target that’s less

 complex than the target system itself.
Decomposition subdivides the verifi-
cation target into components so that
their properties are small enough to
be verified separately.

Neither abstraction nor decomposi-
tion come for free: a suitable abstract
model and suitable components, in
turn, must be identified and their
properties specified. Both abstraction
and decomposition lead to additional
sources of errors or additional effort
to show that the abstract model is in-
deed a valid abstraction—that is, that
all properties of the abstract model
hold for the actual target system. For
decomposition, we must show that
the components’ verified properties
imply the desired property for the
composed system.

functional Correctness
To verify a system’s functional cor-
rectness requires formally proving
that all possible system runs satisfy
a declarative specification of the sys-
tem’s externally observable behavior.
The system must satisfy the specifica-
tion for all possible inputs and initial
system states.

The standard approach is to use
contract-based specifications. If the
input and the initial state, in which
the system is started, satisfy a given
precondition, then the system’s final
state must satisfy a given postcon-
dition, such as, “If the input is non-
negative, then the output is the square
root of the input.” To handle the
frame problem, pre-/ postcondition

Table 1. Examples of commercially successful verification systems.

Static Driver Verifier
(SDV)

Microsoft’s SDV is integrated into Visual Studio and routinely finds
bugs and ensures compliance of Windows driver software.

Astrée This abstract-interpretation-based static analyzer has been used to
prove the absence of run-time errors in the primary flight-control
software of Airbus planes.

ACL2 The ACL2 theorem prover has been used to verify the correctness of
commercial microprocessor systems for high-assurance applications.

HOL Light The HOL Light system has been used to formally verify various
 floating-point algorithms implemented in Intel processors.

Pex This glassbox test generation tool for C# is part of Visual Studio
Power Tools.

IS-29-01-beckert.indd 21 26/03/14 9:13 PM

22 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

R e p R e s e n t a t i o n a n d R e a s o n i n g

pairs are often accompanied by a
description of which variables (or
heap locations) a system is allowed
to change (otherwise, you’d have to
specify explicitly that all untouched
variables remain unchanged).

Pre-/postcondition pairs describe
programs’ I/O behavior, but they
can’t specify the behavior in inter-
mediate states. This is problematic if
you need to verify the functionality
of concurrent or reactive systems, as
what such systems do in intermediate
states is observable. In addition, such
systems aren’t necessarily intended
to terminate (as with servers, for ex-
ample). For that reason, extensions of
the pre-/postcondition approach let
you specify properties of whole traces
or histories (all states in a system run)
or properties of all the state transi-
tions (two-state invariants).

State-of-the-art verification systems,
such as KeY, Why, and KIV, can prove
functional correctness at the source-
code level for programs written in in-
dustrial languages such as Java and C
(Table 2 shows further information on
many of the verification systems men-
tioned here). Programs are specified
using formalisms that are specific to
the target language, such as the Java
Modeling Language for Java or the
ANSI/ISO C Specification Language
(ACSL) and the VCC language for C.

A different approach to functional
verification is to formalize both the
verification target’s syntax and se-
mantics in an expressive logic and for-
mulate correctness as a mathematical
theorem. Besides functional verifica-
tion of specific programs, this permits
expressing and proving meta proper-
ties such as the target language’s type
safety. Formalizations exist, for exam-
ple, for Java and C in Isabelle/HOL.

Although verifying non-trivial sys-
tems is possible using today’s tools and
methods, they need to be decomposed
and auxiliary specifications must be

created to describe the components’
functional behavior. Typically, the
amount of auxiliary annotations re-
quired is a multiple (up to five times)
of the target code to be verified (mea-
sured in lines of code).1

Safety and Liveness Properties
The verification of safety and live-
ness properties is closely related to
model checking techniques.2 Typi-
cally, the verification target is an
abstract system model with a finite
state space. The goal is to show that
the system never reaches a critical
state (safety), and that it will finally
reach a desired state (liveness). Spec-
ifications are written in variants of
temporal logics that are interpreted
over state traces or histories. Mostly,
the specifications are written in de-
cidable logics (that is, propositional
temporal logics, possibly with timing
expressions).

Although both the system model
and specification use languages of
limited expressiveness, the specifica-
tion bottleneck persists. It can be al-
leviated using pattern languages and
specification idioms for frequently
used properties.3 Even then, how-
ever, model checking for safety and
liveness properties is far from an
automatic or push-button verifica-
tion scenario. Often, problems need
careful reformulation before model
checkers can cope with them.

Lately, there has been growing in-
terest in the verification of safety
and liveness properties for hybrid
systems,4 and various methods and
tools—such as HyTech and KeY-
maera—have been developed for that
purpose. Hybrid systems have dis-
crete as well as continuous state tran-
sitions, as is typical for cyber-physical
systems, automotive and avionics ap-
plications, robotics, and so on. An
important instance of hybrid autom-
ata are timed automata, in which the

continuous variables are clocks repre-
senting the passing of time.5

refinement
Refinement-driven verification begins
with a declarative specification of the
target system’s functionality. This is,
for example, expressed in typed first-
or higher-order logic plus set theory.
In a series of refinement steps, the
specification is gradually turned into
an executable system model. Provided
that each refinement step preserves
all possible behaviors, the final result
is guaranteed to satisfy the original
specification.

The approach’s main difference
from functional verification is that
the refinement spans more levels and
starts at the most abstract level. For
nontrivial systems, dozens of refine-
ment steps might be necessary. The
advantage of more levels is that the
“distance” between adjacent levels is
smaller than that between the specifi-
cation and target system in functional
verification. Hence, the individual
steps in refinement-driven verification
tend to be easier to prove. To ensure
correctness, only certain kinds of re-
finement are permitted and each re-
finement step must be accompanied
by a proof that behavior is preserved.

Using many refinement levels can
easily lead to an excessive effort for
specification and proving. To allevi-
ate this, refinement-based methods
often work with patterns and librar-
ies and, for this reason, work best in
specific application domains. For ex-
ample, Event-B is optimized for reac-
tive systems while Specware is used
to develop transport schedulers.

In a refinement-based scenario, it’s
important to always co-construct the
multilevel specification and the target
system. This avoids problems related
to verifying legacy systems and is an
important reason for the viability of
refinement-based methods.

IS-29-01-beckert.indd 22 26/03/14 9:13 PM

R e p R e s e n t a t i o n a n d R e a s o n i n g

jaNuarY/fEbruarY 2014 www.computer.org/intelligent 23

In addition to systems that refine
from an abstract specification down
all the way to executable code, there
are methods and systems—such as
the Alloy Analyzer—that relate dif-
ferent abstract model levels to each
other. This creates less complex
 models and proofs, as it doesn’t
consider platform- and implementa-
tion language-specific details. On the
other hand, it can’t uncover errors
that involve those details.

uniform, Generic, and
Lightweight Properties
Using generic or uniform specifica-
tions can reduce the need to write re-
quirement specifications. Rather than
describing the specific functionality
of the target system, these specifica-
tions express only properties that are
desirable for a general class of system.
In addition to reducing the specifica-
tion overhead for individual systems,
this allows the use of simpler and less-
expressive specification languages. An
important class of generic properties
is the absence of typical errors—such
as buffer overflows, null-pointer ex-
ceptions, and division by zero. In the
case of SDV, a set of general proper-
ties was devised such that a device
driver satisfying these properties can’t
cause the operating system to crash.
This is possible, because the ways in
which a driver might crash the OS are
generally known and don’t depend on
a particular driver’s functionality.

Simple, lightweight properties can
be formalized using (Boolean) ex-
pressions of the target programming
language without the need for quan-
tifiers or higher-order logic features.
Systems such as Spec# and CBMC
allow the verification of lightweight
properties that have been added as
assertions to the target program.
Verification of lightweight properties
succeeds in many cases without aux-
iliary specifications.

Further, non-functional properties
can often be specified in a uniform
way even if they aren’t completely ge-
neric. This includes limits on resource
consumption such as time, space, and
energy. A further example concerns
security properties. A verification tar-
get might be forbidden to call certain
methods, or information-flow prop-
erties might be specified to ensure
that no information flows from secret
values to public output.

An important variation of the
generic- property scenario is proof-
carrying code (PCC), in which code
that’s downloaded from an untrusted
source—such as an applet down-
loaded from an untrusted website—is
accompanied by a verification proof.
The host system can check that proof
before running the code to ensure that
the code satisfies the host’s security
policies and has other desirable prop-
erties. The PCC scenario requires a
predefined set of properties be shared
by the host and the untrusted source.

relational Properties
Relational properties don’t use declar-
ative specifications, but rather relate
different systems, different versions of
the same system, or different runs of
the same system to each other.

Typically, the verified relation be-
tween systems is functional—exam-
ples include a simulation relation (one
system is a refinement of the other) or
bisimulation (both systems exhibit the
same behavior)—which corresponds
to compiler correctness. Another ex-
ample of a relational property is non-
interference: If it’s provable that any
two system runs that differ in the ini-
tial value of some variable x result in
the same output, then the variable x
doesn’t interfere with the output (the
system doesn’t reveal information
about the initial value of x).

Verifying relational properties avoids
the bottleneck of having to write

 complex requirement specifications.
However, verification might still require
complex auxiliary specifications that
describe the functionality of subcompo-
nents or detail the relation between the
two systems (coupling invariants).

bug finding
The bug-finding scenario’s concept
is to give up on formal verification’s
claim to universality. One variation
on this theme is to use failed proof at-
tempts to generate bug warnings. If a
verification attempt fails because some
subgoals can’t be proven, then instead
of declaring failure, the verification
system gives warnings to the user that
are extracted from the open subgoals.
These warnings indicate that a prob-
lem might exist at the points in the
verification target related to the open
subgoals. If the subgoals could not be
closed due to missing auxiliary spec-
ifications or a time-out, even though
in fact a proof exists, false positives
are produced. If this scenario is to be
useful, there can’t be too many spu-
rious warnings. To ensure this, some
systems (such as the Extended Static
Checker for Java) also give up on
soundness—that is, they don’t show
all possible warnings.

A second variation on bug finding
is to prove correctness for only part of
the program runs and inputs. So, if the
verification succeeds, it indicates the
absence of errors in many—but not
all—cases. On the other hand, if a ver-
ification attempt fails with a counter
example (and not just a time out), then
the counter example indicates a bug in
the verification target (or the specifica-
tion) and, moreover, describes when
and how the bug makes the system fail.

One example of the latter approach
is bounded verification: imposing a fi-
nite bound on the domains of system
variables or on the number of execu-
tion steps in the target system, which
yields relative verification results that

IS-29-01-beckert.indd 23 26/03/14 9:13 PM

24 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

R e p R e s e n t a t i o n a n d R e a s o n i n g

hold only up to the chosen bound.
Bounded verification reduces the need
for decomposition—and thus the need
to write auxiliary specifications, such
as contracts for subcomponents and
loop invariants. In particular, loop
invariants aren’t needed, as they can
be considered as induction hypoth-
eses for proving (by induction) that
the loop works for all numbers of re-
quired loop iterations. Because the
number of loop iterations is bounded,
no induction is needed.

A further use of verification for bug
finding is to enhance the debugging
process using verification technol-
ogy based on symbolic execution to
implement symbolic debuggers. Such
symbolic debuggers cover all possible
execution paths, and there’s no need
to initialize input values.

Test Generation
Verification and testing are different
approaches to improving software
dependability that can both comple-
ment and support each other. Verifi-
cation methods can be used to help
with testing in several scenarios. For
example, verification methods such
as symbolic execution can generate
tests from the specification and the
source code (glass-box testing) or
from the specification of the verifica-
tion target alone (black-box testing).
Using reasoning techniques, it’s pos-
sible to generate tests that exercise
particular program paths, satisfy var-
ious code coverage criteria, or cover
all disjunctive case distinctions in the
specification.

Testing goes beyond verification
in an important dimension: verifica-
tion ensures correctness of the target
system, but not of the runtime envi-
ronment or the compiler backends;
testing, however, can also find bugs
that are located outside the target sys-
tem itself. For this reason, testing can’t
be replaced by verification in all cases.

Verification Methods
Most verification approaches fall into
one of four methodologies: deductive
verification, model checking, refinement
and code generation, and abstract inter-
pretation. We’ll now introduce some di-
mensions that are useful for classifying
these approaches and we discuss how
they influence the type of reasoning that
occurs during verification.

Arguably, the main tradeoff that in-
fluences a verification method’s design
is automation of proof search versus
expressiveness of the logic formalism
used for specification and reasoning.
Most verification systems use a logic-
based language to express properties.
Common logics, ordered according to
their expressiveness, include proposi-
tional temporal logic, finite-domain
first-order logic (FOL), quantifier-free
FOL, full FOL, FOL plus reachabil-
ity or induction schemata, dynamic
logic, higher-order logic, or set theory.
The expressiveness of a logic and the
computational complexity of its deci-
sion problems are directly related. For
undecidable languages, such as first-
order logic, full automation can’t be
expected; yet even for decidable lan-
guages, such as temporal logic, prob-
lems quickly become infeasible as the
target system’s size grows.

However, there’s a difference be-
tween the theoretical complexity of
the decision problem of a logic and
the efficiency/effectiveness of prov-
ers in practice. In reality, typical in-
stances of undecidable problems are
hard—but not impossible—to solve.
Theory tells us that, in some in-
stances, either no (finite) proof or no
counter example exists (otherwise the
problem would be decidable). But in
practice, such problem instances are
few and far between. Even for unde-
cidable problems, the real difficulty is
to find—existing—proofs.

Verification methods that use ab-
straction can take different forms:

while abstract interpretation attempts
to find a sound abstraction of the
target system, for which the desired
properties are still provable, in model
checking, the users typically work
with an abstract system model from
the start, and might have to refine and
adapt it many times during the verifi-
cation process. As we show later, it’s
fruitful to combine both approaches.

Another dimension of verification
method design is verification work-
flow, which is heavily influenced by
expressiveness: assuming a decidable
modeling language and a feasible tar-
get system size, it’s possible to auto-
matically verify a system provided that
the specified property actually holds,
that the verifier is suitably instru-
mented, and that the system is suit-
ably modeled. This approach, typically
realized in model checking,2 enables
a batch mode workflow (often misla-
beled as “push button” verification)
based on cycles of failed verification
attempt and failure analysis, followed
by modifications to the target system,
specification, or instrumentation, until
a verification attempt succeeds.

Verification systems for expressive
formalisms (first-order logic and be-
yond) require often more fine-grained
human interaction, where a user gives
hints to the verifier at certain points
during an attempted proof. Such hints
could be quantifier instantiations or
auxiliary specifications, such as loop
invariants or induction hypotheses.

Finally, a further distinction is the
verification method’s precision—that
is, whether it might yield false posi-
tives6 (and if so, to what extent).

Deductive Verification
Under deductive verification, we sub-
sume all verification methods that
use an expressive (at least first-order)
logic to state that a given target system
is correct with respect to some prop-
erty. Logical reasoning (deduction) is

IS-29-01-beckert.indd 24 26/03/14 9:13 PM

R e p R e s e n t a t i o n a n d R e a s o n i n g

jaNuarY/fEbruarY 2014 www.computer.org/intelligent 25

then used to prove validity of such a
statement. Perhaps the best-known
approach along these lines is Hoare
logic,7 but it represents only one of
three possible architectures.

The most general deductive verifica-
tion approach is to use a highly expres-
sive logical framework, typically based
on higher-order logic with inductive
definitions. Such logics permit the defi-
nition of not only properties, but also
the target language’s abstract syn-
tax and semantics. In so-called proof-
assistants, such as HOL and Isabelle,
real-life languages of considerable
scope have been modeled in this man-
ner, including, for example, the floating
point logic of x86 processors, a non-
trivial fragment of the Java language,
the C language, and an OS kernel.

A second deductive verification ap-
proach is provided by program log-
ics, where a fixed target language is
embedded into a specification lan-
guage. The latter is usually based on
first- order logic, and target language
objects occur directly as part of logi-
cal expressions without encoding. The
target language’s semantics is reflected
in the calculus rules for the program
logic. For example, the task to prove
that a program “if (B) Q else R; S” is
correct relative to a pre-/postcondi-
tion pair is reduced to prove correct-
ness of the two programs “Q;S” and
“R;S,” respectively, where additional
assumptions that the path condition B
respectively holds and doesn’t hold, are
added to the precondition (we assume
that B’s execution has no side effects).
Typically, at least one such proof rule
exists for each syntactic element of the
target language. Such calculi have been
implemented for functional languages
(in ACL2 and VeriFun), as well as for
imperative programming languages (in
KeY and KIV).

Hoare logic7 is a representative of
a third architecture: here, a set of re-
write rules specifies how first-order

correctness assertions about a given
target system are reduced to purely
first-order verification conditions us-
ing techniques such as weakest pre-
condition reasoning. For example, if
an assertion P holds immediately af-
ter an assignment “x = e;”, then this
is propagated to the assertion P(x/e)
(denoting P where all occurrences of
x are replaced with e) that must hold
just before the assignment. This ap-
proached, called verification condition
generator (VCG) architecture, is real-
ized, for example, in Dafny and Why.

All three architectures need numerous
and detailed auxiliary specifications,
 including loop invariants and/or induc-
tion hypotheses; all three can also be
used for proving functional correctness
of systems. Due to their general nature
and their expressiveness, proof assis-
tants for higher-order logic tend to re-
quire more user interaction than the
other two. However, in the past years,
external automated theorem provers
are increasingly employed to decrease
the amount of required interactions. To
make this work, it’s necessary to trans-
late between first- and higher-order
logic—hence, a loosely coupled system
architecture is used and the granularity
(complexity) of problems handed over
to external reasoners tends to be large.

An interesting fact is that the de-
signers of all verifiers that use a dedi-
cated program logic felt the need to
add sophisticated first-order reason-
ing capabilities to their systems, start-
ing with the seminal work by Robert
S. Boyer and J. Strother Moore in the
predecessor of the ACL2 system.8
Adding these capabilities was neces-
sary because mainstream automated
reasoning systems for first-order logic
lacked central features required for
verification, such as types, heuris-
tic control, and induction. The cou-
pling of these “internal reasoners”
is tight, so that intermediate results
can be constantly simplified without

 translation overhead (fine problem
granularity). The downside is that in-
ternal reasoners are difficult to use
independently of their host systems
and their internal workings are not
typically well documented.

In contrast to logical frameworks
and program logics, VCG systems ad-
mit workflow in batch mode: in the
first phase, a verification problem
is reduced to a (typically very large)
number of first-order queries. These
are then solved by external reasoners,
which are often run competitively in
parallel. The advantage is a modular
architecture that can exploit the lat-
est progress in automated reasoning
technology. The disadvantage is that
it can be difficult to relate back the
failure of proving a verification con-
dition to its root cause. It’s also hard
to implement aggressive simplifica-
tion of intermediate results.

Model Checking
In model checking,2 the execution
model of a soft- or hardware system is
viewed as a finite transition system—
that is, as a state automaton whose
states are propositional variable as-
signments. Because finite transition
systems are standard models of prop-
ositional temporal logic, to check that
a finite transition system T is a model
of a temporal logic formula P means
to ensure that every possible system
execution represented by T meets the
property expressed with P. Hence,
model checking can be used for sys-
tem verification.

The bottleneck is the explosion
of the number of possible states that
occurs even for small systems when
an explicit representation of states is
chosen. Since the mid-1980s, enor-
mous progress has been made in
state representation that, in many
cases, is able to avoid state explosion.
First, encodings based on binary de-
cision diagrams (BDDs)9 made vast

IS-29-01-beckert.indd 25 26/03/14 9:13 PM

26 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

R e p R e s e n t a t i o n a n d R e a s o n i n g

 improvements possible, later Buechi
automata, symmetry reduction, ab-
straction refinement, modularization,
and many other techniques pushed
the boundaries.2 Many of these are
implemented in the widely used SPIN
and NuSMV model checkers. Systems
such as UPPAAL extended temporal
logic with timing conditions and can
be used to model real-time systems.

Traditionally, automata-based tech-
niques and efficient data structures to
represent states played a much more
prominent role in model checking
than logical reasoning. This is about to
change, as the model checking commu-
nity strives to overcome the standard
approaches’ fundamental limitation to
finite state systems. To go beyond the fi-
nite state barrier (or simply deal with
finite but large systems), several tech-
niques have been suggested, including
sound abstraction (related to abstract
interpretation, which we discuss later)
and abstraction with additional checks,
as well as incomplete approaches, such
as bounded model checking.10 Yet an-
other possibility is offered by symbolic
execution engines, which enumerate
reachable states without loss of preci-
sion; examples include KeY, VeriFast,
Java PathFinder, and Bogor. The logic-
based techniques for infinite state rep-
resentation realized in the latter systems
use automated reasoning to bound
state exploration.11 We expect the com-
bination of ideas from deductive veri-
fication and model checking to enable
further advances in the coming years.

Lately, there has been a trend to
subsume verification tools and meth-
ods that use reasoning technology,
such as SMT and propositional satis-
fiability (SAT) solving under the term
“model checking”; an example of
such a system is CBMC (see Table 2).
Here, we use the term “model check-
ing” in a narrower sense and consider
this other type of system under the
“deductive verification” heading.

refinement and Code
Generation
Verification can also be achieved by
gradually refining an initial system
model (that directly reflects the re-
quirements) into an executable model,
provided that each refinement step
preserves the properties of the pre-
ceding one. Declarative and highly
nondeterministic concepts, conve-
niently expressed in set theory, must
be refined into operational ones. For
example, there might be a proof ob-
ligation relating a set comprehension
to an iterator. Hence, refinement over
multiple levels for nontrivial systems
creates a large number of proof obli-
gations about set theory.

Evidently, most proof obligations
generated during refinement-based
verification can be discharged with au-
tomated theorem provers, yet there’s
been surprisingly little interaction with
the automated-reasoning community.
This can be partly explained by a mis-
match of requirements: the support for
set-theoretic reasoning in mainstream
automated reasoning tools is limited.
One industrially successful system,
Specware, uses higher-order logic, and
thus outsources the discharging of
proof obligations to Isabelle, but not
to first-order provers.

Almost no work exists in the veri-
fication community regarding code
generation by compilation and opti-
mization of executable, yet abstract
system models. Of course, there’s an
abundance of model-driven software
development approaches. However,
most of the involved notations (such
as UML) are not rigorous enough to
permit formal verification. The same
is true for code generation from lan-
guages such as MathWorks, SystemC,
VHDL, and Simulink, although the
Scoot system (www.cprover.org/scoot)
can extract abstract models from Sys-
temC. Recent research has shown that
deductive verification of relational

properties is a promising approach to
ensure correct compilation and opti-
mization.12 We believe that provably
correct (behavior-preserving) code
generation offers vast opportunities
for the reasoning and formal verifi-
cation communities to employ their
techniques.

abstract Interpretation
Abstract interpretation13 is a method
to reason soundly, in finite domains,
about potentially infinite state systems.
The idea can be simply stated: in the
target system, all variables are inter-
preted not over their original domain
(that is, their type), but over a more
abstract, smaller one. For example,
an integer variable might have only
the values “positive,” “0,” “negative,”
“non-positive,” “non-negative,” and
“anything.” Of course, all operations
also must be replaced by operations
over the abstract domain, for exam-
ple, “positive” + “non-negative” yields
“positive” and so on. The abstract do-
mains and operations are chosen so as
to preserve the semantics: if a property
holds in the abstract system, then it
must also hold in the original system.

If the abstract domain is finite (or at
least has no infinite ascending chains),
it’s possible to show that any computa-
tion in the abstract system must finitely
terminate, because loops and recur-
sive calls reach a fixpoint after finitely
many steps. The price to pay, of course,
is a loss of precision and completeness:
not all properties of interest might be
expressible in the abstract domain and,
even if they are, a property that holds
for the actual system might cease to
hold in its abstraction.

Reasoning in connection with ab-
stract interpretation means con-
straint solving in specific abstract
domains. However, because abstract
interpretation can be seen as a very
general method to render infinite com-
putations finite in a sound manner, it’s

IS-29-01-beckert.indd 26 26/03/14 9:13 PM

R e p R e s e n t a t i o n a n d R e a s o n i n g

jaNuarY/fEbruarY 2014 www.computer.org/intelligent 27

natural to combine it with precise ver-
ification methods. This has been done
since the late 1990s with model check-
ing, notably in counter-example guided
abstraction and refinement (CEGAR),
where a suitable system abstraction
is computed incrementally.14 It’s less
known that symbolic program execu-
tion can be seen as abstract interpre-
tation, which makes it possible to put
sound abstraction on top of verifica-
tion systems based on symbolic execu-
tion. The KeY system has realized this,
and allows the exploitation of syner-
gies between abstract interpretation-
style constraint solving and deductive
verification-style logical reasoning.15

Trends and Opportunities
We now offer a brief discussion of
the main trends and opportunities
for reasoning in the verification con-
text. Our 10 key conclusions are also
shown in the related sidebar.

Non-functional Properties
From the somewhat sobering insight
that full functional verification is too
expensive for most application scenar-
ios due to both general difficulties and
the effort required in achieving func-
tional specification, new opportunities
have arisen: non-functional properties
of systems—such as resource (includ-
ing energy) consumption or security
properties—can often be schemati-
cally specified. Often, the required
specifications (including invariants)
can be automatically generated.16

This is a great opportunity for the
verification community: whereas func-
tional verification is rarely requested by
industry and likely to remain a niche
for high-assurance applications, non-
functional properties are extremely rel-
evant in everyday scenarios and can
easily be mapped to business cases,
 including quality-of-service parameters
such as response time or resource con-
sumption in cloud applications.17

Method Convergence
From our discussion of verification
methods, it’s clear that there’s much
to be gained from a closer collabora-
tion of the various subcommunities.
Here, we offer two examples. First,
to verify large industrial systems, it’s
necessary to use both methods opti-
mized for finite state systems (such as
model checking) and methods for in-
finite state systems (such as deductive
verification). Abstract interpretation
and symbolic execution seem to be
natural bridges. Second, compilation,
code generation, and code simplifica-
tion are neglected areas in verifica-
tion. There’s a vast opportunity for
verification in correct code genera-
tion from modeling languages such as
Simulink and SystemC. Although first
steps have been made,18 this is (so far)
a missed opportunity because existing
methods and tools in deductive verifi-
cation can well be applied here.

The Importance of reasoning
The advent of efficient SMT solv-
ers has given a boost to verification
 system performance. SMT solvers

combine efficient theory reasoning
over variable-free expressions with
heuristically driven quantifier instan-
tiation. Importantly, they can also
detect counter examples for invalid
problems. Similar techniques had
been implemented as part of mono-
lithic verifiers such as ACL2 or KIV
for decades, but standalone SMT
solvers are much easier to maintain,
and they also benefit from progress in
SAT solving. As a consequence, there’s
currently the happy situation that the
verification and SMT solving com-
munities drive each other’s research.
With some delay, this opportunity
has also been grasped by the first-
order theorem proving community, as
is witnessed by recent events such as
the Dagstuhl Seminar 13411 on de-
duction and arithmetic, as well as the
rise of theorem-proving methods that
can create counter examples, such as
instantiation-based proving.

One challenge that current veri-
fication approaches barely address
is how to deal with verification tar-
get changes. During system develop-
ment and maintenance, such changes

Based on our analysis, we have 10 key conclusions.

 1. Given enough time and effort, current technology permits the formal
 verification of even highly complex systems.

 2. The main bottleneck of functional verification is the need for extensive
specifications.

 3. Verification of complex systems is never automatic or “push-button.”
 4. Verification of non-functional properties alleviates the specification

 problem and is of great practical relevance.
 5. Verification, bug finding, and test generation are not alternatives, but

rather complement each other: all are essential.
 6. Abstraction and compositional verification are key to handling complexity

in verification.
 7. Model-centric software development and code generation account for

huge opportunities in verification and are under-researched.
 8. There’s a convergence of finite-state/abstract methods (model checking,

abstract interpretation) and infinite state/precise methods (deductive
 verification, refinement).

 9. Verification, SMT solving, and first-order automated reasoning form a
 virtuous cycle in extending the reach of verification technology.

10. There are many scenarios and variations of verification, which makes
 different systems hard to compare; and there’s no single best verification tool

10 Key Conclusions

IS-29-01-beckert.indd 27 26/03/14 9:13 PM

28 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

R e p R e s e n t a t i o n a n d R e a s o n i n g

Table 2. An overview of reasoning and verification systems. (This table may serve as a starting point for further exploration. It
contains a representative selection of systems that were historically influential or represent the state of the art.)

System/URL Method Verification scenario

Alloy Analyzer
alloy.mit.edu/alloy

Refinement, deductive verification Functional correctness, safety properties

ACL2
www.cs.utexas.edu/users/moore/acl2

Deductive verification (interactive) Functional correctness, bug finding

Astrée
www.astree.ens.fr

Static analysis Safety properties, generic properties

Bogor
bogor.projects.cis.ksu.edu

Model checking Safety properties

CBMC
www.cprover.org/cbmc

Deductive verification Bug finding, lightweight properties

Coq
www.lix.polytechnique.fr/coq

Proof assistant (interactive) Functional correctness, safety, security prop-
erties, refinement relations

Dafny
research.microsoft.com/projects/dafny

Deductive verification (batch) Functional correctness, bug finding

ESC/Java
www.kindsoftware.com/products/opensource/ESCJava2

Deductive verification Bug finding

Event-B
www.event-b.org

Deductive verification Refinement

Frama C/Why
frama-c.com

Deductive verification (batch) Functional correctness, bug finding

HyTech
embedded.eecs.berkeley.edu/research/hytech

Model checking Safety properties of hybrid automata

Isabelle
isabelle.in.tum.de

Proof assistant (interactive) Functional correctness, safety, security
properties, refinement relations

Java Pathfinder
babelfish.arc.nasa.gov/trac/jpf

Model checking Safety properties

KeY System
www.key-project.org

Deductive verification (interactive) Functional correctness, bug finding, secu-
rity properties

KeYmaera
symbolaris.com/info/KeYmaera.html

Deductive verification (interactive) Safety and liveness properties of hybrid
automata

KIV
www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv

Deductive verification (interactive) Functional correctness, bug finding, secu-
rity properties

NuSMV
nusmv.fbk.eu

Model checking Safety properties

Pex
research.microsoft.com/projects/pex

Deductive verification Test-case generation

PVS
pvs.csl.sri.com

Proof assistant (interactive) Functional correctness, safety, security
properties, refinement relations

Spec#
research.microsoft.com/projects/specsharp

Deductive verification Bug finding, lightweight properties

Specware
www.specware.org

Deductive verification Refinement

SPIN
spinroot.com

Model checking Safety properties

TVLA
www.cs.tau.ac.il/~tvla

Abstract interpretation Safety properties, functional verification

UPPAAL
www.uppaal.org

Model checking Safety/liveness properties of temporal
automata

VeriFast
people.cs.kuleuven.be/~bart.jacobs/verifast

Deductive verification (batch) Functional correctness

VeriFun
www.verifun.org

Deductive verification (batch),
induction proofs

Functional correctness

VCC
research.microsoft.com/projects/vcc

Deductive verification (batch) Functional correctness, bug finding

IS-29-01-beckert.indd 28 26/03/14 9:13 PM

R e p R e s e n t a t i o n a n d R e a s o n i n g

jaNuarY/fEbruarY 2014 www.computer.org/intelligent 29

are normal and occur frequently,
triggered by feature requests, envi-
ronment changes, refactoring, bug
fixes, and so on. Any change in the
target system has the potential to
completely invalidate the expended
verification effort. If re-verification
is expensive, this constitutes a major
threat against the practical usefulness
of all but fully automatic and light-
weight verification methods. One so-
lution might be verification methods
that are aware of changes,19 which
lets automated reasoning replace re-
verification, especially in those parts
of a system that remain unchanged.

The future looks bright for the
collaboration of verification and

reasoning. Recent advances in both
fields and increasingly tight interac-
tion have already given rise to indus-
trially relevant verification tools. We
predict that this is only the beginning,
and that within a decade tools based
on verification technology will be as
useful and widespread for software
development as they are today in the
hardware domain.

Acknowledgment
We thank the anonymous reviewers for their
careful reading of this article and numerous
valuable suggestions for improvement.

References
1. C. Baumann et al., “Lessons Learned

from Microkernel Verification: Speci-

fication Is the New Bottleneck,” Proc.

7th Conf. Systems Software Verifica-

tion, 2012, pp. 18–32.

2. E.M. Clarke, O. Grumberg, and D.A.

Peled, Model Checking, MIT Press,

1999.

3. J.C. Corbett et al., “A Language

 Framework for Expressing Checkable

Properties of Dynamic Software,”

Proc. 7th Int’l SPIN Workshop Stan-

ford, vol. 1885, 2000, pp. 205–223.

4. A. Platzer, Logical Analysis of Hybrid

Systems: Proving Theorems for

 Complex Dynamics, Springer, 2010.

5. R. Alur and D.L. Dill, “A Theory

of Timed Automata,” Theoretical

 Computer Science, vol. 126, no. 2,

1994, pp. 183–235.

6. C. Flanagan et al., “Extended Static

Checking for Java,” Proc. ACM

 SIGPLAN Conf. Programming

 Language Design and Implementation,

2002, pp. 234–245.

7. C.A.R. Hoare, “An Axiomatic

Basis for Computer Programming,”

Comm. ACM, vol. 12, no. 10, 1969,

pp. 576–580.

8. R.S. Boyer and J.S. Moore, A Compu-

tational Logic Handbook, Academic

Press, 1988.

9. R.E. Bryant, “Symbolic Boolean Manip-

ulation with Ordered Binary Decision

Diagrams,” ACM Computing Surveys,

vol. 24, no. 3, 1992, pp. 293–318.

10. A. Biere et al., “Symbolic Model

Checking without BDDS,” Tools and

Algorithms for the Construction and

Analysis of Systems, W.R. Cleave-

land, ed., LNCS 1579, Springer, 1999,

pp. 193–207.

11. B. Beckert and Daniel Bruns, “Dynamic

Logic with Trace Semantics,” Proc. Int’l

Conf. Automated Deduction, LNCS

7898, Springer, 2013, pp. 315–329.

12. R. Ji, R. Hähnle, and R. Bubel,

 “Program Transformation Based on

Symbolic Execution and Deduction,”

Proc. 11th Int’l Conf. Software Eng.

and Formal Methods, LNCS 8137,

Springer, 2013, pp. 289–304.

13. P. Cousot and Radhia Cousot,

 “Abstract Interpretation: A Unified

Lattice Model for Static Analysis

of Programs by Construction or

 Approximation of Fixpoints,” Proc. 4th

ACM Symp. Principles of Programming

Language, 1997, pp. 238–252.

14. E.M. Clarke et al., “Counterexample-

Guided Abstraction Refinement,” Proc.

12th Int’l Conf. Computer Aided Veri-

fication, LNCS 1855, Springer, 2000,

pp. 154–169.

15. R. Bubel, R. Hähnle, and B. Weiss,

“Abstract Interpretation of Symbolic

Execution with Explicit State Updates,”

Proc. 6th Int’l Symp. Formal Methods

for Components and Objects, LNCS

5751, Springer, 2009, pp. 247–277.

16. E. Albert et al., “Verified Resource

Guarantees Using COSTA and Key,”

Proc. ACM SIGPLAN 2011 Work-

shop Partial Evaluation and Program

 Manipulation, 2011, pp. 73–76.

17. E. Albert et al., “Engineering Virtu-

alized Services,” Proc. 2nd Nordic

Symp. Cloud Computing and Internet

Technologies (Nordicloud), 2013,

pp. 59–63.

18. N. Harrath, B. Monsuez, and K. Barkaoui,

“Verifying SystemC with Predicate

 Abstraction: A Component Based

 Approach,” Proc. 14th Int’l Conf.

Information Reuse & Integration, 2013,

pp. 536–545.

19. R. Hähnle, I. Schaefer, and R. Bubel,

“Reuse in Software Verification by

 Abstract Method Calls,” Proc. 24th

Conf. Automated Deduction, LNCS

7898, Springer, 2013, pp. 300–314.

 t h e a u t h o R s
bernhard beckert is a professor of computer science at the Karlsruhe Institute of Technology
(KIT), Germany. His research interests include formal specification and verification, security,
and automated deduction. Beckert has a PhD in computer science from the University of
Karlsruhe (now KIT). Contact him at beckert@kit.edu.

reiner Hähnle is a professor of computer science at Technische Universität Darmstadt,
Germany. His research interests include formal verification, formal modeling, automated
debugging, and cloud computing. Hähnle has a PhD in computer science from University
of Karlsruhe (now KIT). Contact him at haehnle@cs.tu-darmstadt.de.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

IS-29-01-beckert.indd 29 26/03/14 9:13 PM

