
Constructive Negation by
Bottom­up Computation of Literal Answers ∗

Javier Álvez
Dpto de L.S.I. de la U.P.V.

P. Manuel de Lardizabal, 1,
20080­San Sebastian, Spain.

jibalgij@si.ehu.es

Paqui Lucio
Dpto de L.S.I. de la U.P.V.

P. Manuel de Lardizabal, 1,
20080­San Sebastian, Spain.

jiplucap@si.ehu.es

Fernando Orejas
Dpto de L.S.I. de la U.P.C.
Campus Nord, Modul C6,

Jordi Girona 1­3,
08034­Barcelona, Spain.

orejas@lsi.upc.es

ABSTRACT
In this paper, we present a new proposal for an efficient
implementation of constructive negation. In our approach
the answers for a literal are bottom-up computed by solv-
ing equality constraints, instead of by handling frontiers of
subsidiary computation trees. The required equality con-
straints are given by Shepherdson’s operators which are, in
a sense, similar to bottom-up immediate consequence op-
erators. However, in order to make the procedure efficient
two main techniques are applied. First, we restrict our con-
straints to a class of success-answers (resp. fail-answers)
which are easy to manipulate and to solve (or to prove their
unsatisfiability). And, second, we take advantage of the
monotonic nature of Shepherdson’s operators to make the
procedure incremental and to avoid recalculations that are
typical in frontiers-based methods. Then, goal computation
is made in the usual top-down CLP scheme of collecting the
answers for the selected literal into the constraint of the goal.
The procedural mechanism for constructive negation is de-
signed not only to generate every correct answer of a goal,
but also to detect failure. That is, in spite of the bottom-up
nature of the calculation of literal answers, goal computa-
tion is not necessarily infinite. The operational semantics
that makes use of these ideas, called BCN, is sound and
complete with respect to three-valued program completion
for the whole class of normal logic programs. A prototype
implementation of this approach has been developed and the
experimental results are very promising.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; F.3.2 [Semantics
of Programming Languages]: Operational Semantics

∗This work has been partially supported by the Spanish
Project TIC 2001-2476-C03.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’04, March 14­17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1­58113­812­1/03/04 ...$5.00.

General Terms
Languages, Theory, Experimentation

Keywords
constructive negation, operational semantics, bottom-up op-
erators, implementation, equality constraint solving.

1. INTRODUCTION
The idea of constructive negation was introduced by Chan

in [6] and extended, by Chan (in [7]) and by Drabent (in
[11]), to a complete and sound operational semantics for
the whole class of normal logic programs. Fages (in [12])
and Stuckey (in [23]) provided generalizations of construc-
tive negation to the framework of Constraint Logic Pro-
gramming (CLP for short, see [14] for a survey). From the
operational point of view, these approaches are based on
subsidiary computation trees and frontiers. That is, when
a negative literal ¬A is selected, a subsidiary computation
tree for its positive counterpart A is activated. A frontier
is a set {G1, . . . ,Gn} of goals containing exactly one goal
from each non-failed branch of the computation tree. Since
¬A is equivalent to the frontier negation ¬(G1 ∨ · · · ∨ Gn),
the problem is how to transform this formula into a suit-
able one for proceeding with the original derivation. Chan
(in [7]) and Stuckey (in [23]) transform the frontier nega-
tion into a disjunction of complex-goals, which are goals of
the form ∀z(c ∨ B) where c is a constraint and B is a dis-
junction of complex-goals and literals. However, Drabent’s
and Fages’s proposals (resp. [11] and [12]) keep the notion
of normal goal. They do not negate the whole frontier, but
only the constraints (not the literals) involved in the frontier
goals, producing the so-called fail-answers.

In the complex-goals approach, the computation mecha-
nism produces the nesting of both quantification and nega-
tion. This is particularly the case in programs including
recursion through negated goals. Two side effects of this
increasing complexity are, on one hand, that the kind of
computations needed to compute new goals becomes also
increasingly involved. On the other, the most obvious im-
plementation of this computation process involves the con-
tinuous repetition of the same transformation steps. How-
ever, avoiding this repetition may be a very difficult task.
Moreover the computation process involves two kinds of non-
determinism. On one hand, the selection of the subgoal to
be solved is, as usual, nondeterministic. On the other, the

frontiers to be used in a given computation, according to
[23], can also be chosen nondeterministically.

In the case of the fail-answers approach, things work dif-
ferently. Each subsidiary computation step intends to get ei-
ther: (i) a success, or (ii) a frontier such that the negation of
the associated constraints is satisfiable. In the former case,
the negation of the produced success is used to restrict the
goal of the main computation. In the latter case, it obtains
an answer for the selected literal of the main computation.
This approach, especially the proposal of [12], is more amen-
able for practical implementation than the complex-goals
approach, since one can avoid manipulating these goals.
However, it is still a problem how to avoid the repetition
of the same computations, especially in the case where the
predicate definitions involve recursion through negative lit-
erals. Besides, the operational semantics proposed in [11]
and [12] are non-deterministic in computational steps which
have not an obvious efficient implementation.

In this paper, we propose a new approach for constructive
negation. Our proposal is based on the bottom-up compu-
tation of the set of answers for a given literal, by applying
Shepherdson’s operators (cf. [22]). We perform once, at
compilation time, the schemes for computing the successive
iterations of these operators. Using these schemes, we avoid
the above mentioned repetitions of symbolic transformations
and satisfiability checks. Exploiting the monotonicity of the
operators, the answers for a literal are incrementally ob-
tained from its scheme. Besides, the form of the schemes
and their solving method are based on a particular class of
equality constraints which can be easier handled than gen-
eral equality constraints.

The ”compile-time” nature of our schemes makes our pro-
posal closer to the so-called intensional negation that was in-
troduced in [2]. It was extended, in [5], to the CLP setting.
To solve a negative literal, our schemes work similarly (but
not identically) to the negative programs which are obtained
(in [2, 5]) by transformation. In [2], the presence of univer-
sal quantification in goals prevents to achieve a complete
goal computation mechanism. This problem is carried out
in [5] where a complete operational semantics is provided,
although the transformed programs have complex-goals as
clause bodies. This compilative complex-goals approach al-
lows a more incremental goal computation process than the
previous complex-goal approach. However, the problems of
increasingly involved goal computation process (caused by
nesting of complex-goals) and repeated calculations still re-
main.

Our proposal keeps the notion of normal goal. Universal
quantification affecting literals is restricted to the schemes
and it is exclusively caused by clauses with (at least) one
variable in its body that does not occur in its head. The
incremental resolution of these schemes allows us to provide
a complete goal computation mechanism. The procedural
mechanism for computing a CLP normal goal combines the
bottom-up calculated answers for each individual literal into
the global constraint (of the goal), in order to obtain the
goal answers. For generating all correct answers, it suffices
to keep iteration-counters for each literal and a fair selection
rule. Nevertheless, a goal can fail after the computation of
zero o more answers. To support failure we use a computa-
tion rule that works as follows (informally):

If the selected literal has no new success-answer, then ev-
ery solution of the goal-constraint could be a fail-answer
of the literal. In this case, the goal is a failure leaf. Oth-
erwise, the goal-constraint is restricted to the non fail-
answers of the selected literal at the current iteration.

By means of this rule (technically (C2) in Def. 4), our pro-
cedural mechanism is able to finish computations (whenever
termination is semantically expected) under the proviso of
fairness. Our completeness result only assumes the classical
notion of fairness in the selection of the literal, which is the
unique nondeterminism in computations. It is difficult to
talk over computation termination of the above explained
proposals. For the fail-answers proposals (cf. [11, 12]) this
is due to their non-deterministic formulation. In the case
of complex-goals (cf. [7, 23, 5]), the rule ∀z(c ∨ B) 7−→
∀z(c) ∨ ∀z(c ∨ B) that is used to extract information from
complex-goals, often gives raise to superfluous infinite com-
putation of ∀z(c ∨ B).

We have implemented a prototype that is available in
http://www.sc.ehu.es/jiwlucap/BCN.html. The experi-
mental results are very encouraging.

For the lack of space, we omit here some technical details
(in particular, proofs). The interested reader is referred to
our technical report [1].

Outline of the paper. Section 2 contains preliminary defi-
nitions and notation. Section 3 is devoted to the constraint
solving method that we use in the bottom-up computation
of literal answers. That includes the notion of answer, the
basic operations for constraint handling and the incremental
solving of schemes. In section 4 we introduce the procedu-
ral mechanism for constructive negation, together with the
soundness and completeness results. In Section 5 we sum-
marize some conclusions and experimental results.

2. PRELIMINARIES
We deal with the usual syntactic objects of first-order lan-

guages. These are function and predicate symbols (in partic-
ular, the equality symbol =), terms and formulas. Terms are
variables, constants and function symbols applied to terms.
Formulas are the logical constants t and f, predicate sym-
bols applied to terms, and composed formulas with connec-
tives ¬,∨,∧,→,↔ and quantifiers ∀,∃. To avoid confusion,
we use the symbol ≡ for the metalanguage equality.

A bar is used to denote tuples, or finite sequences, of
objects. For example, the n-tuple of variables x1, . . . , xn

is denoted by x. The concatenation of tuples x and y is
denoted by x·y.

If t1, t2 are terms, then t1 = t2 is called an equation and
t1 6= t2 (as abbreviation of ¬(t1 = t2)) is called a disequation.

If t and t
′
are n-tuples of terms then t = t

′
abbreviates t1 =

t′1∧· · ·∧tn = t′n and t 6= t
′
abbreviates t1 6= t′1∨· · ·∨tn 6= t′n.

A literal is an atom p(t) (called positive literal) or its nega-
tion ¬p(t) (called negative literal), where p is an n-ary pred-
icate symbol (different from equality) and t an n-tuple of
terms. By a flat literal, we mean that t is an n-tuple of
variables.

An equality constraint is an arbitrary first-order formula
such that equality (=) is the only predicate symbol occurring
in atoms.

Let α be a syntactic object (term, equality constraint,
formula, literal, etc), free(α) is the set of all variables oc-
curring free in α. We write α(x) to denote that free(α) ⊆ x.

Let ϕ be a formula, in particular an equality constraint, and
Q∈{∃, ∀}, then ϕQ denotes the existential/universal quan-
tification of ϕ in all its free-variables.

A basic constraint, denoted by b(x,w), is a conjunction of
equations of the form x = t(w), where x and w are disjoint
tuples of pairwise distinct variables. In the sequel b(,)
is used as a metavariable for basic constraints − over an
specific pair of variable tuples, when necessary.

A goal is an expression of the form ←` � c where ` is a
conjunction of positive and negative flat literals and c is an
equality constraint. A basic goal is a goal ←` � b where b is
a basic constraint. As usual in CLP, the symbols comma (,)
and box (�) are syntactic variants of conjunction, respec-
tively used to separate literals and constraints. Whenever b
is t or ` is empty or t, they are omitted in goals.

A normal clause is an expression p(x) :− `(y) � b(x·y,w)
where the flat atom p(x) is called its head, the basic goal
:−`(y) � b(x·y,w) is called its body, and the disjoint tuples of
variables x, y,w are related in the basic constraint b(x·y,w),

since it has the form x = t(w) ∧ y = t
′
(w).

Programs are finite sets of normal clauses. Every program
P is built from symbols of a signature Σ ≡ (FSΣ, PSΣ) of
function and predicate symbols, respectively, and variables
from X. We use the term Σ-program whenever the signature
is relevant. Given a program P and a predicate symbol
p, the set defP (p(x)) consists of all the clauses in P with
head predicate p. For simplicity, we assume that all clauses
with the same head predicate (namely p) use the same head
variables (namely x) and different body variables. It is easy
to see that every classical1 normal logic program can be
rewritten as one of our programs.

Example 1. The classical normal {a\0, f\1}-program:

p(f(X)) : − p(X),¬ q(f(X)).

q(a) : − q(a).

q(X) : −¬ r(X).

r(f(a)).

is rewritten as:

p(X) : − p(Y1),¬ q(Y2) � X = f(W),Y1 = W, Y2 = f(W).

q(X) : − q(Y1) � X = a, Y1 = a.

q(X) : −¬ r(Y2) � X = W, Y2 = W.

r(X) : − � X = f(a).

To define the semantics of a Σ-program P , Clark [8] pro-
posed to complete the definition of the predicates in P . The
predicate completion formula of a predicate p ∈ PSΣ such
that

defP (p(x)) ≡ {p(x) :− `
i
(yi) � bi(x·yi, wi) | i ∈ 1..m}

is the sentence:

∀x(p(x) ↔
m∨

i=1

∃yi ·wi(bi(x·yi, wi) ∧ `
i
(yi)))

In particular, for m = 0 (or defP (p(x)) ≡ ∅) the above
disjunction becomes f. Hence, the formula is equivalent to
∀x(¬p(x)). The Clark’s completion of a program P , namely

1We say ”classical” to distinguish Logic Programming (LP)
concepts (goal, program, etc) from CLP concepts

Comp(P), consists of the set P ∗ of the predicate completion
formulas for every p ∈ PSΣ together with the free equality
theory 2 FET (Σ). Then, the standard declarative meaning
of normal logic programs is Comp(P) interpreted in three-
valued logic (cf. [15]).

The theoretical foundations of our proposal comes from a
result of Shepherdson (cf. [22]) characterizing Clark-Kunen’s
completion semantics in terms of satisfaction of equality con-
straints. In Definition 1 we recall the bottom-up operators
that were introduced by Shepherdson ([22]). These opera-
tors provide a bottom-up scheme for computing the success-
and fail-answers of a given flat literal (in general, a conjuc-
tion of them).

Definition 1. The iterations of the operators T and F
are inductively defined as follows (w.r.t. a Σ-program P):

• For any atom p(x) such that p∈PSΣ and

defP (p(x)) ≡ {p(x) :− `
i
(yi) � bi(x·yi, wi) | i ∈ 1..m} :

T0(p(x)) ≡ F0(p(x)) ≡ f

Tk+1(p(x)) ≡
m∨

i=1

∃yi ·wi(bi(x · yi, wi) ∧ Tk(`
i
(yi)))

Fk+1(p(x)) ≡
m∧

i=1

∀yi ·wi(¬bi(x · yi, wi) ∨ Fk(`
i
(yi)))

• For any k∈IN :

Tk(`
1 ∧ `

2
) ≡ Tk(`

1
) ∧ Tk(`

2
) Tk(¬p(x)) ≡ Fk(p(x))

Fk(`
1 ∧ `

2
) ≡ Fk(`

1
) ∨ Fk(`

2
) Fk(¬p(x)) ≡ Tk(p(x))

Tk(t) ≡ t Fk(t) ≡ f

A key result for our work is the following Theorem 1,
which is a simple consequence of Theorem 6 and Lemma 4.1
in [22].

Theorem 1. Let P be a Σ-program, ` a conjunction of
literals and c, d constraints, then the following two facts hold:

(i) Comp(P) |=3 (c → (` ∧ d))∀ if and only if FET (Σ) |=
(c → (Tk(`) ∧ d))∀ for some k∈IN

(i) Comp(P) |=3 (c → (¬` ∨ d))∀ if and only if FET (Σ) |=
(c → (Fk(`) ∨ d))∀ for some k∈IN

Roughly speaking, we call a k-success (resp. k-failure) of a
literal to any answer (resp. failure-answer) belonging to the
k-iteration of some immediate consequence operator. Differ-
ent immediate consequence operators, providing bottom-up
semantics for normal logic programs, have been proposed
(cf. [4, 13, 15, 16, 23]). Intuitively, the equality constraint
Tk(`) represents the k-success of `, whereas Fk(`) gives the
k-failures of `. It is very easy to prove (by induction) that
the operators T and F are monotonic in the following sense:

Proposition 1. (Monotonicity) Let P be Σ-program
and `(x) a flat literal, then for all n∈IN :

2also known as Clark’s equational theory (cf.[8]) or the first-
order theory of finite trees.

(i) FET (Σ) |= (Tn(`(x)) → Tn+1(`(x)))∀

(ii) FET (Σ) |= (Fn(`(x)) → Fn+1(`(x)))∀.

3. BOTTOM­UP COMPUTATION OF LIT­
ERAL ANSWERS

The crucial aspect for practical implementation is how to
compute literal answers, using Shepherdson’s operators, in
an efficient incremental manner. The CLP goal-derivation
process has to combine the answers for a selected literal with
the answers for the remaining literals of the goal. Hence,
the choice of a notion of answer affects the class of equality
constraints to be handled along the computations. The de-
cidability of FET(Σ) has been proved by different methods
(cf. [10, 17], for instance). It is known that the decidability
of FET(Σ) is a non-elementary problem (cf. [24]). How-
ever, our proposal deals with a particular class of equality
constraints, called answers, that could be more efficiently
solved than general equality constraints. As a consequence,
our constraint solving method is different from general de-
cision methods (cf. [10]) which usually combine quantifier
elimination with a set of transformational rules. Instead,
we only need procedures for combining answers (by conjunc-
tion, negation or instantiation) and to check answer satisfia-
bility. In addition, answers should be user friendly, in order
to be displayed as goal answers. In this section, we introduce
the notion of answer and the basic operations for handling
constraints along computations. Finally, we introduce the
schemes for T and F and show how to solve them efficiently.

3.1 Constraints Handling
Our notion of answer is based on the following class of

equations and disequations.

Definition 2. An (dis)equation is called collapsing when-
ever (at least) one of its terms is a variable.

Definition 3. An answer for the variables x is either a
constant (t, f) or a formula ∃w(a(x,w)) where a(x,w) is a
conjunction of both

• collapsing equations of the form xi = t(w), and

• universally quantified collapsing disequations of the form
∀v(wj 6= s(w, v)), where the term s is not a single vari-
able in v and wj does not occur in s.

where each xi occurs at most once.

An example of answer for x1, x2, x3 is:

∃w1∃w2(x1 = w1 ∧ x2 = w2 ∧ x3 = g(w1) ∧
w1 6= a ∧ w1 6= w2 ∧ ∀v(w1 6= f(v,w2)))

which is represented, in Prolog-like notation, by

x1 = A, x2 = B, x3 = g(A), A 6= a, A 6= B, A 6= f(∗C, B)

where traditional Prolog-variables of the form 〈char〉 repre-
sent existential variables, whereas new variables of the form
∗〈char〉 are associated to universal variables. It is obvi-
ous that every answer can be represented in this Prolog-like
notation. Notice that, for any answer, the scope of each
universal variable is one single disequation and there is no
restriction about repetition of existential, neither universal,
variables.

Answers are solved forms in the sense that their satisfia-
bility is easily decidable. In the case of infinite signatures,
an answer (different from f) is always satisfiable. In fact, a
similar (but less user friendly) kind of solved form is used in
[9], where only infinite signatures are considered. However,
for finite signatures, an answer can be unsatisfiable. For
example the following answer

∃w(x = w ∧ w 6= a ∧ w 6= g(a) ∧ ∀v1(w 6= g(g(v1))))

is unsatisfiable for the signature {a/0, g/1}.

Proposition 2. Answer satisfiability can be checked with-
out transforming the input answer. Moreover, with respect
to an infinite signature, any answer (different from f) is
satisfiable.

There are other three operations which are basic for solv-
ing the constraints generated by Shepherdson operators:

Proposition 3.

(i) A conjunction of answers for x can be transformed into
an equivalent disjunction of answers for x.

(ii) The negation of an answer for x can be transformed
into an equivalent disjunction of answers for x.

(iii) The instantiation of the variables x by terms t
′
(z) in an

answer a for x (denoted a[t
′
(z)/x]) can be transformed

into an equivalent disjunction of answers for z.

3.2 Operator Schemes: Incremental Solving
Now, we show how literal answers can be computed in an

efficient, incremental and lazy way. There are three aspects
that are crucial for efficiency purposes. First, both operators
O ∈ {T,F} are monotonic (see Prop. 1). If we denote by
O=n(p(x)) the answers that are obtained exactly in the step
n, then

Ok+1(p(x)) ≡ Ok(p(x)) ∨ O=k+1(p(x))

Hence, at the k+1-iteration step, we calculate O=k+1(p(x)).
The previously obtained answers (given by Ok(p(x))) have
being loaded, as part of the predicate description of p, and
we do not recalculate them. Second, in order to avoid some
symbolic transformations and satisfiability checks that are
common to all iteration-steps, we obtain and load (at compi-
lation time) the operators schemes where such operations are
already performed. In particular, the first iteration O1(p(x))
is once calculated at compilation time. Third, these schemes
are in disjunctive form (see Lemma 1) to allow the partial
solving of each disjunct. In fact, each disjunct is solved until
one satisfiable answer (for a literal) is obtained. Then, in
the Prolog-style, the calculated answer can be displayed to
the user or passed to the procedural mechanism that is com-
puting a goal (collection of literals). The unsolved part of
this scheme (also in disjunctive form) is left to be treated, in
the same lazy way, when more answers would be demanded
(by the user or by the goal computation process).

Lemma 1. Let P be a Σ-program and p ∈ PSΣ. The
iterations of O ∈ {T, F} (with respect to P) can be computed

by schemes of the form:

O1(p(x)) ≡
∨

∃w(a(x,w))

Ok+1(p(x)) ≡
∨

∃w
(
a(x,w) ∧

n∧

j=1

ϕ
[p,k]
j (w)

)
(1)

where each ϕ
[p,k]
j (w) has one of the following two forms:

(i) Ok(`(y))[t(w)/y]

(ii) ∀v
(
Fk(`(y))[t(w, v)/y]

)
where v is non-empty.

Notice that Ok(`(y)) (in part. Fk(`(y))) gives disjunc-
tions of answers for y, and the instantiation [t(w)/y] (resp.
[t(w, v)/y]) transforms them into disjunctions of answers for
w (resp. w·v). We would like to remark that universal quan-
tification with literals in its scope (option (ii) in Lemma 1)
exclusively appears in the F -scheme of atoms that are de-
fined by (at least) one classical normal clause with a fresh
variable in its body. In the following example, this is the
case of even, but it is not the case of plus.

Example 2. For the {0\0,s\1}-program:

plus(0,X,X).

plus(s(X1), X2, s(X3)) : − plus(X1, X2, X3).

even(X) : −plus(Y,Y, X).

the F -schemes are :

F1(plus(X1, X2, X3)) ≡
∃W(X1 = s(W1) ∧ X2 = W2 ∧ X3 = W3 ∧ ∀V(W3 6= s(V))) ∨
∃W(X1 = 0 ∧ X2 = W1 ∧ X3 = W2 ∧ W1 6= W2)

Fk+1(plus(X1, X2, X3)) ≡
∃W(X1 = s(W1) ∧ X2 = W2 ∧ X3 = s(W3)∧Fk(plus(Y))[W/Y])

F1(even(X)) ≡ f

Fk+1(even(X)) ≡ ∃W(X = W ∧ ∀V(Fk(plus(Y))[V,V, W/Y]))

Hence, to compute the answers of any literal of the form
¬even(t) universal quantification must be handled, but it is
not required for literals of the form ¬plus(t1, t2, t3).

Example 3. For the program of Example 1, we obtain
the following F -schemes:

F1(p(X)) ≡ ∃W(X = W ∧ ∀V(W 6= f(V)))

Fk+1(p(X)) ≡ ∃W(X = f(W) ∧ Fk(p(Y1))[W/Y1]) ∨
∃W(X = f(W) ∧ Tk(q(Y2))[f(W)/Y2])

F1(q(X)) ≡ f

Fk+1(q(X)) ≡ (X = a ∧ Fk(q(Y1))[a/Y1] ∧ Tk(r(Y2))[a/Y2])

∨ ∃W(X = W ∧ W 6= a ∧ Tk(r(Y2))[W/Y2])

We can show, by induction on k, how to compute only
O=k+1(p(x)) avoiding to recalculate Ok(p(x)). For k = 0,
O=1(p(x)) ≡ O1(p(x)) since O0(p(x)) ≡ f. Assuming the
induction hypothesis (for k), it is easy to prove the following
fact:

Fact 1. The formulas ϕ
[p,k]
j (w) of (1) can be split into

ϕ
[p,k−1]
j (w) ∨ ϕ

[p,=k]
j (w)

Then, to compute O=k+1(p(x)), the first member ϕ
[p,k−1]
j (w)

of each ϕ
[p,k]
j (w) has been calculated yet, as a subformula of

Ok(p(x)). Hence, each internal conjunction of Lemma 1(1)
can be written as:

n∧

j=1

(ϕ
[p,k−1]
j (w) ∨ ϕ

[p,=k]
j (w))

By distribution, each one gives a disjunction of formulas of
the form:

ϕ
[p,e1]
i1

(w) ∧ ϕ
[p,e2]
i2

(w) ∧ · · · ∧ ϕ
[p,en]
in

(w)

The collection of disjuncts such that ej ≡ k − 1 for all j ∈
1..n generates Ok(p(x)). Hence, to calculate O=k+1(p(x))
we discard all these disjuncts. The remaining ones produce
answers for w which, by substitution in the corresponding
a(x,w) (of (1)), give the new answers for x.

4. THE PROCEDURAL MECHANISM
Now, we present how the bottom-up computation of literal

answers can be managed by a top-down goal computation
process that successively collects the literals’ answers into
the constraint of the current goal. In spite of the bottom-up
nature of the answer calculation, the procedural mechanism
is in charge of detecting when a goal should fail. In this
section, we define the procedural mechanism, called BCN
operational semantics. Our formulation provides a uniform
treatment for positive and negative literals. As we will ex-
plain later (in Remark 1), there is no problem to use the
new mechanism only when the selected literal is negative,
whereas the positive ones are left to SLD-resolution. In-
deed, a preliminary work in this direction was presented in
[21]. In example 4, we show how the BCN operational se-
mantics works to compute goal answers and also to detect
failure. Finally, we provide the soundness and completeness
results.

4.1 The BCN Operational Semantics
The notion of computation tree is relative to a program

and a selection rule that chooses a literal in the current goal.
In order to define the computation tree, we associate to

each literal ` two counters: kT (`) and kF (`). They respec-
tively mean the iteration of the operator (resp. T or F) that
has to be computed in the next selection of the literal `. The
nodes of a computation tree are pairs (G,K(G)), where K
is a function that associates values to both counters of each
literal in G. For initialization, the constant function cons1
associates the value 1 to both counters of every literal.

The expression SolvedForm(c(x)) denotes the solved form
of the equality constraint c(x), that is a disjunction of (sat-
isfiable) answers

∨m
i=1 ∃wi(ai(x,wi)). For m = 1 and a1 ≡ t

the disjunction is t, and for m = 0 it is f.

Definition 4. A BCN-computation tree for a Σ-goal G,
with respect to a Σ-program P and a selection rule R, is a
tree which root is (G, cons1(G)) and for each node with goal

G′ ≡←`
1
, `(x), `

2
� a(x,w)

where `(x) is the selected literal and (kT (`(x)), kF (`(x))) is
associated by K(G′) to values (n+, n−):

(C1) If SolvedForm(∃w(a(x,w))∧Tn+ (`(x))) 6≡ f, then it is
of the form

∨m
i=1 ∃wiai(x,wi). Hence, G′ has one child

for each i ∈ 1..m, with goal Gi ≡ ←`
1
, `

2
� ai(x,wi).

Each K(Gi) is identical to K(G′) except that ` has no
associated information (it does not appear in Gi).
Besides, if SolvedForm(∃w(a(x,w)) ∧ ¬Tn+(`(x))) ≡∨m′

j=1 ∃wja′
j(x,wi) 6≡ f, then G′ has also one child for

each j ∈ 1..m′ with goal G′
j ≡ ←`

1
, `, `

2
� a′

j(x,wj)
and K(G′

j) is identical to K(G′) except that kT (`(x))
is updated to be n+ + 1.

(C2) Otherwise − if case (C1) is not applied − there are the
following two possible cases:

(C2a) If SolvedForm(∃w(a(x,w))∧¬Fn−(`(x))) ≡ f, then
G′ is a failure leaf.

(C2b) If SolvedForm(∃w(a(x,w))∧¬Fn−(`(x))) 6≡ f, then
it is of the form

∨m
i=1 ∃wiai(x,wi). Thus, G′

has one child for each i ∈ 1..m, with goal Gi ≡
←`

1
, `, `

2
� ai(x,wi). Each K(Gi) results by re-

spectively updating in K(G′) the counters kT (`(x))
and kF (`(x)) to n+ + 1 and n− + 1.

In other words, when a literal ` is selected in a goal ←` � a,
we try to get the success-answers of ` by applying the rule
(C1). When it applies, the goal children are ←` \ {`} � ai

(i ∈ 1..m). where a1 ∨ · · · ∨ am is the disjunction of answers
produced by the solver. Besides, the computation tree could
have more branches, keeping the literal `, for computing
higher iterations of T (`). Notice that these other branches
do not exist whether every x satisfying ∃w(a(x,w)) is also
a success-answer of `(x) at the n+ iteration-step. When the
rule (C1) can not be applied, we try to detect failure with
the rule (C2). In the case of the rule (C2a) the goal fails,
whereas (C2b) behaves as an incremental failure detection.

Definition 5. Any finite branch of a computation tree
for G which ends by a leaf of the form ← � a represents
a successful derivation and the constraint a is a computed
answer for G. A failure tree is a finite tree such that every
leaf is a failure.

Now, we give an example of computation that produces
one answer and then fails.

← ¬ p(Z),¬ q(Z)�

← ¬ q(Z)� Z=W,∀ V(W≠f(V))

T
1

¬¬¬¬ T
1

← � Z=f(a)

T
2

T
1

¬¬¬¬ F
1

T
2

¬¬¬¬ F
2

FAIL ← ¬ p(Z)� Z=f(a)

T
2

←¬ p(Z),¬ q(Z)� Z=f(W),

W≠a

¬¬¬¬ T
2

T
3

¬¬¬¬ F
2

FAIL

← ¬ p(Z),¬ q(Z)� Z=f(W)

Figure 1: A finite BCN-computation tree

Example 4. Consider the program of Example 1 and 3.
The goal

← ¬ p(Z),¬ q(Z)

produces a unique answer Z = f(a), since

∀Z(Z = f(a) ↔ (¬ p(Z),¬ q(Z)))

is a logical consequence of program completion. The Figure 1
shows a finite BCN-computation tree. The operators written
in the edges of the tree of Figure 1 are applied to the literal
that is just above marked as selected. It is worthwhile to
remember that Tk(¬ϕ) ≡ Fk(ϕ) and Fk(¬ϕ) ≡ Tk(ϕ). The
first T -iteration for selected literal yields

T1(¬ p(Z)) ≡ ∃W(Z = W ∧ ∀V(W 6= f(V)))

and, therefore, ¬T1(¬ p(Z)) ≡ ∃W(Z = f(W)). Hence, the com-
putation tree is split into two branches. In the left branch

T1(¬ q(Z)) ≡ f

therefore failure detection is intended. Since

F1(¬ q(Z)) ≡ f

both counters are updated, but the goal does not change (con-
junction with t). Next, the conjunction of the goal constraint
with

T2(¬ q(Z)) ≡ Z = f(a)

is unsatisfiable. Since ¬F2(¬ q(Z)) is also Z = f(a), failure
is detected. In the right branch, the first iteration of both
operators for ¬ q(Z) increases both counters (as before). In
the next two steps

T2(¬ q(Z)) ≡ Z = f(a)

and

T2(¬ p(Z)) ≡ ∃W(Z = f(W) ∧ ∀V(W 6= f(V)))

Thus, the expected answer Z = f(a) is generated. There is
not additional branch because

Z = f(a)∧¬ T2(¬ p(Z))

is unsatisfiable. In the rightmost branch, the third iteration
of T for the selected literal does not produce any new answer.
Then, the conjunction of both constraints:

∃W(Z = f(W) ∧ W 6= a)

¬F2(¬ q(Z)) ≡ Z = f(a)

is unsatisfiable. Therefore the goal fails.

Remark 1. The presented procedural mechanism can be
also used to implement an extension of SLD-resolution for
normal logic programs. That is, we can apply it only when
the selected literal is negative, whereas SLD-resolution is
applied to positive literals. By completeness of the SLD-
resolution, that is equivalent to use the operator T . In SLD-
resolution, a goal ←` � a with selected positive literal p(x)
should be a failure leaf if the conjunction of a with the con-
straint of any clause with head p(x) is unsatisfiable. It is
easy to see that this is equivalent to FET (Σ) |= (a →F1(`))

∀.
Hence, a particular case of our failure condition holds.

4.2 Soundness and Completeness
The BCN operational semantics is sound and complete

with respect to the three-valued interpretation of program
completion for the whole class of normal logic programs. In
the following soundness result, computation is relative to
some selection rule.

Theorem 2. Let be a Σ-program P and a Σ-goal G ≡
←` � a, then

1. If G has a failure tree, then Comp(P) |=3 (a → ¬`)∀.

2. If there is a successful derivation for G with computed
answer a′, then Comp(P) |=3 (a′ → ` ∧ a)∀.

For completeness the classical notion of fairness is needed.
A selection rule is fair if and only if every literal that appears
in an infinite branch of a computation tree is eventually
selected.

Theorem 3. Let be a Σ-program P and a Σ-goal G ≡
←` � a. Then, for any fair selection rule:

1. If Comp(P) |=3 (a → ¬`)∀ then the computation tree
for G is a failure tree.

2. If there exists a satisfiable constraint c such that
Comp(P) |=3 (c → ` ∧ a)∀, then there exist n > 0
computed answers a1, . . . , an for G such that

FET (Σ) |= (c →
∨

i

ai)
∀

5. CONCLUSIONS
Constructive negation subsumes the negation as failure

(NAF) rule and, at the same time, solves the floundering
problem of NAF. With regard to the wellknown technique
of delaying each negative literal until it would be grounded
(then, NAF could be used) we would like to point out two
drawbacks. First, it can produce infinite computation when
constructive negation finitely fails and, second, it is not nec-
essarily more efficient. The latter was also remarked in [7].
Consider the following program:

p(a).

q(f99(a)).

r(Z):- ¬ s(Z).

p(f(X)):- p(X).

q(Y):- q(f(Y)).

s(g(V)).

where f99(a) denotes

99︷ ︸︸ ︷
f(. . . (f(a)) . . .). With the delay tech-

nique, the goal

← p(X),¬ r(X).

causes an infinite computation that successively obtains a
ground term from the first subgoal and a failure from the
second one. Nevertheless, our procedural mechanism finitely
fails because the second iteration for the second literal gives
the constraint ∃V (X = g(V)). Besides, the following goal:

← q(X),¬ r(X).

fails with the delay technique, but constructive negation
works more efficiently. In fact, if we select the literal ¬ r(X),
then, it is restricted by a strong constraint:

← q(X) � ∃V (X = g(V))

that immediately produces the failure. By delaying the sec-
ond subgoal, failure requires the construction of 100 failure-
trees.

In this paper we have provided the basic ideas for design-
ing a sound, complete and efficient implementation of con-
structive negation. Actually, we have implemented (in Sic-
tus Prolog v.3.8.5) a prototype which is available in
http://www.sc.ehu.es/jiwlucap/BCN.html. The obtained
results seem very promising.

Goal 100 a. 500 a. 1500 a.

← ¬ disjoint(L1,L2) 16 130 990

← ¬ disjoint(L,[0]),
maxlist(L,s5(0)) 125 672 2677

← ¬ maxlist(L,s()) 3624 3652 3659

← ¬ maxlist(L,Z) 3661 3687 3718

Figure 2: Some experimental results

In Figure 2 you can find a table describing some repre-
sentative experiments conducted with the prototype on a
Pentium IV at 1.7 GHz. We have taken measurements with
the function statistic/2 of Sicstus Prolog. The cells show
the milliseconds of CPU-time that is taken to produce the
first 100, 500 and 1500 answers for the left-hand specified
goal. The considered program is:

memb(X,[X|]).

memb(X,[|L]:- memb(X,L).

disjoint([],).

disjoint([E|L1],L2):- ¬ memb(E,L2),
disjoint(L1,L2).

gt(0,X,X).

gt(X,0,X).

gt(s(X),s(Y),s(Z)):- gt(X,Y,Z).

maxlist([],0).

maxlist([E|L],NE):- maxlist(L,EAux)
gt(E,EAux,NE).

Notice the fresh variable EAux in the body of the last
clause, it causes unavoidable universal quantification of lit-
erals in the F -scheme for maxlist.

We are aware that it is difficult to asses the value of these
experiments in terms of the absolute time spent by the pro-
totype to produce (some) answers. Instead, a comparative
study with respect to other implementations would have
been more adequate. The problem is that the existing expe-
rience in implementing negation (beyond negation as failure)
in logic programming is, to our knowledge, very limited. In
particular, Chan ([6]) and Barták ([3]) have implemented
constructive negation for the special case of finite computa-
tion trees. This restriction is quite strong and causes that
the examples used to test the implementation are computa-
tionally very simple. As a consequence, the results obtained
by our implementation and by Barták are quite similar (it
was impossible to obtain Chan’s implementation). Moreno
and Muñoz in [18] discuss how to incorporate negation in a
Prolog compiler. But the paper essentially discusses ways to
avoid using constructive negation. On the other hand, the
paper leaves opened the problem of how constructive nega-
tion can be implemented to use it when is unavoidable. A

similar problem happens in [19], where the use of abstract
interpretation is discussed in this context. Finally, quite re-
cently we have learned about [20] where an implementation
of constructive negation is proposed. However, the proposal
seems very preliminary. No proof of soundness or complete-
ness is provided and, actually, some examples have led us to
think that this implementation is not yet fully correct.

6. ADDITIONAL AUTHORS
Edelmira Pasarella(1)(2) and Elvira Pino(1)

(1)Dpto de L.S.I., Univ. Politécnica de Catalunya, Campus
Nord, Modul C6, Jordi Girona 1-3, 08034 Barcelona, Spain.
email: {edelmira,pino}@lsi.upc.es
(2)Dpto de Comp. y Tecn. de la Inf., Univ. Simón Boĺıvar,
Aptdo 89000, Caracas 1080, Venezuela.
email: edelmira@ldc.usb.ve

7. REFERENCES
[1] J. Álvez, P. Lucio, F. Orejas, E. Pasarella, and

E. Pino. The BCN prototype: An implementation of
constructive. Technical Report UPV/EHU/LSI/TR
12-2003, Fac. de Informática de San Sebatián,
November 2003.

[2] M. Barbuti, P. Mancarella, D. Pedreschi, and
F. Turini. A tranformational approach to negation in
logic programming. Journal of Logic Programming,
8:201–228, 1990.

[3] R. Barták. Constructive negation in clp(h). Technical
Report No 98/6,, Dept. of Theoretical Computer
Science, Charles Univ., Prague, July 1998.

[4] A. Bossi, M. Fabris, and M. C. Meo. A bottom-up
semantics for constructive negation. In P. V.
Hentenryck, editor, Proceedings of the 11th
International Conference on Logic Programming
(ICLP ’94), pages 520–534. MIT Press, 1994.

[5] P. Bruscoli, F. Levi, G. Levi, and M. C. Meo.
Compilative constructive negation in constraint logic
programs. In S. Tison, editor, Proc. of the Trees in
Algebra and Programming 19th Int. Coll.(CAAP ’94),
volume 787 of LNCS, pages 52–67. Springer-Verlag,
1994.

[6] D. Chan. Constructive negation based on the
completed database. In R. A. Kowalski and K. A.
Bowen, editors, Proc. of the 5th Int. Conf. and Symp.
on Logic Progr., pages 111–125. MIT Press, 1988.

[7] D. Chan. An extension of constructive negation and
its application in coroutining. In E. Lusk and
R. Overbeek, editors, Proc. of the NACLP’89, pages
477–493. MIT Press, 1989.

[8] K. L. Clark. Negation as failure. In H. Gallaire and
J. Minker, editors, Logic and Databases, pages
293–322, New York, 1978. Plenum Press.

[9] A. Colmerauer and T.-B.-H. Dao. Expresiveness of full
first order constraints in the algebra of finite and
infinite trees. In 6th Int. Conf. of Principles and
Practice of Constraint Programming CP’2000, volume
1894 of LNCS, pages 172–186, 2000.

[10] H. Common. Disunification: A survey. In J. Lassez
and G. Plotkin, editors, Essays in Honour of Alan
Robinson, 1991.

[11] W. Drabent. What is failure? an approach to

constructive negation. Acta Informática, 32:27–59,
1995.

[12] F. Fages. Constructive negation by pruning. Journal
of Logic Programming, 32(2):85–118, 1997.

[13] M. Fitting. A Kripke-Kleene semantics for logic
programs. Journal of Logic Programming,
2(4):295–312, 1985.

[14] J. Jaffar and J. Maher. Constraint logic programming:
A survey. Journal of Logic Programming,
19,20:503–581, 1994.

[15] K. Kunen. Negation in logic programming. Journal of
Logic Programming, 4:289–308, 1987.

[16] P. Lucio, F. Orejas, and E. Pino. An algebraic
framework for the definition of compositional
semantics of normal logic programs. Journal of Logic
Programming, 40:89–123, 1999.

[17] M. J. Maher. Complete axiomatizations of the
algebras of finite, rational and infinite trees. In Proc.
of the 3rd IEEE Symp. on Logic in Computer Science,
pages 348–357, 1988.

[18] J. Moreno-Navarro and S. Muñoz. How to incorporate
negation in a prolog compiler. In V. Santos and
E. Pontelli, editors, Practical Applications Declarative
Languages PADL’2000, number 1753 in LNCS, pages
124–140, 2000.

[19] S. Muñoz, J. J. Moreno, and M. Hermenegildo.
Efficient negation using abstract interpretation. In
R.Nieuwenhuis and A. Voronkov, editors, Proc. of the
Logic for Programming, Artificial Intelligence and
Reasoning (LPAR 2001), number 2250 in LNAI, 2001.

[20] S. Muñoz and J. J. Moreno-Navarro. Constructive
negation for prolog: A real implementation. In Proc.
of the Joint Conference on Declarative Programming
AGP’2002, pages 39–52, 2002.

[21] E. Pasarella, E. Pino and F. Orejas. Constructive
negation without subsidiary trees. In Proc. of the 9th
Internatonal Workshop on Functional and Logic
Programming, WFLP’2000, Benicassim, Spain. Also
available as Technical Report LSI-00-44-R of LSI
Department, Univ. Politécnica de Catalunya, 2000.

[22] J. Shepherdson. Language and equality theory in logic
programming. Technical Report No. PM-91-02,
University of Bristol, 1991.

[23] P. J. Stuckey. Negation and constraint logic
programming. Information and Computation,
118(1):12–33, 1995.

[24] S. Vorobyov. An improved lower bound for the
elementary theories of trees. In Automated Deduction
CADE-13 LNAI 110, pages 275–287. Springer, 1996.

