
SN Computer Science (2021) 2:344
https://doi.org/10.1007/s42979-020-00417-3

ORIG INAL RESEARCH

Verified Model Checking for Conjunctive Positive Logic

Alex Abuin2 · Unai Diaz de Cerio2 ·Montserrat Hermo1 · Paqui Lucio1

Received: 8 June 2020 / Accepted: 2 December 2020 / Published online: 19 June 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. part of Springer Nature 2021

Abstract
We formalize, in the Dafny language and verifier, a proof system PS for deciding the model checking problem of the fragment
of first-order logic, denoted FO(∀, ∃,∧), known as conjunctive positive logic (CPL). We mechanize the proofs of soundness
and completeness of PS ensuring its correctness. Our formalization is representative of how various popular verification
systems can be used to verify the correctness of rule-based formal systems on the basis of the least fixpoint semantics. Further,
exploiting Dafny’s automatic code generation, from the completeness proof we achieve a mechanically verified prototype
implementation of a proof search mechanism that is a model checker for CPL. The model checking problem of FO(∀, ∃,∧)

is equivalent to the quantified constraint satisfaction problem (QCSP), and it is PSPACE-complete. The formalized proof
system decides the general QCSP and it can be applied to arbitrary formulae of CPL.

Keywords Conjunctive positive logic · Quantified constraint satisfaction problem · Proof system · Model checking ·
Verification · Dafny

Introduction

Model checking [1,2] is the problem of deciding whether
a logical sentence holds for a structure or not. It is a fun-
damental computational task that appears in areas such as
computational logic, verification, artificial intelligence, con-
straint satisfaction, and computational complexity. The case
where the logical sentence is a first-order sentence and the
structure is finite, a.k.a. first-order model checking [3,4], is
extensively studied in complexity theory and it has interest-
ing applications in finite model finding and database theory.
In general, the model checking problem is intractable. To be
precise, the model checking for first-order logic over finite
domains is PSPACE-complete [3]. All in all, model check-

B Paqui Lucio
paqui.lucio@ehu.eus

Alex Abuin
aabuin@ikerlan.es

Unai Diaz de Cerio
UDiazCerio@ikerlan.es

Montserrat Hermo
montserrat.hermo@ehu.eus

1 Computer Languages and Systems, University of the Basque
Country, San Sebastián, Spain

2 Dependable Embedded Systems, Ikerlan Research Center,
Mondragón, Spain

ing for fragments of first-order logic appears as an important
challenge.

The (quantified) conjunctive positive fragment of first-
order logic, in symbols FO(∀, ∃,∧), contains all first-order
sentences built on atoms using only logical symbols in
{∀, ∃,∧}, where an atom is the application of a predicate
R(x1, . . . , xn) where x1, . . . , xn are variable symbols (in a
fixed countable set) and R is a relation (or predicate) sym-
bol. This fragment is commonly called conjunctive positive
logic (CPL). The fragment FO(∃,∧) is called existential
conjunctive positive logic and its model checking prob-
lem is equivalent to the much-studied constraint satisfaction
problem (CSP), whereas the model checking problem of
FO(∀, ∃,∧) is equivalent to the quantified constraint sat-
isfaction problem (QCSP) [5].

CSP provides a general framework in which a wide vari-
ety of combinatorial search problems can be expressed in a
natural way [6,7]. An instance of CSP can be viewed as a
collection of predicates over a set of variables. The aim is to
determine whether there exist values for all of the variables
such that all of the specified predicates hold simultaneously.
Therefore, froma logic approach, CSP is viewed as themodel
checkingproblem forFO(∃,∧). This approachhas proven to
be very successful, by [8], due to the connection between the
logic notion of definability and the complexity of CSP. CSP
is NP-hard (actually, it is NP-complete). Indeed, [8] shows

SN Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00417-3&domain=pdf
http://orcid.org/0000-0001-5654-9666
http://orcid.org/0000-0002-0796-8650
http://orcid.org/0000-0001-5627-501X
http://orcid.org/0000-0001-7872-2685

344 Page 2 of 24 SN Computer Science (2021) 2 :344

that a 3SAT instance is expressed by a CSP instance where
all variables range over a boolean domain and predicates cor-
respond to the clauses (thus the arity of each predicate is 3).
AlthoughCSP isNP-complete in general, there are additional
restrictions on the input instances that make the problem eas-
ier. One of the main aims of research in CSP is to identify
and classify special cases of the general problem that can
be solved in polynomial time. The theoretical literature on
CSP mainly investigates two kind of restrictions. The first
type is to restrict the type of predicates that are allowed. This
direction includes the classical work [9] and its many gener-
alizations. The second type, proposed by [10,11], is to restrict
the structure induced by the predicates on the variables.

QCSP is a natural generalization of CSP and it can be
viewed as the model checking problem for Conjunctive Pos-
itive Logic (or FO(∀, ∃,∧)). A study of complexity of the
model checking problem of various fragments of first-order
logic can be found in [12], whereas a good, and quite recent,
survey on QCSP and closely related problems is [13]. QCSP
is actively studied in artificial intelligence, where it is used
to model problems, for example, in non-monotonic reason-
ing [14] and in planning [15]. Several works such as [16–19]
have proposed (superpolynomial or incomplete) algorithms
for QCSP over the boolean domain. Quite recent research by
[19–22] have started investigations on solving non-boolean
QCSP problems. Since QBF can be expressed as a QCSP
instance, as showed by [8], QCSP is PSPACE-complete in
general. Like in the CSP case, a lot of research is being done
nowadays trying to find families of instances that can be
decided in polynomial time. It is in this context where a proof
system for QCSP, called PS, was introduced by [23]. PS is
a slight variant—more efficient in terms of the number of
rules—of the proof system previously defined by [24]. The
study of the proofs that can be generated by PS is a good tool
to discover lower bounds in proof complexity, and even on
the running time of algorithms that determine the satisfiabil-
ity of formulas. As stated in [24], a good understanding of
how PS-style proofs are generated provides clues on the very
nature of PSPACE-complete problems.

So far, we have discussed themainmotivation to formalize
PS. Besides, [24] shows that Q-resolution can be simulated
in the restriction of PS to the boolean domain. Many of the
QBF solvers are based on Q-resolution. The Q-resolution
method was introduced by [16]. Since then many different
extensions and variants have been proposed, such as long-
distance resolution [25,26], QU-resolution [27], and LQU-
resolution [28] that combines Long-Distance and universal
resolution. It is worth noting that all these systems are defined
in the propositional setting whereas PS works over any finite
domain. This is a strength of PS because some scenarios are
more naturally and cleanly modelled by allowing variables
to be quantified over domains of size greater than two.

Computer-assisted reasoning has turned out to be a use-
ful tool in a wide range of areas from pure mathematics
to smart contracts. Mechanized reasoners play a vital role
in formalizing and certifying computation related engines,
such as compilers, virtual machines, operating systems, pro-
tocols, programming languages, solvers, checkers, etc. Very
often, formalizations are very long and complicated, and
certificate proofs are error-prone and difficult to check by
hand. Therefore, there is genuine value in having mecha-
nized (machine-checked) proofs.

LCF-style proof assistants, such as Agda [29], Coq [30],
and Isabelle/HOL [31], are mechanized reasoners based on
a small inference kernel of proof rules. Consequently, their
implementation relies on a small trusted code base. The basic
mechanism for developing machine-checked proofs in the
LCF-style (introduced by [32]) consists in invoking a proof
rule to be applied to a goal. The tool checks if the rule is
applicable and, if so, it automatically generates the subgoals
to be proved by the user. In the last years, LCF-style tools
have integrated automatic proof search. The user can invoke
fully automatic provers (e.g. E [33], SPASS [34], Vampire
[35], Z3 [36]) for proving a goal. For utmost reliability, proofs
found automatically are translated back into the formalism of
the proof assistant and then certified by its trusted code base.
LCF-style proof assistants have been successfully used for
this task for many years, producing an extensive collection of
system formalizations and mechanized proofs. In [37, Sect.
5], the author gives a fairly comprehensive report of the most
valuable work done, since the 1980s, in this area. Ringer
et al. [38] is an extensive review on developments based
on proof assistants for different kinds of software systems.
There aremany quite recentmachine-checked formalizations
of checkers or solvers, e.g. the works by [39,40], and many
others—such as [41–45]—that also benefit from code gen-
eration tools and techniques to obtain executable code from
formalization.

Automatic program verifiers—such as ACL2 [46], VCC
[47], F* [48], VeriFast [49], Why [50], and Dafny [51]—are
dedicated reasoners to verify behavioral properties of pro-
grams written in some specific programming language that
also work in an interactive way. The basic unit for develop-
ing a proof is the assertion of a formula. In order to verify a
program or to prove a lemma, the user writes a collection of
assertions. The verifier converts assertions into proof obliga-
tions that are passed to fully automated provers.Whenever all
proof obligations are automatically proved, the verifier (trusts
engines and) reports a successful verification. Assertion vio-
lations are also reported along with feedback for the user. It
has been quite recently shown by [52] that program verifiers
environments are also suitable for formalizationof rule-based
systems. Consequently, the program verification ‘style’ has
joined the challenge of formalizing logical systems and auto-
matically generating the code of verified checkers or solvers.

SN Computer Science

SN Computer Science (2021) 2 :344 Page 3 of 24 344

Provingmeta-properties of proof systems—suchas sound-
ness, completeness, andmanyothers related toproof search—
makes heavy use of advanced logic constructs, thus typically
involves complex reasoning steps, beyond first-order logic.
Program verifiers have extended their specification language
with, among others, constructions that allow to reason about
fixpoints in an automated way. Fixpoint reasoning is cru-
cial to encode rule-based systems (hence, logical systems)
and to prove meta-logical properties of the inference sys-
tem, respectively. The reason for that is that well-founded (or
terminating) recursive functions and predicates (i.e. whose
recursive calls are made on arguments that are structurally
smaller) are, in general, not expressive enough to repre-
sent the set of all the statements that can be proved using
a set of rules. In other words, the least derivability relation
induced by the a set of inference rules cannot be defined
using well-founded recursion. Proof assistants provide, since
long, support for fixpoint reasoning, typically with user inter-
action. More recently a mostly automatic kind of fixpoint
reasoning has been introduced in program verification tools.
Some examples using fixpoint formalizations in Why3 are
given by [53]. The first formalization of a rule-based system,
using mostly-automatic fixpoint reasoning, was introduced
by [52]. Rustan and Leino [54] introduces fixpoint reasoning
for Dafny, providing a novel support for automatically prov-
ing lemmas using fixpoint induction. Consequently, Dafny
provides a strong support to formalize logical systems, to
verify its soundness and completeness (and other interesting
properties), and also to generate code for their corresponding
provers, checker or solvers. In addition, a significant chal-
lenge to construct large mechanized proofs is the ability to
control the logical context of the proved properties, in two
senses. On one hand, for clarity and easy human reading,
well-defined dependencies between definitions and proper-
ties are really helpful. On the other hand, the performance of
automated provers is improved as the set of logical premises
needed to prove a lemma is well delimited.

Dafny also provides a module system that allows the user
to split formalizations into small components and to make
explicit scopes and dependencies. Another Dafny feature we
exploit in this work is automatic code generation that allows
to generate .NETcode for any verified program.To the best of
our knowledge, there is no published work that substantiates
all these Dafny features by presenting a (modular) formal-
ization of a dedicated formal system and the prover-style tool
obtained by automatic code generation.

In this paper we present aDafny formalization of the proof
system PS, the machine-checked proofs of its soundness and
completeness, and the model checker obtained by automatic
code generation. This work has been developed by people
with different levels of expertise in formal methods and in
industrial software development. One of our aims is to spread
formal techniques and related tools in the industrial software

development area. As proposed by [41,43], our fully ver-
ified checker can serve as a trusted application for testing
results of other more efficient, but untrusted, solvers (e.g.
QBF-solvers). Along the presentation, we expose the con-
structors used insideDafny to encode the system and to prove
themain lemmas.We emphasize the fixpoint reasoning from,
both, the theoretical view applied to PS and its practical use
in proving the soundness of PS.We also report on our experi-
ence doing this work. TheMVS-project.1 can be downloaded
from site http://github.com/alexlesaka/VMC_CPL, and the
verified model checker is available as a web application at
http://qcspmc.ikerlan.es

Outline of the paper In “A proof system for QCSP” we
introduce the proof system PS and its least fixpoint opera-
tor. In “Dafny: Language, verifier and IDE” we provide basic
notions of the Dafny language and verifier. In “Formalization
of the proof system PS in Dafny” we describe the formaliza-
tion of the proof system PS as an inductive predicate with
all the technical details. In “Dafny proofs of soundness and
completeness”, we explain the main ideas behind the mech-
anized proofs of soundness and completeness. In “Modular
structure” we explain the structure of modules and its depen-
dencies of our formalization, whereas in “Implementation”
and “Experience” we respectively give implementation and
experience details.

A Proof System for QCSP

In this section we introduce the proof system PS and the least
fixpoint of the PS derivability relation. For that, we present
definitions for all the necessary basic notions onQCSP (taken
from [23,24]). TheirDafny encoding is presented in “Formal-
ization of the Proof System PS in Dafny” where we specify,
for each Dafny snippet, the concept that is being encoded.

We focus on the sublogic of relational first-order logic
known as Conjunctive Positive Logic (CPL). A signature σ

is a finite set of relation symbols; each relation symbol R ∈ σ

has an associated arity ar(R) that is an element of N. An
atom is an application of a predicate R(x1 . . . xar(R)), where
x1 . . . xar(R) are variable symbols (in a fixed countable set) or
constant symbols, and R ∈ σ . A formula (over signature σ)
is built from atoms (over σ), conjunction (∧), universal quan-
tification (∀), and existential quantification (∃). A sentence
is a formula having no free variables.

Definition 1 A structure B on signature σ consists of a finite
non-empty domain B and an interpretation that associates
with each symbol R ∈ σ a relation RB ⊆ Bar(R).

For a structureB and a sentenceφ over the same signature,
we write B |� φ if the sentence φ is true in the structure B.

1 Microsoft Visual Studio project.

SN Computer Science

http://github.com/alexlesaka/VMC_CPL
http://qcspmc.ikerlan.es

344 Page 4 of 24 SN Computer Science (2021) 2 :344

Definition 2 A QCSP instance is a pair (φ,B) where φ is a
sentence in CPL and B is a structure such that all the relation
symbols in φ belong to the signature of B.

The QCSP is the problem of deciding, given a QCSP
instance (φ,B), whether or not B |� φ. In the following
example, we illustrate how that 3-QBF problem—i.e. the
QBF problem where every clause has exactly three literals—
can be expressed as a QCSP.

Example 1 Let us consider the following 3-QBF instance
(namely ψ):

∀s ∃t ∀u ∃v ((¬u ∨ s ∨ ¬t) ∧ (¬s ∨ t ∨ v)

∧(s ∨ t ∨ ¬v) ∧ (v ∨ u ∨ s)).

Let σ be the signature {R0,3, R1,3, R2,3, R3,3} and B the
structure on σ with domain ={0, 1} such that

RB
0,3 = {0, 1}3\{(0, 0, 0)}

RB
1,3 = {0, 1}3\{(1, 0, 0)}

RB
2,3 = {0, 1}3\{(1, 1, 0)}

RB
3,3 = {0, 1}3\{(1, 1, 1)}

Then, for any variables x, y, z, we have the following equiv-
alences:

RB
0,3(x, y, z) = (x ∨ y ∨ z)

RB
1,3(x, y, z) = (¬x ∨ y ∨ z)

RB
2,3(x, y, z) = (¬x ∨ ¬y ∨ z)

RB
3,3(x, y, z) = (¬x ∨ ¬y ∨ ¬z)

where each constraint Ri, j (x, y, z) is satisfied by an assign-
ment if and only if the equivalent clause is satisfied by
the assignment. For example, R1,3(x, y, z) and the clause
(¬x∨y∨z) are satisfiedby the same set of assignments. Then,
the 3-QBF problem ψ is equivalent to the QCSP instance
(ϕ,B) where

ϕ = ∀s ∃t ∀u ∃v(R2,3(u, t, s) ∧ R1,3(s, t, v)

∧R1,3(v, s, t) ∧ R0,3(v, u, s)).

In this way, every instance of the 3-QBF problem can be
readily translated into an instance of QCSP having the same
satisfying assignments. �

For our purposes, formulas are seen as trees. The proof
system enables to derive what we call constraints at the var-
ious nodes of the tree. To facilitate the discussion, we will
assume that each sentence φ has, associated with it, a set Iφ
of indices that contains one index for each subformula occur-
rence of φ, that is, for each node of the tree corresponding to

Fig. 1 Formula discussed in
Example 2 (from [24])

1 ∃x
2 ∀y
3 ∧

4 E(x, y) 5 ∃x
6 E(x, y)

φ. In other words, we use an indexing, by a set Iφ , of the tree
that represents a formula φ. Let us remark that (in general)
the collection of constraints derivable at an occurrence of a
subformula does not depend only on the subformula and on
the structure, but also on the subformula location in the full
formula φ. When i is an index, we use φ(i) to denote the
actual subformula of the formula occurrence corresponding
to i ; we will also refer to i as a location.

Example 2 Consider the sentence φ = ∃x∀y(E(x, y) ∧
(∃xE(x, y))) (see Fig. 1). When viewed as a tree, this for-
mula has 6 nodes. We can index the representation of φ as a
tree, according to the depth-first search order, by the index
set {1, . . . , 6}. Then, we have that φ(6) = E(x, y), φ(5) =
∃xφ(6), φ(4) = E(x, y), φ(3) = φ(4) ∧ φ(5), φ(2) =
∀yφ(3), and φ(1) = ∃xφ(2). �

We say that an index i is a parent of an index j , and also that
j is a child of i , if, in viewing the formula φ as a tree, the
root of the subformula occurrence of i is the parent of the
root of the subformula occurrence of j . Note that, when this
holds, the formula φ(i) either is of the form Qvφ(j) where
Q is a quantifier and v is a variable, or is a conjunction where
φ(j) appears as a conjunct. For example, with respect to the
sentence and indexing in Example 2, index 3 has two children
whose indices are 4 and 5, and index 3 has one parent whose
index is 2.

Definition 3 (Judgement) Let (φ,B) be a QCSP instance. A
constraint on (φ,B) is a pair (V , F) where V is a set of
variables occurring in φ, and F is a set of mappings from
V to B. A judgement on (φ,B) is a triple (i, V , F) where
i ∈ Iφ and (V , F) is a constraint with V ⊆ freeVar(φ(i)); it
is empty if F = ∅.

When B is a structure, φ is a formula over the vocabulary
of B and f is a mapping from the free variables of φ to the
universe ofB, wewriteB, f |� φ to indicate thatφ is satisfied
in B under f . Roughly speaking, the role of a judgement
(i, V , F) on (φ,B) is to collect in F the mappings f on the
variables V that are “candidates" to satisfy B, f |� φ(i).

The construction of judgements is based on operations
over mappings (from variables to elements of the domain)
and sets of mappings. When f is a mapping and v ∈ B,
we use f [x
→ v] to denote the extension or update of f
that maps x to v. This notation is also used for multiple
updating as f [x1
→ v1, . . . , xn
→ vn], and also f [X
→ V]

SN Computer Science

SN Computer Science (2021) 2 :344 Page 5 of 24 344

(atom)
(i, V, F)

where

⎧⎪⎪⎨
⎪⎪⎩

R ∈ σ such that ar(R) = k
V = {v1, . . . , vk}
φ(i) = R(V)
F = {f : V → B | (f(v1), ..., f(vk)) ∈ RB}

(join)
(j, Uj, Fj) (k, Uk, Fk)
(i, Uj ∪ Uk, Fj Fk)

where φ(i) = φ(j) ∧ φ(k)

(projection)
(i, V, F)

(i, U, F U)
where U ⊆ V

(∀-elimination)
(j, V, F)

(i, V \ {y}, F#(V \ {y})) where

⎧⎨
⎩

y ∈ V
φ(i) = ∀yφ(j)
i is the parent of j

(upward flow)
(j, V, F)
(i, V, F)

where i is the parent of j

Fig. 2 The proof system PS

where X , V respectively represents the tuples (x1 . . . , xn)
and (v1 . . . , vn). When f is a mapping from V to B and U
is a subset of V , we use f � U to denote the restriction of f
to U .

Definition 4 (Operations over sets of mappings) Let (U1,

F1), (U2, F2) be two constraints on the same QCSP instance.
We define the join of F1 and F2, denoted by F1��F2, to be

F1��F2 = { f : U1 ∪U2 → B | (f � U1) ∈ F1,

(f � U2) ∈ F2}.

Let (V , F) be a constraint and U ⊆ V with {w1, w2, . . . ,

wr } = V \U . We define the projection and the dual-
projection of F on U , respectively denoted by F � U and
F#U , to be

F � U = { f � U : U → B | f ∈ F}
F#U = { f : U → B | f [w1
→ b1, . . . , wr
→ br]

∈ F for all b1, b2, . . . , br ∈ B}.

The dual-projection is used to deal with universally quan-
tified variables. Dually, projection can be used to cope with
existential quantification.We adopt the convention that (rela-
tive to a QCSP instance) there is exactly one map e : ∅ → B
defined on the empty set, so there are two constraints whose
variable set is the empty set: the constraint (∅,∅) and the
constraint (∅, {e}) where e is the aforementioned map.

The proof system PS is refutation-based in the sense that
it aims to find a proof of the empty judgement (−,∅,∅) on
(φ,B), meaning that B |� φ. The next definition introduces
the inference rules of the proof system PS.

Definition 5 (PS proof system) A judgement proof on a
QCSP instance (φ,B) on signature σ is a finite sequence of
judgements that are obtained by application of the inference
rules in Fig. 2.
Given an instance (φ,B), we say that a judgement (i, V , F)

is derivable on (φ,B) if there exists a judgement proof on
(φ,B) that contains (i, V , F).

It is worth noting that Definition 3 requires of a triple
(i, V , F), to be a judgement, that all variables in V must be
free variables ofφ(i). Consequently, since PS only dealswith
judgements, the (upward flow) rule can only be applied to a
judgement (j, V , F) if all variables in V are free variables
of φ(i), where i is the parent of j . Note also that if (i, {}, {})
can be derived for some index i then (r , {}, {}) can be derived
for the root index r using (upward flow).

In Example 3 we present a judgement proof according to
PS, where (1,∅,∅) is derived. It also shows how the combi-
nation of both the upward flow rule and the projection rule
derives judgements where the number of variables is mini-
mal. Obviously, the correctness of the upward flow rule relies
on the fact that CPL logical symbols (∀, ∃,∧) are ‘positive’.
Example 3 Let φ be the sentence fromExample 2 over signa-
ture σ = {E} with ar(E) = 2. Consider φ to be indexed as
shown in Figure 1, where φ(6) = E(x, y), φ(5) = ∃xφ(6),
φ(4) = E(x, y), φ(3) = φ(4) ∧ φ(5), φ(2) = ∀yφ(3), and
φ(1) = ∃xφ(2). Let B be the structure over σ with domain
B = {a, b, c} such that EB = {(a, a), (a, c), (b, a)}. LetGE

be the set of mappings from {x, y} to B that satisfy E(x, y)
(over B):

GE = {{x
→ a, y
→ a}, {x
→ a, y
→ c},
{x
→ b, y
→ a}}.

SN Computer Science

344 Page 6 of 24 SN Computer Science (2021) 2 :344

A possible judgement proof on (φ,B) is:

1 – (atom): (6, {x, y},GE)

2 – From 1 by (projection): (6, {y}, {{y
→ a}, {y
→ c}})
3 – From 2 by (upward flow): (5, {y}, {{y
→ a}, {y
→ c}})
4 – From 3 by (upward flow): (3, {y}, {{y
→ a}, {y
→ c}})
5 – From 4 by (∀-elimination): (2,∅,∅)

6 – From 5 by (upward flow): (1,∅,∅) �

The work presented in this paper is based on viewing the
set of statements that can be derived by a proof system as the
least fixpoint of the derivability relation that is induced by the
set of inference rules of the considered proof system. Next,
we illustrate this view of the proof system PS to provide a
good basis of the general theory underlying our formaliza-
tion.

The set of all judgements that are derivable on a given
QCSP instance (φ,B) can be seen as a least fixpoint of an
operator that we call D(φ,B). Next, we formally define this
operator. Let J be the set of all judgements on a QCSP
instance (φ,B). The setP(J) (all subsets overJ) is partially
ordered by the ⊆-relation. We define the map D(φ,B) from
P(J) to P(J) such that for any S ∈ P(J):

D(φ,B)(S) = S ∪ { j ∈ J | j is obtained by applying one of

the inference rules to a judgement s ∈ S}.

Given any QCSP instance (φ,B), the least fixpoint of
D(φ,B) is the set of all derivable judgements according to
the fixpoint semantics. The following two examples show
how least fixpoint of D(φ,B) are calculated.

Example 4 Let φ be the sentence φ = ∃x∀yP(x, y) where
φ(3) = P(x, y); φ(2) = ∀yφ(3); φ(1) = ∃xφ(2). Consider
φ as a sentence over signature {P} with ar(P) = 2. Define
B to be a structure over this signature having domain B =
{a, b, c} and where PB = {(a, a), (a, b)}. Let FP be the set
of mappings from {x, y} to B that satisfy P(x, y) (over B):

FP = {{x
→ a, y
→ a}, {x
→ a, y
→ b}}.

For this QCSP instance we calculate the fixpoint of D(φ,B).

D(φ,B) ↑ 0 = ∅
D(φ,B) ↑ 1 = D(φ,B)(∅) = {(3, {x, y}, FP)}
D(φ,B) ↑ 2 = D(φ,B)(D(φ,B) ↑ 1)

= D(φ,B) ↑ 1 ∪ {(2, {x},∅), (3, {x}, (FP � {x})),
(3, {y}, (FP � {y})), (3,∅, {e})}

D(φ,B) ↑ 3 = D(φ,B) ↑ 2 ∪ {(2,∅,∅), (2, {x},
(FP � {x})), (2,∅, {e})}

D(φ,B) ↑ 4 = D(φ,B) ↑ 3 ∪ {(1,∅,∅), (1,∅, {e})}
D(φ,B) ↑ 5 = D(φ,B)(D(φ,B) ↑ 4)

= D(φ,B) ↑ 4 is the least fixpoint.

Therefore, the empty judgement (1,∅,∅) belongs to the least
fixpoint of the derivability relation associated with the stud-
ied QCSP instance. �

Example 5 Let φ be the sentence from Example 2 over sig-
nature σ = {E} with ar(E) = 2. Consider φ to be indexed
as shown in Fig. 1, where φ(6) = E(x, y), φ(5) = ∃xφ(6),
φ(4) = E(x, y), φ(3) = φ(4) ∧ φ(5), φ(2) = ∀yφ(3), and
φ(1) = ∃xφ(2). Let B be the structure over σ with domain
B = {a, b, c} such that EB = {(a, a), (a, b), (a, c), (b, a)}.
Let FE be the set of mappings from {x, y} to B that satisfy
E(x, y) (over B):

FE = {{x
→ a, y
→ a}, {x
→ a, y
→ b},
{x
→ a, y
→ c}, {x
→ b, y
→ a}}.

The least fixpoint of D(φ,B) is calculated below, where K is
the set of mappings {{x
→ a}, {x
→ b}}, G is the set of
mappings {{x
→ a}}, and H is the set of mappings FE �
{y} = {{y
→ a}, {y
→ b}, {y
→ c}}.
D(φ,B) ↑ 0 = ∅
D(φ,B) ↑ 1 = {(4, {x, y}, FE), (6, {x, y}, FE)}
D(φ,B) ↑ 2 = D(φ,B) ↑ 1 ∪ {(4, {y}, H), (4,∅, {e}), (4, {x}, K),

(6, {y}, H), (6,∅, {e}), (6, {x}, K), (3, {x, y}, FE)}
D(φ,B) ↑ 3 = D(φ,B) ↑ 2 ∪ {(3, {y}, H), (3,∅, {e}), (3, {x}, K),

(5, {y}, H), (5,∅, {e}), (2, {x},G)}
D(φ,B) ↑ 4 = D(φ,B) ↑ 3 ∪ {(2,∅, {e}), (2, {x}, K)}
D(φ,B) ↑ 5 = D(φ,B) ↑ 4 ∪ {(1,∅, {e})}
D(φ,B) ↑ 6 = D(φ,B) ↑ 5 is the least fixpoint.

Hence, the empty judgement (1,∅,∅) is not in the fixpoint of
D(φ,B). This means that the empty judgement cannot appear
in any judgement proof on the considered QCSP instance. �

It is obvious, by construction, that the least fixpoint of
D(φ,B) is the set of all judgements that are derivable on (φ,B).
Consequently, metalogical properties of the set of all judge-
ments that are derivable on (φ,B) can be proved by induction
on the number of iterations of the operator D(φ,B). ByTarski’s
Theorem (see [55]), the existence of the least fixpoint of the
operator D(φ,B) (over the boolean lattice) requires D(φ,B)

to be monotonic, hence such fact should be also ensured to
validate any inductive proof on the number of iterations.

The next theorem establishes the correctness and com-
pleteness of PS. Its proof has been made in Dafny on the
basis of the least fixpoint semantics, and it is one of the main
contributions of this work.

Theorem 1 (Correctness andCompleteness of PS)Let (φ,B)

be a QCSP instance. Assume the root of φ has index r . The
empty judgement (r ,∅,∅) is derivable if and only if B |� φ.

In Example 4, the empty judgement (1,∅,∅) is derivable.
Therefore, by Theorem 1, B |� φ. In Example 5, the empty
judgement (1,∅,∅) is not in the least fixpoint of D(φ,B), by
Theorem 1, it holds that B |� φ.

SN Computer Science

SN Computer Science (2021) 2 :344 Page 7 of 24 344

Dafny: Language, Verifier and IDE

Dafny [51] is a program verifier that includes a programming
language and specification constructs. The Dafny user cre-

ates and verifies both specifications and implementations.
The Dafny specification language extends first-order logic
with algebraic data types, inductive predicates, generic types,
abstracting and refining modules, assertions, and many oth-
ers built-in specification features that makes Dafny a good
candidate for our work. In this section, we briefly introduce
the main notions of Dafny that facilitate the understanding
of the rest of the paper.

The basic unit of a Dafny program is the method2. A
method is a piece of executable code with a head where
multiple named parameters and multiple named results are
declared. Dafny has also built-in specification constructs for
assertions, such as requires for preconditions, ensures

for postconditions, and assert for inline assertions. Using
requires and ensures we specify methods and lemmas.
Assertions specify properties that are satisfied at some point.
Assertions are mainly used to provide hints to the verifier.
In other words, once the assertion is proved, it turns into a
usable property for completing the proof. Indeed, “assert
ϕ" tells Dafny to check that ϕ holds and to use the condition
ϕ (as a lemma) to prove the properties beyond this point.

Dafny distinguishes between ghost entities and executable
entities. Ghost entities are used only during verification; the
compiler omits them from the executable code. The lemma

declarations are like methods, but no code is generated for
them, i.e. a lemma is equivalent to a ghost method. The body
of a lemma is its proof. For lemma proofs, Dafny provides a
special notation that is easy to read and understand: calcula-
tions that were presented by [56]. A calculation in Dafny is a
statement that proves a property. This notation was extracted
from the calculational method introduced by [57], whereby
a theorem is established by a chain of formulas, each trans-
formed in some way into the next. The relationship between
successive formulas (for example, equality, implication, dou-
ble implication, etc.) is indicated, or it can be omitted if it
is the default relationship (equality). In addition, the hints
(usually asserts or lemma calls) that justify a step can also be
indicated (in curly brackets after the relationship). Calcula-
tions are written inside the environment calc .

2 From now on, we colorize Dafny keywords with different colors sim-
ilar to Visual Studio code editor.

Dafny also provides built-in immutable types, such as
set, multiset, map, and seq—which respectively denote
the finite collections types of sets, multisets, maps, and
sequences—that are very useful in specification. These built-
in types are equipped with the usual operations, including set
comprehension expressions:

set x1 : T1 , x2 : T2, . . . xi : Ti | P(x1 ,x2 ,. . .,xi) • E(x1,x2,. . .,xi)

for defining the set of all values given by the expression
E(x1,x2,. . .,xi) for all tuples (x1,x2,. . .,xi) such that
P(x1,x2,. . .,xi).3

Dafny also offers user-defined specification constructs
(which are ghost), such as function and predicate that can
be defined using well-founded inductive definitions, built-in
immutable types, polymorphic algebraic datatypes, induc-
tive predicates, etc.

The Dafny specification constructor
inductive predicate (also called extreme predicates)was
introduced by [54] and allows for the definition of a predicate
as an extreme solution: a least fixpoint of a set of recursive
rules. Inductive predicates are essential to formally define the
set of judgements that can be proved by the proof system PS
(introduced in the previous section). Properties of inductive
predicates can be proved by induction in the construction of
the least fixpoint of an inductive predicate P(x). Such prop-
erties must be coded as inductive lemmas for least fixpoint.
Dafny offers a standard way to set up the proof of this kind
of lemmas, by induction on the number of iterations of the
operator whose least fixpoint is the meaning of P(x). To val-
idate such inductive proofs, according to Tarski’s Theorem,
Dafny verifies the monotonicity of P, by checking that every
call to P (in its definition) is under an even number of nega-
tions. Very detailed and helpful explanations on inductive
predicates and inductive lemmas are given by [54]. In “For-
malization of the Proof System PS inDafny”we introduce an
inductive predicate (is_derivable) and prove an inductive
lemma (models_Lemma).

For defining variables in methods, functions and proofs,
Dafny includes a let-such-that statement: var x : | P that
looks like a variable declaration but it includes a boolean
expression P after the so-called Hilbert epsilon operator or
choose operator : | . A statement var x : | P can be read
as assign to x any value such that it satisfies P. The veri-
fier must be able to prove that there exists a value which

3 For easy reading, in the Dafny code snippets, we show the usual
mathematical symbols, instead of real Dafny notation. For example, we
show • for :: (such that), ∪ for union instead of +, ⊆ for set inclusion
instead of< =, also for the logical symbols and quantifiers, for example
&& is shown as ∧ and forall as ∀, etc.

SN Computer Science

344 Page 8 of 24 SN Computer Science (2021) 2 :344

meets the condition P, but not to construct it. Then, for ver-
ification purposes, the variable x will stand for any value
that fulfils P. Consequently, not every let-such-that declara-
tions is directly compilable into executable code. [58] discuss
implementation issues of this operator in the languageDafny.
[59] provides an example of non-compilable function for
which a compilable version is constructed. In “Implemen-
tation” and “Experience” we discuss two different problems
related with a let-such-that declaration in our formalization
and their solution. Our first problem is related to the gener-
ation of executable code, and the second one is caused by
non-determinism in the proof of a lemma. Our formalization
contains several occurrences of let-such-that declarations but
all, except the two problematic ones, are in lemma proofs4

where this non-constructive assignment is natural and useful.
The Dafny integrated development environment (IDE) is

an extension of Microsoft Visual Studio (VS). The IDE is
designed to reduce the effort required by the user to make
use of the system. The IDE runs the program verifier in the
background and provides design time feedback. Assertions
are sent to the SMT solver Z3 (a fully automatic theorem
prover) to check its satisfiability that will be reported to the
Dafny user. Assertion violations in lemma proofs, as well as
verification errors, are reported along with different infor-

mation such as the locations (of the properties) related to
the error. The interested reader is referred to [60] for further
information on the several ways that the Dafny IDE helps
to build both lemma proofs and verified software. Dafny
is able to export executable files (.exe), libraries (.dll)
and .Net source code (.cs) with the implementation of the
functionality specified, whenever the automatic verification
is successful and every lemma is proved.

Formalization of the Proof System PS in
Dafny

In this section we explain the main types and definitions
that make up our formalization. We first formalize what
are (well-formed) structures, formulas, QCSP instances and
judgements. Then, we define the operations on judgements
and the inductive predicate that formalizes the derivability
relation of PS.

4 Executable code is not generated for proofs.

A structure (see Definition 1 and Fig. 3) is given by a triple
formed by a signature, a domain (i.e. a non-empty finite set),
and an interpretation that is a map from the names in the
signature to relations on the domain of the arity determined
in the signature.

Note that we name by Structure both the datatype and its
unique constructor. The type variable T represents the type
of the elements in the domain, relations in the domain are
represented by the set of sequences (viewed as tuples) that
belongs to the relation. Hence, wfStructure(B) denotes the
non-emptiness of the domain of B and also that every relation
symbol r is interpreted in B by sequences whose length is
exactly the arity of r.

In Fig. 4, we define the syntax of Conjunctive Positive
Logic formulas as a datatype, where for example an atom
R(x1, x2, x3) is represented asAtom("R",["x1","x2","x3"]).
In the datatype Formula each constructor has two destructors
giving access to each component of the formula.

Note that wfFormula(S,phi) denotes that the formula
phi is well-formed with respect to the signature S, that is if
the number of parameters of all its atoms coincides with its
arity.

A well-formed QCSP instance (see Definition 2) consists
of a well-formed structure, a well-formed formula with sym-
bols in the signature of the structure that must be a sentence.

predicate wfQCSP_Instance(phi : Formula , B : Structure)
{
wfStructure (B) ∧ wfFormula (B.Sig ,phi) ∧ sentence (phi)
}

For example, ifphi isExists(x,Forall(y,And(Atom(E,
[x,y]),Exists(x,Atom(E,[x,y]))))) andB isStructure
(map[E
→2],set{a, b, c},map[E
→set{[a, a], [a, b], [a, c],
[b, a]}]) that represents the QCSP-instance of Example 3,
then wfQCSP_Instance(phi, B) is True.

We also declare judgements and the predicate for checking
their well-formedness (see Fig. 5)

A (well-formed) judgement on a (well-formed) QCSP
instance (φ,B), according to Definition 3, is a triple formed
by an index i in the set of indexes of φ, a set of variables
included in the free variables of the subformula of index i

of φ and a set of maps from exactly these variables to ele-
ments of the domain of the structure. For that, setOfIndex
is a function that computes the set of indices in the nodes
of a given formula (seen as a tree, see Fig. 1). In our for-
malization, for easy access to formula nodes, indices are
sequences of zeros and ones, instead of natural numbers.
We do not explain here the technical details of that formal-
ization. Given an index i, a formula phi, and a signature S,
the function called FoI(i, phi, S) returns the subformula
of phi of index i. The parameter S is added for expressing

SN Computer Science

SN Computer Science (2021) 2 :344 Page 9 of 24 344

type Name = string

type Signature = map <Name ,int >

type Interpret <T> = map <Name ,set <seq <T>>>

datatype Structure <T> =
Structure (Sig : Signature ,Dom : set <T>,I : Interpret <T>)

predicate wfStructure <T>(B : Structure <T>)
{
B.Dom = {} ∧
∀ r • r in B.Sig.Keys =⇒ (r in B.I.Keys ∧

∀ t • t in B.I[r] =⇒ |t| = B.Sig[r])
}

Fig. 3 Structures in Dafny

datatype Formula = Atom(rel : Name , par : seq <Name >)
| And (0 : Formula , 1 : Formula)
| Forall (x : Name , Body : Formula)
| Exists (x : Name , Body : Formula)

predicate wfFormula (S : Signature , phi : Formula)
{
match phi
case Atom(R, par) => R in S.Keys ∧ |par| = S[R]
case And(phi0 , phi1) => wfFormula (S, phi0) ∧ wfFormula (S, phi1)
case Forall (x, alpha) => wfFormula (S,alpha)
case Exists (x, alpha) => wfFormula (S,alpha)
}

function freeVar (phi : Formula) : set <Name >
{
match phi
case Atom(R, par) => setOf(par)
case And(ph1 , phi1) => freeVar (ph1) ∪ freeVar (phi1)
case Forall (x, phi) => freeVar (phi)\{x}
case Exists (x, phi) => freeVar (phi)\{x}
}

predicate sentence (phi : Formula) { freeVar (phi) = {} }

Fig. 4 CPL Formulas in Dafny

type Valuation <T> = map <Name , T>

datatype Judgement <T> = J(i : Index ,V : set <Name >,F : set <Valuation <T>>)

predicate wfJudgement <T>(j : Judgement <T>, phi : Formula , B : Structure <T>)
{
wfQCSP_Instance(phi ,B) ∧
j.i in setOfIndex (phi) ∧
j.V ⊆ freeVar (FoI(j.i,phi ,B.Sig)) ∧
(∀ f • f in j.F =⇒ j.V = f.Keys) ∧
(∀ f, v • f in j.F =⇒ v in f.Values =⇒ v in B.Dom)
}

Fig. 5 Judgements in Dafny

that the function FoI preserves the well-formedness property
with respect to the signature of phi.

The inference rules in PS rely upon applying the oper-
ations join, projection, and dual-projection on the sets of
valuations included in the derived judgements (the compo-
nent F in the datatype). In the course of formalizing PS, we

define5 the three predicates on judgements(see Fig. 6) that
correspond with the three operations on mappings (i.p. val-
uations) in Definition 4.

5 In Dafny code, one-line comments start by // and are coloured in
green.

SN Computer Science

344 Page 10 of 24 SN Computer Science (2021) 2 :344

predicate is_projection <T> (j1 : Judgement <T>, j2 : Judgement <T>,
phi : Formula , B : Structure <T>)

// j1 is a projection of j2
requires wfJudgement (j1 ,phi ,B) ∧ wfJudgement (j2 ,phi ,B)
{
j1.i = j2.i ∧ j1.V ⊆ j2.V ∧
j1.F = (set f | f in j2.F • projectVal (f,j1.V))
}

predicate is_dualProjection <T> (j1 : Judgement <T>, v : Name ,
j2 : Judgement <T>,
phi : Formula , B : Structure <T>)

// j1 is a dual projection of j2 (on variable v)
requires wfJudgement (j1 ,phi ,B) ∧ wfJudgement (j2 ,phi ,B)
{
j2.i = j1.i ++ [0] ∧ j1.V = j2.V\{v} ∧ v in j2.V ∧
j1.F = (set h : Valuation <T> | h in allMaps (j1.V, B.Dom) ∧

∀ b • b in B.Dom =⇒ h[v :=b] in j2.F)
}

predicate is_join <T> (j : Judgement <T>, j1 : Judgement <T>,
j2 : Judgement <T>, phi : Formula , B : Structure <T>)

// j is the join of j1 and j2
requires wfJudgement (j,phi ,B)
requires wfJudgement (j1 ,phi ,B) ∧ wfJudgement (j2 ,phi ,B)
{
j.i = j1.i = j2.i ∧ j.V = j1.V ∪ j2.V ∧
j.F = (set f : Valuation <T> | f in allMaps (j1.V ∪ j2.V, B.Dom) ∧

projectVal (f,j1.V) in j1.F ∧
projectVal (f,j2.V) in j2.F)

}

predicate is_upwardFlow <T> (j1 : Judgement <T>, j2 : Judgement <T>,
phi : Formula , B : Structure <T>)

// j1 is the upwardFlow of j2
requires wfJudgement (j1 ,phi ,B) ∧ wfJudgement (j2 ,phi ,B)
{
j2.V = j1.V ∧ j2.F = j1.F ∧
(
(FoI(j1.i,phi ,B.Sig).And? ∧ (j2.i = j1.i ++ [0] ∨ j2.i = j1.i ++ [1]))
∨
((FoI(j1.i,phi ,B.Sig). Forall ? ∨ FoI(j1.i,phi ,B.Sig). Exists ?) ∧

j2.i=j1.i ++ [0])
)
}

Fig. 6 Predicates on judgements

For a judgement j, the expression j.i is the index in the
tree that represents the formula, and j.i++[0] (respectively
j.i++[1]) is the index of its left-hand (resp. right-hand)
child. If it has only one child, it is j.i++[0]. The expres-
sion projectVal(f,U) represents the projection of f on U.
In the above predicate is_join, Dafny checks the finiteness
of the set allMaps(j1.V ∪j2.V, B.Dom). Indeed, Dafny
checks the finiteness of X for any expression x in X where
X is a set. Function allMaps is applied to two parameters
keys : set<A> and values : set). Function allMaps

gives the set of all maps whose domain is keys and whose
range is a subset of values. Indeed, we prove this fact in
lemma allMaps_Correct_Lemma.

The predicates is_join, is_projection, and
is_dualProjection, and is_upwardFlow respectively
enable the encoding of the inference rule (join), (projection),

(∀-elimination), and (upward flow), which are given in Def-
inition 5.

In Fig. 7 inductive predicate is_derivable defines, in
a natural way, the least fixpoint of the derivability relation
induced by the five rules in Definition 5.

In Dafny, inductive predicate definitions are not allowed
to depend on the allocation state. The suffix (!new), on
parameter type T (it is shown as superscript in the Dafny
code snippets), restricts the instances of T to types that do not
contain any reference to an object (or pointer), and thus does
not depend on the allocation state. This is a quite recently
added type-parameter characteristic (!new), in the same
vein as the suffix (==) restricts instances to be equality-
supporting types.

In the encoding of the rule (atom), we use the auxiliary
function HOmap for applying the function f to the list of argu-

SN Computer Science

SN Computer Science (2021) 2 :344 Page 11 of 24 344

inductive predicate is_derivable <T(!new)> (j : Judgement <T>,
phi : Formula ,
B : Structure <T>)

requires wfQCSP_Instance(phi ,B) ∧ wfJudgement (j,phi ,B)
{
var phii := FoI(j.i,phi ,B.Sig);
(// rule (atom)
phii.Atom?
∧ j.V = setOf (phii.par)
∧ j.F = (set f : Valuation <T> | f in allMaps (j.V, B.Dom)

∧ HOmap(f,phii.par) in B.I[phii.rel])
) ∨ (// rule (projection)
∃ j’ • wfJudgement (j’,phi ,B) ∧ is_projection(j,j’,phi ,B)

∧ is_derivable(j’,phi ,B)
) ∨ (// rule (join)
phii.And?
∧ ∃ j0 ,j1 • wfJudgement (j0,phi ,B) ∧ wfJudgement (j1 ,phi ,B)

∧ j0.i = j1.i
∧ is_join (j,j0,j1,phi ,B)
∧ is_derivable(j0,phi ,B) ∧ is_derivable(j1,phi ,B)

) ∨ (// rule (∀-elimination)
phii.Forall ?
∧ ∃ j’ • wfJudgement (j’,phi ,B)

∧ phii=Forall (phii.x,FoI(j’.i,phi ,B.Sig))
∧ is_dualProjection(j,phii.x,j’,phi ,B)
∧ is_derivable(j’,phi ,B)

) ∨ (// rule (upward flow)
∃ j’ • wfJudgement (j’,phi ,B)

∧ is_upwardFlow(j,j’,phi ,B) ∧ is_derivable(j’,phi ,B)
)
}

Fig. 7 The inductive predicate is_derivable

ments phii.par, this gives a tuple that is checked to belong
to the interpretation of relation phii.rel in the structure B.

Dafny Proofs of Soundness and
Completeness

In this section we explain the main ingredients of the Dafny
proof for Theorem 1, which ensures that PS is a sound and
complete proof system for QCSP instances. The forward
direction of Theorem 1 states the soundness result that is
proved in Dafny lemma soundness_Theorem. The back-
ward direction is the completeness statement that is proved by
the Dafny lemma completeness_Theorem. For expressing

these meta-logical results we use the predicate (see Fig. 8)
states whether a QCSP instance (B,f) is a model of a for-
mula phi.

On the basis of the above predicate models, we define:

predicate valuationModel <T> (h : Valuation <T>, j : Judgement <T>,
phi : Formula , B : Structure <T>)

{
h in allMaps (j.V, B.Dom) ∧
wfStructure (B) ∧ wfFormula (B.Sig ,phi) ∧ wfJudgement (j,phi ,B) ∧
models (B,h,existSq (freeVar (FoI(j.i,phi ,B.Sig))\j.V,

FoI (j.i,phi ,B.Sig)))
}

Given a valuation h and a judgement j on aQCSP instance
(phi,B), predicatevaluationModeldenoteswhether(B,h)
models the subformula of phi given by the index of
j.i properly closed with existential quantifiers on all
the variables that do not belong to j.V. The expression
freeVar(FoI(j.i,phi,B.Sig))\j.V represents
freeVar(φ(i))\j.V and the function existSq enables the

SN Computer Science

344 Page 12 of 24 SN Computer Science (2021) 2 :344

predicate models <T>(B : Structure <T>, f : Valuation <T>, phi : Formula)
requires wfStructure (B) ∧ wfFormula (B.Sig ,phi) ∧ f.Values ⊆ B.Dom
decreases phi
{
(freeVar (phi) ⊆ f.Keys) ∧
match phi

case Atom(R,par) => HOmap(f,par) in B.I[R]
case And (phi0 ,phi1) => models (B,f,phi0) ∧ models (B,f,phi1)
case Forall (x,alpha) => ∀ v • v in B.Dom

=⇒ models (B,f[x :=v],alpha)
case Exists (x,alpha) => ∃ v • v in B.Dom

∧ models (B,f[x :=v],alpha)
}

Fig. 8 The predicate models

inductive lemma models_Lemma <T> (j : Judgement <T>, phi : Formula ,
B : Structure <T>)

requires wfQCSP_Instance(phi ,B) ∧ wfJudgement (j,phi ,B)
requires is_derivable(j,phi ,B)
ensures ∀ h • valuationModel(h,j,phi ,B) =⇒ h in j.F
{
var phii := FoI(j.i, phi ,B.Sig);
if phii.Atom? ∧ j.V = setOf (phii.par)

∧ j.F = (set f : Valuation <T> | f in allMaps (j.V,B.Dom)
∧ HOmap(f,phii.par) in B.I[phii.rel])

{// (atom)
∀ h | valuationModel(h,j,phi ,B) { allMaps_Correct_Lemma (h,B.Dom);}

}
else if ∃ j’ • wfJudgement (j’,phi ,B) ∧ is_projection(j,j’,phi ,B)

∧ is_derivable(j’,phi ,B)
{// (projection)
var j’ : | wfJudgement (j’,phi ,B) ∧ is_projection(j,j’,phi ,B)

∧ is_derivable(j’,phi ,B);
models_Lemma(j’,phi ,B);
projection_Lemma(j,j’,phi ,B);

}
else if . . . {// (join)
}
else if . . . {// (∀-elimination)
}
else {// (upward flow)
}
}

Fig. 9 The inductive lemma models_Lemma

existential closure (for its definition see Fig. 18). Hence, the
Dafny expression

existSq(freeVar(FoI(j.i,phi,B.Sig))\j.V,FoI(j.i,phi,B.Sig))

encodes the formula ∃x1 . . . ∃xnφ(i) provided that
freeVar(φ(i))\j.V = {x1, . . . , xn}.

The soundness_Theorem will be proved as an easy con-
sequence of the following lemma:

Lemma 1 Let (φ,B) be a QCSP instance and (i, V , F) a
derivable judgement (on it). Let {v1, v2, . . . vn} be the vari-
ables in freeVar(φ(i))\V . For all h : V → B it holds that
B, h |� ∃v1 . . . ∃vnφ(i) implies h ∈ F.

that is encoded in Dafny as the following inductive lemma,
whose proof is partially shown:

Since models_Lemma (see Fig. 9) is an inductive lemma,
its proof performs induction on the construction of the
least fixpoint generated by the inductive (extreme) predi-
cate is_derivable. Dafny automatically enables this kind
of induction for inductive lemmas, and automatically con-
structs the induction hypothesis from the recursive calls to
models_Lemma.

SN Computer Science

SN Computer Science (2021) 2 :344 Page 13 of 24 344

lemma projection_Lemma <T>(j : Judgement <T>, j’ : Judgement <T>,
phi : Formula , B : Structure <T>)

requires wfStructure (B) ∧ wfFormula (B.Sig ,phi)
requires wfJudgement (j,phi ,B) ∧ wfJudgement (j’,phi ,B)
requires is_projection(j,j’,phi ,B) // (H1)
requires ∀ h • valuationModel(h,j’,phi ,B) =⇒ h in j’.F //(H2)
ensures ∀ h • valuationModel(h,j,phi ,B) =⇒ h in j.F

var phii := FoI(j.i,phi ,B.Sig);
var W := freeVar (phii)\j’.V;
var Y := j’.V\j.V;
var X := freeVar (phii)\j.V;
∀ h : Valuation <T> | valuationModel(h,j,phi ,B)

ensures h in j.F;
{
// assert models (B,h,existSq (X,phii));
assert X = Y ∪ W;
// assert models (B,h,existSq (Y ∪ W,phii));
existSq_Sum_Lemma(B, h, Y, W, phii);
assert models (B,h,existSq (Y,existSq (W,phii)));
existSqSem_Lemma(B, h, Y, existSq (W,phii));
var U, Z : | setOf (Z) ⊆ B.Dom ∧ |U| = |Z| = |Y|

∧ setOf(U) = Y ∧ noDups (U)
∧ setOf(U) ∩ h.Keys = {}
∧ extVal (h,U,Z). Values ⊆ B.Dom
∧ models (B,extVal (h,U,Z),existSq (W,phii));

extValDomRange_Lemma (h, U, Z);
assert extVal (h,U,Z).Keys = j’.V;
extValallMaps_Lemma(h, U, Z, B);
assert extVal (h,U,Z) in allMaps (j’.V, B.Dom);
assert valuationModel(extVal (h,U,Z),j’,phi ,B);
// assert extVal (h,U,Z) in j ’.F; // by hypothesis (H2)
// assert h.Keys = j.V;
projectOfExtVal_Lemma (h, U, Z);
assert projectVal (extVal (h,U,Z),j.V) = h;
// assert j.F = (set f | f in j’.F • projectVal (f,j.V));

// by hypothesis (H1)
// assert h in j.F;
}

Fig. 10 The auxiliary lemma projection_Lemma

The inductive proof of models_Lemma has a base case
for the rule (atom) and one inductive case for each of the
remaining four rules.

In the base case (atom), for any valuation h such that
B, h |� ∃v1 . . . ∃vnφ(i), we call the auxiliary lemma
allMaps_Correct_Lemma to show that the set
allMaps(h, B.Dom) really contains all the maps with
domain in h.Keys that give values in B.Dom.

In the inductive case where the judgement j is a projec-
tion of another derivable judgement j’, we recursively call
models_Lemma(j’,phi,B) for the induction hypothesis that
ensures that all (valuations that are) models of j’ are in j’.F.
Then, the call projection_Lemma(j,j’,phi,B) invokes
the auxiliary lemma in Fig. 10.

The lemma projection_Lemma assumes, the
well-formedness of all its parameters along with, the hypoth-
esis (H1): j is the projection of j’ and the fact (as hypothesis
(H2)) that j’ satisfies the postcondition of lemma models,
then it ensures that also all valuations that are models of

j belongs to j.F. Next, we explain the Dafny proof of
projection_Lemma whose code is6

We define the variable phii (i.e. φ(i)) and the three sets
of variables W,Y and X occurring in φ(i) and in the judge-
ments j and j’. Next, we prove that any valuation h such
that B, h |� ∃X(φ(i)) belongs to j.F. This is the mean-
ing of the ∀-ensures in the code, whose proof is inside
the curly brackets. From the hypothesis, since X =Y∪ W, we
prove that B, h |� ∃Y∃W (φ(i)). Then, by auxiliary lemma
existSqSem_Lemma, we basically prove that B, h[Y
→
Z] |� ∃W (φ(i)) for some set of values Z in B. In the
code, U is a sequence representing the set Y with no rep-
etitions and disjoint with h.Keys, and extVal(h,U,Z) is
the Dafny code for h[Y := Z]. Then, by hypothesis (H2),
we prove that h[Y
→ Z] ∈ j ′.F . Therefore, its projection
h[Y
→ Z] � j .V (which is proved to coincide with the map-

6 In snippets, commented assertions are (true) assertions that Dafny
automatically infers, hence Dafny does not need them as hints. They
are included in proofs mainly for human-readability. The user could
check the validity of each assert by uncommenting it. They are also
very useful for re-using or refactoring proofs.

SN Computer Science

344 Page 14 of 24 SN Computer Science (2021) 2 :344

lemma soundness_Theorem <T> (phi : Formula ,B : Structure <T>)
requires wfQCSP_Instance(phi ,B)
requires is_derivable(J([],{},{}), phi ,B)
ensures ¬models (B,map [], phi)
{
var cj := J([] ,{} ,{});
models_Lemma(cj,phi ,B);
assert ¬valuationModel(map [],cj ,phi ,B);
}

Fig. 11 The soundness theorem

function canonical_judgement <T> (i : seq <int >,phi : Formula ,
B : Structure <T>) : (cj : Judgement <T>)

requires wfQCSP_Instance(phi ,B)
requires i in setOfIndex (phi)
ensures cj.i = i
ensures cj.V = freeVar (FoI(i,phi ,B.Sig))
ensures wfJudgement (cj ,phi ,B)
decreases FoI (i,phi ,B.Sig)
{
var phii := FoI(i,phi ,B.Sig);
indexSubformula_Lemma(i,phi ,B.Sig);
match phii
case Atom(R,par) => var F := (set f : Valuation <T> |

f in allMaps (setOf(par),B.Dom)
∧ HOmap(f,par) in B.I[R]);

J(i,setOf(par),F)
case And(phi0 ,phi1) => var j0 ’ := canonical_judgement(i ++ [0],phi ,B);

var j1 ’ := canonical_judgement(i ++ [1],phi ,B);
var j0 := J(i,j0 ’.V,j0 ’.F);

var j1 := J(i,j1 ’.V,j1 ’.F);
join(j0,j1,phi ,B)

case Forall (x,phik) => var j0 := canonical_judgement(i ++ [0],phi ,B);
if x in j0.V then dualProjection(x,j0 ,phi ,B)

else J(i,j0.V,j0.F)
case Exists (x,phik) => var j0 := canonical_judgement (i ++ [0],phi ,B);

var jp := projection (j0 ,j0.V\{x},phi ,B);
if x in j0.V then J(i,jp.V,jp.F)

else J(i,j0.V,j0.F)
}

Fig. 12 The function canonical_judgement

ping h) should belong to j .V . Since (by hypothesis H1) j .F
is the set of all projection on j .V of all valuations in j ′.F ,
then h ∈ j .F is proved.

The other three inductive cases in the proof of the
models_Lemma—forderivability using (join), (∀-elimination),
and (upward flow)—follows similar lines as the case for (pro-
jection) and their code is omitted.

In Fig. 11, the soundness_Theorem of the proof sys-
tem PS can be easily proved by calling the previous
models_Lemma.

Since the empty judgement is derivable, bymodels_Lemma,
every valuation that is a model of phi belongs to the empty
set of valuations. Therefore, every possible valuation with
empty domain is not a valuation model of phi. Since the
empty function map[] is the only valuation in the set of val-
uations with empty domain, then (B,map[]) cannot model
phi.

Completeness, i.e. the backward direction of Theorem 1,
is encoded in the following completeness_Theorem that is
proved with the help of the following auxiliary lemma:

Lemma 2 Let (φ,B) be a QCSP instance. Let Iφ be the index
set ofφ. For each i ∈ Iφ , let F be the set of all valuations such
that B, h |� φ(i). Then, the judgement (i, freeVar(φ(i)), F)

is derivable.

We provide a constructive proof of Lemma 2 that associates
a judgement with each index i of the formula phi. We call
it the canonical judgement. It is recursively defined by the
function in Fig. 12.

Note that cj is used in the specification of the function as
the shorter name of canonical_judgement(i, phi, B).
Thewell-foundedness of this function is givenby thedecreas-
ing expression FoI(i,phi,B.Sig), which represents the
subformula of phi whose index is i (or (φ(i)). The call
to indexSubformula_Lemma ensures that the indices of the
subformulas of phi,phi1,phik, in the succeeding recursive

SN Computer Science

SN Computer Science (2021) 2 :344 Page 15 of 24 344

lemma canonical_judgement_Lemma <T>(i : seq <int >,phi : Formula ,
B : Structure <T>,cj : Judgement <T>)

requires wfQCSP_Instance(phi ,B) ∧ i in setOfIndex (phi)
requires cj = canonical_judgement(i,phi ,B)
ensures cj.F = setOfValmodels(FoI(i,phi ,B.Sig),B)
ensures is_derivable(cj ,phi ,B)
decreases FoI (i,phi ,B.Sig)

{. . .}
function setOfValModels <T> (phi : Formula ,B : Structure <T>)

: set <Valuation <T>>
requires wfStructure (B) ∧ wfFormula (B.Sig ,phi)
{
(set f : Valuation <T> | f in allMaps (freeVar (phi),B.Dom)

∧ models (B,f,phi))
}

Fig. 13 The lemma canonical_judgement_Lemma

lemma completeness_Theorem <T> (phi : Formula ,B : Structure <T>)
requires wfQCSP_Instance(phi ,B)
requires ¬models (B,map [], phi)
ensures is_derivable(J([],{},{}), phi ,B)
{
var cj := canonical_judgement ([],phi ,B);
canonical_judgement_Lemma ([],phi ,B);

//assert cj.V = {};
//assert cj.F = (set f : Valuation <T> | f in allMaps ({}, B.Dom)
// ∧ models (B,f,phi)) = {};

}

Fig. 14 The completeness theorem

definition given by a match statement, are correct. Conse-
quently, Lemma 2 is encoded in the Dafny lemma (Fig. 13)
that uses the function setOfValModels for representing the
set of all valuations that are models of a given formula in a
given structure. The lemma canonical_judgement_Lemma

is proved by structural induction on phi. The proof con-
sist of 50 lines of code (that we do not show here),
and produces not only recursive calls (for the induction
hypothesis), but also calls to three auxiliary lemmas that
formalize interesting inductive properties of the definition
of setOfValModels for the three different types of com-
posed formulas (And, Forall and Exists) in terms of their
component subformula(s). The proofs of these three lem-
mas are also non-trivial, each has approximately 30 lines
of code. They also call simpler lemmas that prove some
elementary properties of the projection or extension of a
valuation. Most of the effort was not made in the proof of
canonical_judgement_Lemma (whose inductive schema is
large but easy), but in the three auxiliary lemmas that prove
equalities between different sets of valuations. However,
since valuations, sets, projections, etc. have a natural and
easy formalization in the Dafny language, our formalized
proofs essentially follows the guidelines of the pen-and-
paper proofs. In “Experience”,weprovide somefigures about
canonical_judgement_Lemma.

Next, the completeness_Theorem, (see Fig. 14) calling
canonical_judgement_Lemma, proves that whenever the

sentence phi is not satisfied by the structure B, then the empty
judgement of index [] is derivable, indeed it is the canonical
judgement for ([], phi, B,).

The completeness proof proceeds by calling the
canonical_judgement_Lemma with canonical judgement
associatedwith the root index[],Dafny infers that this judge-
ment cj is derivable. Moreover, cj.V must be empty and
cj.F, i.e. the set of all valuations with empty domain that
are valuation models of phi (paired with B), must be empty.

Modular Structure

In previous sections, we described the essentials of our
formalization and the proofs of themainmeta-logical proper-
ties: soundness and completeness. However, many technical
details and auxiliary properties are proved for that. In our
opinion, a modular structure with explicit declarations of the
definitions and lemmas that are exported from one module
and imported in other module, is crucial for refactoring and
reusing a large formalization. Moreover, in our experience,
modularity is clearly helpful during the development phase.
In this section, we give an idea of the whole encoding by
describing how it is structured using modules.

Dafny provides modules (keyword module) to group
together related entities (such as datatypes, lemmas, func-
tions, predicates, methods, etc.), as well as to control the

SN Computer Science

344 Page 16 of 24 SN Computer Science (2021) 2 :344

scope of declarations, and also clauses include to include
one module in another. In the head of modules, Dafny allows
clauses import and export and different qualifiers.

In the case of import, the qualifier opened allows the
names of the imported units to be used (in the importing
module)without the additional prefix of the importedmodule
name. By declaring an export set, a module makes available
a subset of its declarations to the module’s importers.

In the case of export, Dafny supports multiple export sets
per module and also allows to name the different exported
lists. In addition, the qualifiers provides and reveals allow
us to export respectively the specification part or also the
body part of the exported unit. In other words, each export
set indicates the translucency of its exported declarations.
For a function, the specification part includes the function’s
parameters/results type signature as well as the function’s
specification, whereas the body part includes its definition.

In Dafny, the verifier always reasons about calls to lem-
mas (also to methods) in terms of their specifications, never
in terms of their bodies. Thus, there would be no difference
between providing and revealing a method or lemma in an
export set. For that reason methods and lemmas may not be
mentioned in reveals clauses. Therefore, exported lemmas
are always provided, but not revealed. An export set has to
be self consistent. This means that everything mentioned in
the exported declarations must make sense separately. In par-
ticular, this means that every symbol that is mentioned in the
portions (specification part or specification part plus body
part) that are exported must also be part of the export set.
The interested reader can find motivations and explanations
about the design of the module system of Dafny in [61].

Our formalization is structured in seven modules whose
dependencies are described in Fig. 15. The proof system
formalization and the proofs of its soundness and com-
pleteness consists of six modules: Utils, QCSP-instance,
Proof-System,Conjunctive-Pos-Logic,PS-Soundness,
and PS-Completeness. In addition, the module
Implementation contains some additional (verified) meth-
ods necessary for implementing the model checker as a web
application. More details on the latter are given in “Imple-
mentation”.

Module Utils contains a few auxiliary concepts and
properties on sets, sequences and maps that are of general
utility. In Fig. 16 we show part of it.

The export list of module Utils reveals a function setOf

for the set of elements of a sequence and a predicate noDups

for deciding whether a given sequence has duplicates, both
have no ensures clause. However, it provides (but does not
reveal) the function allMaps (see “Formalization of the
Proof System PS in Dafny”), hence importer modules know
its two ensure clauses, but not its body. The two ensures
clauses of the function allMaps provides a partial specifi-
cation of it that is automatically verified (hence, the code

Utils

QCSP-Instance

Conjunctive-Pos-Logic

PS-Soundness

Proof-System

PS-Completeness

Implementation

Fig. 15 Module dependencies (w.r.t. include clauses). The module
at the head of each arrow includes the one at the tail of the arrow

of the function does not need for annotations). Moreover,
this partial specification suffices to verify most of meth-
ods involving a call to allMaps. Module Utils provides a
lemma allMaps_Correct_Lemma, which complements the
first ensures clause of allMaps with the backward implica-
tion. This lemma has a non-trivial proof, hence we decided to
prove it separately from the code of the the function. We call
this lemma only when the complete specification of allMaps
is required to verify some property. Module Utils also pro-
vides two lemmas on operations over sets of maps.

In “Formalization of the Proof System PS in Dafny”
and “Dafny Proofs of Soundness and Completeness” we
explained the most relevant components of the four mod-
ules QCSP-Instance, Proof-System, PS-Soundness and
PS-Completeness. In what follows, we explain the role
of the module Conjunctive-Pos-Logic in our formaliza-
tion. For that, we first give more details about the module
QCSP-Instance. This module contains 19 lemmas prov-
ing basic properties of the operations on valuations, and
also properties on the relation between these operations and
the predicate models. Some of this units are auxiliary in
the module, to prove the lemmas that are provided to other
modules. In Fig. 17 we show a partial view of the module
QCSP-Instance placing emphasis on the relevant elements
in the export list to the module Conjunctive-Pos-Logic.

Dotted lines in the export list substitute the elements that
are necessary for self consistency, but are not relevant for the
present discussion. In otherwords, 4 of the 19 lemmas proved
in QCSP-Instance are basic for proving the 13 lemmas in
module Conjunctive-Pos-Logic.

The objective of the module Conjunctive-Pos-Logic is
to provide the properties of Conjunctive Positive Logic that
we need to prove soundness. Indeed, all are properties about
the models of formulas of the form ∃x1 . . . ∃xnφ, which is
written inDafny asexistSq(W,phi)whereW is the sequence
[x1 . . . xn]. The function existSq is defined and exported by
module Conjunctive-Pos-Logic, see Fig. 18.

As an example of the kind of properties (about models of
existSq-formulas) that module Conjunctive-Pos-Logic

provides to module PS-Soundness, we show (in Fig. 18)

SN Computer Science

SN Computer Science (2021) 2 :344 Page 17 of 24 344

module Utils {
export reveals setOf , noDups

provides allMaps ,allMaps_Correct_Lemma ,ExtMap_Lemma ,
ProjectMap_Lemma

function setOf <T>(s : seq <T>) : set <T>
{ set x | x in s }

predicate noDups <T(=)>(U : seq <T>)
{ ∀ i,j • 0 ≤ i < j < |U| =⇒ U[i] = U[j] }

function allMaps <A,B>(keys : set <A>, values : set) : set <map <A,B>>
ensures ∀ m • m in allMaps (keys , values)

=⇒ m.Keys = keys ∧ m.Values ⊆ values
ensures keys = {} =⇒ allMaps (keys ,values) = {map []}

{. . .}
. . .
}

Fig. 16 Partial view of Module Utils

module QCSP_Instance {
import opened Utils
export Lemmas_for_Conj_Pos_Logic

reveals . . ., extVal , . . .
provides . . ., extValDomRange_Lemma , extValOrder_Lemma ,

NoFreeVarInExists_Lemma , Exists_Commutes_Lemma
. . . // export lists for other modules

function extVal <T>(f : Valuation <T>,W : seq <Name >,S : seq <T>)
: Valuation <T>

requires |W| = |S| ∧ noDups (W)
decreases W
{ if W = [] then f else extVal (f[W[0] :=S[0]],W[1..] , S[1..]) }

. . . // other function and predicate definitions

lemma extValDomRange_Lemma <T>(f : Valuation <T>,W : seq <Name >,S : seq <T>)
requires |W| = |S| ∧ noDups (W)
ensures extVal (f,W,S). Keys = setOf (W) ∪ f.Keys
ensures extVal (f, W, S). Values ⊆ f.Values ∪ setOf (S)
decreases W

{. . .}

lemma extValOrder_Lemma <T>(k : int ,U : seq <Name >,S : seq <T>,f : Valuation <T>)
requires 0 ≤ k < |U| = |S| ∧ noDups (U)
ensures extVal (f, U, S)

= extVal (f[U[k] :=S[k]], U[..k]+U[k+1..] , S[..k]+S[k+1..])
{. . .}

. . . // 15 more lemmas

lemma NoFreeVarInExists_Lemma <T>(B : Structure ,f : Valuation <T>,
x : Name ,beta : Formula)

requires wfStructure (B) ∧ wfFormula (B.Sig ,beta) ∧ f.Values ⊆ B.Dom
requires x freeVar (beta)
ensures models (B,f,beta) ⇐⇒ models (B,f,Exists (x,beta))

{. . .}
lemma Exists_Commutes_Lemma <T>(x : Name , y : Name , alpha : Formula ,

f : Valuation <T>, B : Structure <T>)
requires wfStructure (B) ∧ wfFormula (B.Sig , alpha)
requires f.Values ⊆ B.Dom
requires models (B, f, Exists (x, Exists (y, alpha)))
ensures models (B, f, Exists (y, Exists (x, alpha)))

{. . .}

Fig. 17 Partial view of Module QCSP_Instance

SN Computer Science

344 Page 18 of 24 SN Computer Science (2021) 2 :344

module Conjunctive_Pos_Logic {
. . .// import opened clauses

export Lemmas_for_PS_Soundness
reveals existSq
provides existSq_ExtVal_Lemma , existSq_Project_Lemma ,

existSq_Sum_Lemma , existSq_And_Lemma ,
existSq_Forall_Lemma , existSq_Exists_Lemma ,
existSqSem_Lemma

function existSq (X : set <Name >, alpha : Formula) : Formula
ensures freeVar (existSq (X,alpha)) = freeVar (alpha)\X
ensures ∀ S • wfFormula (S,alpha) =⇒ wfFormula (S,existSq (X,alpha))
{
if |X| = 0 then alpha else var x : | x in X;

Exists (x,existSq (X\{x},alpha))
}

lemma existSq_And_Lemma <T>(B : Structure <T>,f : Valuation <T>,
W : set <Name >,phi : Formula)

requires wfStructure (B) ∧ wfFormula (B.Sig ,phi)
requires f.Values ⊆ B.Dom
requires phi.And ?
requires models (B,f,existSq (W,phi))
ensures wfFormula (B.Sig ,existSq (W ∩ freeVar (phi .0), phi .0))
ensures wfFormula (B.Sig ,existSq (W ∩ freeVar (phi .1), phi .1))
ensures models (B,f,existSq (W ∩ freeVar (phi .0), phi .0))
ensures models (B,f,existSq (W ∩ freeVar (phi .1), phi .1))
decreases W

{. . .}

. . . // 12 more lemmas
}

Fig. 18 One of the lemmas exported from Conjunctive-Pos-Logic to prove the soundness of proof system PS

the specification part of existSq_And_Lemma. This lemma
states that if B, f |� ∃x1 . . . ∃xn(φ0 ∧ φ1), then
B, f |� ∃y1 . . . ∃ym(φ0) and B, f |� ∃z1 . . . ∃zk(φ1) where
{y1, . . . , ym} is the set of all variables in {x1, . . . , xn} that
occur free in φ0 and {z1, . . . , zk} is the set of all variables in
{x1, . . . , xn} that occur free in φ1. All the lemmas exported
(provided) by the module Conjunctive-Pos-Logic are
related to (semantic) models of CPL. In particular, the seven
lemmas exported by module Conjunctive-Pos-Logic to
be imported by the module PS-Soundness, (see export list
Lemmas_for_PS_Soundness in Fig. 18) assist in the task
of proving the lemma models_Lemma that is crucial in the
soundness proof, as explained in “Dafny Proofs of Sound-
ness and Completeness”. Since models_Lemma (or Lemma
1) refers to an existentially closed formula, the metalogical
properties in module Conjunctive-Pos-Logic are mainly
related to existentially closed formulas.

Implementation

On the basis of our formalization of the proof system
PS, and employing Dafny’s automatic code generation
facilities, we have implemented a verified model checker
for Conjunctive Positive Logic. Dafny and most of the

popular verification tools (Isabelle/HOL, Why3, etc.) are
equipped with code generators that are able to translate
into executable code a sublanguage of their formal specifi-
cation language. Some formally verified applications (e.g.
[62]) have been developed while keeping in mind not
only verification, but also direct code generation (some-
times even code efficiency). As explained in [63], the
restrictions of the specification sublanguage often lead to
complications in formal definitions and proofs. We have
taken the different approach of developing the (above
explained) formalization while having in mind only verifi-
cation purposes. Once the verification phase was success-
fully completed, we have refined the verified formalization
to exploit the Dafny automatic extraction of executable
code.

Our refinement basically consists in two task: (1) to con-
vert into executable some non-executable specification units
and (2) to make usable the C# classes that Dafny generates
for datatypes. A similar work for a larger formalization in
Isabelle/HOL is explained in [63]. In this section,we describe
our conversion process to generate code and integrate it into
the web application. We report on the challenges that arise
along this process.

SN Computer Science

SN Computer Science (2021) 2 :344 Page 19 of 24 344

To obtain code from the verified proof system, we
convert the functions (and predicates) that would take
part in the implementation of the web application into
methods. By default, Dafny functions (and predicates)
are ghost (non-executable), and cannot be called from
non-ghost code. Predicates receive the same treatment as
functions, they really are boolean functions. To make a
function non-ghost, Dafny gives the option, when feasi-
ble, to replace the keyword function with the two key-
words function method. When a function f defined by
an expression E is turned to non-ghost, every function
called in the expression E must also be turned to non-
ghost.

Not every expression can be changed from ghost to non-
ghost, because not every ghost expression is compilable into
real code. As a typical example, consider an expression of the
form ∀ i : nat • P(i) that appears in the body/definition of
a predicate Q. If property P does not bound the possible
values of i in someway that enables Dafny’s heuristics to get
a finite set, then the change to predicate method Q raises
an error in Dafny that complains: “a quantifier in a non-ghost
context is allowed only whenever a bounded set of values for
its variables (i, in this case) can be computed". In this case,
the required function (or predicate) should be implemented
by amethodwhose requires-ensures specification (a.k.a. con-
tract) states that it computes the original function.

The interface of our web application asks the user to
successively provide the different components of a QCSP
instance, then it checks the well-formedness of the given
QCSP instance.When a well-formed QCSP instance (B, φ)

is given, the application returns the result of whetherB |� φ.
For that, it computes the canonical judgement for B |� φ.
If it is empty, it answers “no", otherwise the answer is
“yes". Therefore, at a first glance, we have to convert into
non-ghost the predicate wfQCSP_Instance and the function
canonical_judgement. As a consequence, all ghost code
used in each of these three units has to be also transformed
into real code, and the same applies to the ones called from
those just transformed into non-ghost. We made this until
Dafny does not anymore complain that“function calls are
allowed only in specification context (consider declaring the

function as functionmethod)".Dafnymarks the affected calls
and shows those messages as hover text, which is a valu-
able help.

The predicate wfQCSP_Instance is easily turned non-
ghost by simply adding the keyword method in two more
predicate and function definitions.

The transformation of function canonical_judgement

requires that eight different functions must be also non-
ghost. Five of them are solved by simply adding the keyword
method.

One of the other three functions, namely allMaps,
does not satisfy the required conditions for that easy
conversion into code, whereas the other two (join and
dualProjection) call allMaps. Indeed, the function
allMaps includes a non-compilable let-such-that statement
var a : | a in s, where s is a set. It raises the error
“to be compilable the value of a let-such-that-expression
must be uniquely determined". To fix this problem, we
developed the module Implementation in which we pro-
vide a method compute_f for each of the four functions
canonical_judgement, allMaps, join, and
dualProjection as f. We verify the equivalence of each
method with the original function. Actually the contract of
each method compute_f specifies that it computes the func-
tion f. For example, the contracts of compute_canonical_
judgement and compute_allMaps are:

method compute_canonical_judgement <T>(i : seq <int >,phi : Formula ,
B : Structure <T>)
returns (cj : Judgement <T>)

requires wfQCSP_Instance(phi ,B)
requires i in setOfIndex (phi)
ensures cj = canonical_judgement(i,phi ,B)

method compute_allMaps <T(=)>(keys : set <Name >,values : set <T>)
returns (am : set <map <Name ,T>>)

requires values = {}
ensures am = allMaps (keys , values)

After all these changes, all proofs are still successfully
checked by Dafny. Then, by compiling our formalization,
Dafny automatically generates a library of methods in .NET
code (i.e. C#, Visual Basic, and F#). Since .NET does not
have a standard format for inductive datatypes, the data for-
mat used by the Dafny compiler may not agree with the data
formats used by other .NET languages. Therefore, the use
of our verified encoding from C# has required some data
conversions.

The compilation process transforms datatypes, such as
Structure, Judgement, and Formula, into C# classes. For
each constructor C of a datatype D a class is created named as
D_C. All these classes extend a generic abstract one called
Base_D. In addition, there is a class D that has a single
constructor with a parameter of type Base_D. For exam-

SN Computer Science

344 Page 20 of 24 SN Computer Science (2021) 2 :344

ple, the datatype Formula has four constructors in the
Dafny specification: Atom, And, Forall, and Exists. Dafny
generates the classes Formula, Base_Formula (abstract),
Formula_Atom, Formula_And, Formula_Exists, and
Formula_Forall. Auxiliary functions are automatically
generated to help developers to use the classes. For example,
a function is_C is generated for each constructor C. With
the previous classes and auxiliary functions we can instanti-
ate C# objects. These can be used as input in methods that
require them.

The fact that our formalization is verified guarantees that
every call that satisfies the precondition complies with the
postcondition. As a consequence, ourweb application checks
the requires clauses before calling the methods. In other
words, the only method called by the web application is
compute_canonical-judgementpreconditions are:

requires wfQCSP_Instance(phi ,B)
requires i in setOfIndex(phi)

Hence, before the callcompute_canonical-judgement([],
phi,B), we only check that wfQCSP_Instance(phi,B),
because [] in setOfIndex(phi) is trivial for any phi.

The web application is a graphical input interface to make
use of the .NET library that is generated by the Dafny com-
piler. It firstly check that the QCSP_Instance typed by the
user is well formed by calling the corresponding library
method. Then, it calls the library method that checks its sat-
isfiability, and reports the result to the user.

The web application code consists of 5 pages: index, sig-
nature, domain, interpretation and formula. This code has a
total of 660 lines. 48% of the code defines the Graphic User
Interface and its functionalities. 33% of the code defines the
business logic. Finally, only 19% of the code makes calls to
the .NET library.

Experience

Our formalization and implementation has been developed
in the Dafny IDE [60] that lends itself to increasing user pro-
ductivity. The Dafny IDE is an extension ofMicrosoft Visual
Studio (VS) that runs the program verifier in the background
and provides design-time feedback.

When an attempted verification fails—e.g an assertion
violation occurs, a loop or recursion could not terminate,
an invariant fails to be ensured on entry or to be maintained
by the loop, etc.—a red dot (and a red squiggly line) indicate
the return path along which the error is reported. The error
panel at the bottom of the screen shows the error message,
which also appears as hover text for the red squiggly line. The
error panel also lists the source locations related to the error.
These source locations are also marked by a violet squiggly
line with associated hover text.

Examples of error source locations are: a specific post-
condition (that cannot be verified), a user-defined predicate
that is called in an (violated) assertion, the precondition of a
method that is not verified by a method call, the termination
measure of a loop or a recursive definition, etc.

In addition, Dafny could provide more information about
the failing situation: the user can explore the (potential) coun-
terexample produced by the solver. By clicking on a red dot,
the Dafny IDE displays in a screen a table of states that
describe the counter example and, simultaneously, a collec-
tion of blue dots appear in the program text. There is state
information associated with each blue dot. The user can click
on a blue dot to select a particular state and trace the control
path leading to the error.

The main features of the Dafny IDE are well described in
[60].

Our development experience can be termed as highly pos-
itive, mainly because interaction with the tool is easy and it
provides good support and helpful information for verifica-
tion failures, in an agile and fast way.

Dafny supports a number of proof features tradition-
ally only found in LCF-style proof assistants like Coq or
Isabelle/HOL. The task is interesting from the point of view
of given a detailed formalization and for debugging the
proofs which were previously written with pen-and-paper
in a less precise form. Mechanized proofs often require
proving some essential properties that are usually assumed
(in the concerned area) without any proof. This is espe-
cially the case of many of the lemmas in the module
Conjunctive-Pos-Logic thatmainly contain logical equiv-
alences that are usually assumed. Moreover, it may happen
that the process of proving some of these properties raises
some issue improperly defined in the formalization. Actually,
this was our experience, as we explain in the next paragraph.

There is no doubt that formal verification is useful and
important in software development. Details can be sub-
tle and formal verification helps in detecting subtle details
that otherwise remain in hiding. Particularly noteworthy are
preconditions that the programmer assumes, but she (or
he) does not make explicit in the specification. Along the
development of our proof many subtle details have been
fixed. For example, we forgot to specify, as part of the
predicate wfStructure, that the domain of the given struc-
ture must be non-empty. We realized that when we were
not able to proof lemma existSqSem_Lemma in module
Conjunctive-Pos-Logic.

The lemma existSqSem_Lemma asserts that if B, f |�
∃x1 . . . ∃xnα (where xi /∈ f .Keys for all 1 ≤ i ≤ n), then
there exists v1, . . . , vn ∈ B such that

B, f [x1
→ v1, . . . , xn
→ vn] |� α.

SN Computer Science

SN Computer Science (2021) 2 :344 Page 21 of 24 344

Table 1 Some figures on lines,
different Dafny units (datatypes,
functions, ...), generated proof
obligations (PO), and seconds
required for verification,
breakdown per module

Module name Lines Datatypes Functions Lemmas Methods PO Secs

Utils 65 0 4 3 0 39 3

QCSP-Instance 358 2 8 19 8 697 17

Proof-System 218 1 7 4 1 469 14

Conj-Pos-Logic 363 0 2 13 0 1042 46

PS-Soundness 288 0 1 8 0 1004 32

PS-Completeness 231 0 4 5 1 698 17

Implementation 204 0 0 4 7 256 10

TOTAL 1727 3 26 56 17 4205 139

We prove it by induction on the sequence of variables
x1, . . . , xn . For that, one could choose any variable xi .
For avoiding unnecessary details here, we suppose that we
choose x1. Then, from B, f |� ∃x1(∃x2 . . . ∃xnα) and the
semantics of ∃, we get that there exists v1 ∈ B such that
B, f [x1
→ v1] |� ∃x2 . . . ∃xnα. From the latter, by induc-
tion hypothesis, there exists v2, . . . , vn ∈ B such that

B, f [x1
→ v1][x2
→ v2, . . . , xn
→ vn] |� α.

Hence, by composing the mapping updates the proof is done.
The problem appeared in obtaining v1, since we defined it
in Dafny as any value v such that v ∈ B and B, f [x1
→
v] |� ∃x2 . . . ∃xnα. Then, Dafny complains: “Error: cannot
establish the existence of LHS values that satisfies the such-
that predicate." When we wrote, in the line above the such-
that clause, the assumed assertion7 assume B =, the Dafny
error disappeared revealing our error: awell-formed structure
should not have an empty domain.

Another noteworthy mistake we made was when we
defined the canonical judgement for the universal and
existential formulas without taking into account the case
when the quantified variable is not in the variables of
the judgement. Hence, when we initially tried to prove
canonical_judgement_Lemma, the postcondition:

ensures cj.F = setOfValmodels
(FoI(i,phi ,B.Sig),B)

couldn’t be proved leading us to see that the quantified vari-
able (in the formula) does not always belong to the set of
variables of the judgement. The way we interacted with
Dafny in this detection is very similar to the above explained
error detection, though technicalities of the problem aremore
complex.

Among the many interesting lessons learned, we would
like to report on the details of the definition of

7 In order to help the user in the process of constructing proofs, Dafny
allows to introduce assumed assertions P . This allows the user to check
whether P is the condition that Dafny needs to complete the proof.
Dafny considers non-verified any proof with an assume clause.

function allMaps in module Utils. For that, we use the
function

function choose <A>(s : set <A>) : A
requires s = {}
{
var a : | a in s; a
}

to encapsulate into this function the application of Hilbert’s
epsilon operator :|. Otherwise, if we used the operator :|
directly in two places: the definition of function allMaps

and the proof of lemma allMaps_Correct_Lemma, then
each place would choose a different element, which makes
the proof of the lemma much harder than putting the expres-
sion into a function, because a function produces a unique
result for a given argument.

Our formalization is structured in sevenmodules. In Table
1 we summarize the size of the modules, in terms of the
total (non-comment, non-blank) lines of code, the number
of datatypes, the number of functions (including predicates),
proved lemmas, and methods. The function/predicate meth-
ods are counted as methods. The right-most two column
respectively reports the number of proof obligations (PO i.e.
queries discharged to Z3) and the seconds required to verify
each module by Dafny 2.3.0 for Windows (x64) running on
a processor i5-7500 CPU at 2.60GHz with 16 GB of RAM.

The proof of lemma existSq_Distr_And_Lemma takes
about 17 seconds, which is the most costly proof, for solving
152 PO. However, the largest set of PO, which consists of
423, is generated by models_Lemma_h and it is proved in
0.42 seconds.

To give some global figures about the PO generated by
lemmas, from the 51 lemmas, there are 18 lemmas that
generate at most 20 PO, 16 lemmas that generate from
21 to 60, 21 lemmas that generates from 61 to 250, and
only one lemma that produces more than 250 which is the
abovementioned models_Lemma_h. Just below it, the lemma
canonical_judgement_Lemma produces the number of PO
closest to 250, exactly 218 PO, and it is verified in 9 s.

The ‘proof obligations to lines’ ratio is (2.4:1), i.e. Dafny
generates 2.4 PO for every 1 line of code. A large share of
the proof obligations are automatically generated by Dafny

SN Computer Science

344 Page 22 of 24 SN Computer Science (2021) 2 :344

to check, for example, that (partial) expressions are defined
or recursive definitions and loops do terminate. On one hand,
expressions in Dafny are partial i.e. they are undefined for
some values of their variables. For example, given a sequence
s, the expression s[i] is defined only if i is an index into
the sequence s range. Similarly, for a user-defined function
F with formal parameter x, a function call F(a) is defined
only if a satisfies the user-defined precondition (of function
F) where x is substituted by a. On the other hand, Dafny auto-
matically generates POs to check that a termination metric
is bounded by 0 and it decreases at each step of the loop or
at each recursive call. The termination metric can have been
inferred by Dafny (no lines in code) or specified by the user
(usually, 1 line in code).

The amount of effort required to develop thewhole system
(seven modules of formalization and the web application) is
about 250 person-hours.

Acknowledgements We are greatly indebted to Rustan Leino for the
time and effort he has kindly devoted to us. This work has been carried
out thanks to his thoughtful and stimulating suggestions and his con-
siderable research assistance. Our work did specially benefit from his
in-person tutorial of the inductive-predicate features and his advice for
how to formulate the definitions in Dafny. We would also like to thank
Hubie Chen for his support during the early developments of this work.
We are also very grateful to the anonymous reviewers for their many
helpful comments and suggestions that led to substantial improvements
in the presentation of the paper.

Funding This research has been supported by the European Union
(FEDER funds) under grant TIN2017-86727-C2-2-R, and by the Uni-
versity of the Basque Country under Project LoRea GIU18-182.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Clarke EM, Emerson EA. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In: KozenD, editor.
Logics of programs. Berlin: Springer; 1982. p. 52–71. https://doi.
org/10.1007/BFb0025774.

2. Queille JP, Sifakis J. Specification and verification of concurrent
systems in cesar. In: Dezani-Ciancaglini M, Montanari U, editors,
International SymposiumonProgramming; 1982. Berlin: Springer,
p. 337–351. https://doi.org/10.1007/3-540-11494-7_22.

3. StockmeyerLJ.TheComplexity ofDecisionProblems inAutomata
Theory andLogic. ProjectMAC:MACTR.Massachusetts Institute
of Technology; 1974.

4. Vardi MY. The complexity of relational query languages. STOC
’82. New York: Association for Computing Machinery; 1982. p.
137–46. https://doi.org/10.1145/800070.802186.

5. Martin B. Dichotomies and duality in first-order model checking
problems. CoRR. 2006. http://arxiv.org/abs/cs/0609022.

6. Creignou N, Khanna S, Sudan M. Complexity classifications of
Boolean constraint satisfaction problems, volume 7 of SIAM

monographs on discrete mathematics and applications. Philadel-
phia: Society for Industrial and Applied Mathematics; 2001.
https://doi.org/10.1137/1.9780898718546.

7. Dechter R. Constraint processing. Burlington: Morgan Kauf-
mann Publishers Inc.; 2003. https://doi.org/10.1016/B978-1-
55860-890-0.X5000-2.

8. Chen H. A rendezvous of logic, complexity, and algebra.
ACM Comput Surv. 2009;42(1):21–232. https://doi.org/10.1145/
1592451.1592453.

9. Schaefer TJ. The complexity of satisfiability problems. In: Pro-
ceedings of the Tenth Annual ACM Symposium on Theory of
Computing, STOC ’78; 1978. New York: ACM, p. 216–226.
https://doi.org/10.1145/800133.804350.

10. Grohe M. The complexity of homomorphism and constraint satis-
faction problems seen from the other side. J ACM. 2007;54:1–24.

11. MarxD. Tractable hypergraph properties for constraint satisfaction
and conjunctive queries. J ACM. 2013;. https://doi.org/10.1145/
2535926.

12. Martin B. First-order model checking problems parameterized by
the model. In: Beckmann A, Dimitracopoulos C, Löwe B, editors.
Logic and theory of algorithms. Berlin: Springer; 2008. p. 417–27.
https://doi.org/10.1007/978-3-540-69407-6_45.

13. Martin B. Quantified constraints in twenty seventeen. In: Krokhin
A, Zivny S, editors. The constraint satisfaction problem: complex-
ity and approximability, volume 7 of Dagstuhl follow-ups; 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, p. 327–346.
https://doi.org/10.4230/DFU.Vol7.15301.327.

14. EglyU, Eiter T, Tompits H,Woltran S. Solving advanced reasoning
tasks using quantified boolean formulas. In: Kautz HA, Porter BW,
editors. In: Proceedings of the 17th national conference on artificial
intelligence and 12th conf. on innovative applications of artificial
intelligence; 2000. AAAI Press/TheMIT Press, p. 417–422. http://
www.aaai.org/Library/AAAI/2000/aaai00-064.php.

15. Rintanen J. Constructing conditional plans by a theorem-prover.
J Artif Intell Res. 1999;10(1):323–52 http://dl.acm.org/citation.
cfm?id=1622859.1622870.

16. Buning HK, Karpiński M, Flogel A. Resolution for quantified
Boolean formulas. Inf Comput. 1995;117(1):12–8. https://doi.org/
10.1006/inco.1995.1025.

17. Cadoli M, Schaerf M, Giovanardi A, Giovanardi M. An algorithm
to evaluate quantified Boolean formulae and its experimental eval-
uation. J Autom Reason. 2002;28(2):101–42. https://doi.org/10.
1023/A:1015019416843.

18. Giunchiglia E, Narizzano M, Tacchella A. Backjumping for
quantified Boolean logic satisfiability. Artif Intell. 2003;145(1–
2):99–120. https://doi.org/10.1016/S0004-3702(02)00373-9.

19. Williams R. Algorithms for quantified boolean formulas. In: Pro-
ceedings of the thirteenth annual ACM-SIAM symposium on
discrete algorithms, SODA ’02; 2002. Society for Industrial and
Applied Mathematics, p. 299–307. http://dl.acm.org/citation.cfm?
id=545381.545421.

20. Bordeaux L, Monfroy E. Beyond NP: arc-consistency for quan-
tified constraints. In: Van Hentenryck P, editor. Principles and
practice of constraint programming-CP. Berlin: Springer; 2002. p.
371–86. https://doi.org/10.1007/3-540-46135-3_25.

21. Gent IP, Nightingale P, Rowley A, Stergiou K. Solving quantified
constraint satisfaction problems. Artif Intell. 2008;172(6):738–71.
https://doi.org/10.1016/j.artint.2007.11.003.

22. MamoulisN, StergiouK.Algorithms for quantified constraint satis-
faction problems. In: Proceedings ofCP’04, volume3258ofLNCS,
2004. Springer, p. 752–756.

23. Abuin A, Chen H, Hermo M, Lucio P. Towards the automatic ver-
ification of QCSP tractability results. In: Proceedings of the XVII
Jornadas sobre Programación y Lenguajes (PROLE 2017). 2017.
http://hdl.handle.net/11705/PROLE/2017/017.

SN Computer Science

https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1145/800070.802186
http://arxiv.org/abs/cs/0609022
https://doi.org/10.1137/1.9780898718546
https://doi.org/10.1016/B978-1-55860-890-0.X5000-2
https://doi.org/10.1016/B978-1-55860-890-0.X5000-2
https://doi.org/10.1145/1592451.1592453
https://doi.org/10.1145/1592451.1592453
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/2535926
https://doi.org/10.1145/2535926
https://doi.org/10.1007/978-3-540-69407-6_45
https://doi.org/10.4230/DFU.Vol7.15301.327
http://www.aaai.org/Library/AAAI/2000/aaai00-064.php
http://www.aaai.org/Library/AAAI/2000/aaai00-064.php
http://dl.acm.org/citation.cfm?id=1622859.1622870
http://dl.acm.org/citation.cfm?id=1622859.1622870
https://doi.org/10.1006/inco.1995.1025
https://doi.org/10.1006/inco.1995.1025
https://doi.org/10.1023/A:1015019416843
https://doi.org/10.1023/A:1015019416843
https://doi.org/10.1016/S0004-3702(02)00373-9
http://dl.acm.org/citation.cfm?id=545381.545421
http://dl.acm.org/citation.cfm?id=545381.545421
https://doi.org/10.1007/3-540-46135-3_25
https://doi.org/10.1016/j.artint.2007.11.003
http://hdl.handle.net/11705/PROLE/2017/017

SN Computer Science (2021) 2 :344 Page 23 of 24 344

24. Chen H. Beyond Q-resolution and prenex form: a proof system
for quantified constraint satisfaction. Logic Methods Comput Sci.
2014;. https://doi.org/10.2168/LMCS-10(4:14)2014.

25. Balabanov V, Jiang J-HR. Unified QBF certification and its appli-
cations. Formal Methods Syst Des. 2012;41(1):45–65. https://doi.
org/10.1007/s10703-012-0152-6.

26. Zhang L, Malik S. Conflict driven learning in a quantified boolean
satisfiability solver. In: Proceedings of the 2002 IEEE/ACM inter-
national conference on computer-aided design (ICCAD’02); 2002.
p. 442–449. https://doi.org/10.1145/774572.774637.

27. Van Gelder A. Contributions to the theory of practical quantified
boolean formula solving. In:MilanoM, editor. Principles and Prac-
tice of Constraint Programming-18th International Conference, CP
2012, Proceedings, volume 7514 of lecture notes in computer sci-
ence, 2012. Springer, p. 647–663. https://doi.org/10.1007/978-3-
642-33558-7_47.

28. Balabanov V, Widl M, Jiang J-HR. QBF resolution systems and
their proof complexities. In: Sinz C, Egly U, editors. Theory and
applications of satisfiability testing-SAT 2014. Cham: Springer
International Publishing; 2014. p. 154–69.

29. Bove A, Dybjer P, Norell U. A brief overview of Agda—a func-
tional language with dependent types. In: Proceedings of the 22nd
international conference on theorem proving in higher order logics.
TPHOLs’09; 2009. Springer, p. 73–78. https://doi.org/10.1007/
978-3-642-03359-9_6.

30. The Coq Development Team. The Coq proof assistant. https://coq.
inria.fr.

31. Nipkow T, Paulson LC, Wenzel M. Isabelle/HOL—a proof assis-
tant for higher-order logic, volume2283ofLNCS.Berlin: Springer;
2002.

32. Gordon M, Milner R, Wadsworth CP. Edinburgh LCF: a mecha-
nised logic of computation, volume of 78 lecture notes in computer
science. Berlin: Springer; 1979.

33. Schulz S. System description: E 1.8. In:McMillanKL,Middeldorp
A, Voronkov A, editors, Logic for programming, artificial intel-
ligence, and reasoning-19th international conference, LPAR-19,
Proceedings, volume 8312 of lecture notes in computer science;
2013. Springer, p. 735–743. https://doi.org/10.1007/978-3-642-
45221-5_49.

34. Weidenbach C, Dimova D, Fietzke A, Kumar R, Suda M, Wis-
chnewski P. SPASS version 3.5. In: Schmidt RA, editor, Automated
Deduction-CADE-22, 22nd International Conference on Auto-
mated Deduction, Proceedings, volume 5663 of lecture notes in
computer science; 2009. Springer, p. 140–145. https://doi.org/10.
1007/978-3-642-02959-2_10.

35. RiazanovA,VoronkovA. The design and implementation ofVAM-
PIRE. AI Commun. 2002;15(2–3):91–110 http://content.iospress.
com/articles/ai-communications/aic259.

36. deMoura L, BjørnerN. Z3: an efficient SMT solver. In: Ramakrish-
nan CR, Rehof J, editors. Tools and algorithms for the construction
and analysis of systems, 14th international conference, TACAS
2008, volume 4963 of lecture notes in computer science; 2008.
Springer, p. 337–340.

37. Blanchette JC. Formalizing the metatheory of logical calculi and
automatic provers in Isabelle/HOL (invited talk). In: Mahboubi
A, Myreen MO, editors. Proceedings of the 8th ACM SIGPLAN
international conference on certified programs and proofs, CPP.
ACM; 2019. p. 1–13. https://doi.org/10.1145/3293880.3294087

38. Ringer T, Palmskog K, Sergey I, Gligoric M, Tatlock Z. QED at
large: a survey of engineering of formally verified software. Found
Trends Program Lang. 2019;5(2–3):102–281. https://doi.org/10.
1561/2500000045.

39. Blanchette JC, Fleury M, Weidenbach C. A verified SAT solver
framework with learn, forget, restart, and incrementality. In: Pro-
ceedings of the twenty-sixth international joint conference on

artificial intelligence, IJCAI-17; 2017. p. 4786–4790. https://doi.
org/10.24963/ijcai.2017/667.

40. Schlichtkrull A. Formalization of the resolution calculus for first-
order logic. J Autom Reason. 2018;61(1–4):455–84. https://doi.
org/10.1007/s10817-017-9447-z.

41. Esparza J, Lammich P, Neumann R, Nipkow T, Schimpf A, Smaus
J-G. A fully verified executable LTL model checker. In: Sharygina
N, Veith H, editors. Computer aided verification. Berlin: Springer;
2013. p. 463–78.

42. FleuryM. Optimizing a verified SAT solver. In: Badger JM, Rozier
KY, editors. NASA Formal Methods-11th International Sympo-
sium, NFM 2019, Proceedings, volume 11460 of lecture notes in
computer science; 2019. Springer, p. 148–165. https://doi.org/10.
1007/978-3-030-20652-9_10.

43. Maric F. Formal verification of a modern SAT solver
by shallow embedding into Isabelle/Hol. Theor. Comput.
Sci. 2010;411(50):4333–56. https://doi.org/10.1016/j.tcs.2010.09.
014.

44. Oe D, Stump A, Oliver C, Clancy K. versat: a verified modern SAT
solver. In: Kuncak V, Rybalchenko A, editors. Verification, Model
Checking, and Abstract Interpretation-13th International Confer-
ence, VMCAI 2012, Proceedings, volume 7148 of lecture notes in
computer science; 2012. Springer, p. 363–378. https://doi.org/10.
1007/978-3-642-27940-9_24.

45. Schlichtkrull A, Blanchette JC, Traytel D. A verified prover based
on ordered resolution. In: Proceedings of the 8th ACM SIGPLAN
international conference on certified programs and proofs (CPP
2019); 2019. Association for Computing Machinery, p. 152–165.
https://doi.org/10.1145/3293880.3294100.

46. Kaufmann M, Manolios P, Moore JS. Computer-aided reason-
ing: an approach. Advance formal methods. Dordrecht: Kluwer
Academic Publishers; 2000. https://doi.org/10.1007/978-1-4615-
4449-4.

47. Cohen E, Dahlweid M, Hillebrand M, Leinenbach D, Moskal M,
Santen T, Schulte W, Tobies S. VCC: a practical system for veri-
fying concurrent C. In: Berghofer S, Nipkow T, Urban C, Wenzel
M, editors. Proceedings of theorem proving in higher order log-
ics: 22nd international conference, TPHOLs, Munich, Germany,
August 17-20; 2009. Springer, p. 23–42. https://doi.org/10.1007/
978-3-642-03359-9_2.

48. Swamy N, Chen J, Fournet C, Strub P-Y, Bhargavan K, Yang
J. Secure distributed programming with value-dependent types.
J Funct Programm. 2013;23(4):402–51. https://doi.org/10.1017/
S0956796813000142.

49. Jacobs B, Smans J, Philippaerts P, Vogels F, PenninckxW, Piessens
F. VeriFast: a powerful, sound, predictable, fast verifier for C and
Java. In: Bobaru MG, Havelund K, Holzmann GJ, Joshi R, editors.
NASA Formal Methods. Berlin: Springer; 2011. p. 41–55. https://
doi.org/10.1007/978-3-642-20398-5_4.

50. Filliâtre J-C, Paskevich A. Why3—where programs meet provers.
In: Felleisen M, Gardner P, editors. Programming languages and
systems—22nd European Symposium on Programming, ESOP
2013, volume 7792 of lecture notes in computer science; 2013.
Springer, p. 125–128. https://doi.org/10.1007/978-3-642-37036-
6_8.

51. Rustan K, LeinoM. Dafny: an automatic program verifier for func-
tional correctness. In: Clarke EM, Voronkov A, editors. Logic for
programming, artificial intelligence, and reasoning, volume 6355
of lecture notes in computer science. Berlin: Springer; 2010. p.
348–70.

52. Clochard M, Filliâtre J-C, Marché J-C, Paskevich A. Formalizing
Semantics with an Automatic Program Verifier. Berlin: Springer
International Publishing; 2014. p. 37–51. https://doi.org/10.1007/
978-3-319-12154-3_3.

SN Computer Science

https://doi.org/10.2168/LMCS-10(4:14)2014
https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1145/774572.774637
https://doi.org/10.1007/978-3-642-33558-7_47
https://doi.org/10.1007/978-3-642-33558-7_47
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://coq.inria.fr
https://coq.inria.fr
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10
http://content.iospress.com/articles/ai-communications/aic259
http://content.iospress.com/articles/ai-communications/aic259
https://doi.org/10.1145/3293880.3294087
https://doi.org/10.1561/2500000045
https://doi.org/10.1561/2500000045
https://doi.org/10.24963/ijcai.2017/667
https://doi.org/10.24963/ijcai.2017/667
https://doi.org/10.1007/s10817-017-9447-z
https://doi.org/10.1007/s10817-017-9447-z
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1017/S0956796813000142
https://doi.org/10.1017/S0956796813000142
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-12154-3_3
https://doi.org/10.1007/978-3-319-12154-3_3

344 Page 24 of 24 SN Computer Science (2021) 2 :344

53. Bobot F, Filliâtre J-C,MarchéC, PaskevichA. Let’s verify thiswith
Why3. Softw Tools Technol Transf (STTT). 2015;17(6):709–27.
https://doi.org/10.1007/s10009-014-0314-5.

54. RustanK,LeinoM.Well-founded functions and extremepredicates
inDafny: a tutorial. In: KonevB, Schulz S, SimonL, editors. IWIL-
2015. 11th international workshop on the implementation of logics,
volume 40 of EPiC series in computing; 2016. EasyChair, p. 52–66.
https://doi.org/10.29007/v2m3.

55. Tarski A. A lattice-theoretical fixpoint theorem and its applica-
tions. Pac J Math. 1955;5(2):285–309 https://projecteuclid.org:
443/euclid.pjm/1103044538.

56. Rustan K, Leino M, Polikarpova N. Verified calculations. In:
CohenE,RybalchenkoA, editors.Verified software: theories, tools,
experiments—5th international conference, VSTTE 2013, revised
selected papers, volume 8164 of lecture notes in computer sci-
ence; 2014. Springer, p. 170–190. https://doi.org/10.1007/978-3-
642-54108-7_9.

57. BackhouseR, editor. The calculationalmethod, volume 53 of infor-
mation processing letters. New York: Elsevier; 1995. https://doi.
org/10.1016/0020-0190(94)00212-H.

58. Rustan K, Leino M. Compiling Hilbert’s epsilon operator. In:
Fehnker A, McIver A, Sutcliffe G, Voronkov A, editors. LPAR-20.
20th International Conferences on Logic for Programming, Artifi-
cial Intelligence and Reasoning-Short Presentations, volume 35 of
EPiC Series in Computing; 2015. EasyChair, p. 106–118. https://
doi.org/10.29007/rkxm.

59. Rustan K, Leino M. Dafny power user: iterating over a collection.
manuscript krml 275; 2020. https://leino.science/papers/krml275.
html.

60. Rustan K, Leino M, Wüstholz V. The Dafny integrated develop-
ment environment. In: Dubois C, Giannakopoulou D, Méry D,
editors. Proceedings 1st Workshop on Formal Integrated Devel-
opment Environment, F-IDE 2014, volume 149 of electronic
proceedings in theoretical computer science; 2014. Open Publish-
ing Association, p. 3–15. https://doi.org/10.4204/eptcs.149.2.

61. Rustan K, Leino M, Matichuk D. Modular verification scopes
via export sets and translucent exports. In: Principled software
development-essays dedicated to arnd Poetzsch–Heffter on the
Occasion of his 60th Birthday; 2018. p. 185–202. https://doi.org/
10.1007/978-3-319-98047-8_12.

62. Thiemann R, Sternagel C. Certification of termination proofs using
CeTA. In: Berghofer S, Nipkow T, Urban C, Wenzel M, editors,
Theorem proving in higher order logics, 22nd international confer-
ence, TPHOLs 2009, proceedings, volume 5674 of lecture notes in
computer science; 2009. Springer, p. 452–468. https://doi.org/10.
1007/978-3-642-03359-9_31.

63. Lochbihler A, Bulwahn L. Animating the formalised semantics
of a Java-Like language. In Marko C, van Eekelen JD, Geuvers
H, Schmaltz J, Wiedijk F, editors. Interactive theorem proving-
second international conference, ITP 2011, proceedings, volume
6898 of lecture notes in computer science; 2011. Springer, p. 216–
232. https://doi.org/10.1007/978-3-642-22863-6_17.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

SN Computer Science

https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.29007/v2m3
https://projecteuclid.org:443/euclid.pjm/1103044538
https://projecteuclid.org:443/euclid.pjm/1103044538
https://doi.org/10.1007/978-3-642-54108-7_9
https://doi.org/10.1007/978-3-642-54108-7_9
https://doi.org/10.1016/0020-0190(94)00212-H
https://doi.org/10.1016/0020-0190(94)00212-H
https://doi.org/10.29007/rkxm
https://doi.org/10.29007/rkxm
https://leino.science/papers/krml275.html
https://leino.science/papers/krml275.html
https://doi.org/10.4204/eptcs.149.2
https://doi.org/10.1007/978-3-319-98047-8_12
https://doi.org/10.1007/978-3-319-98047-8_12
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-22863-6_17

	Verified Model Checking for Conjunctive Positive Logic
	Abstract
	Introduction
	A Proof System for QCSP
	Dafny: Language, Verifier and IDE
	Formalization of the Proof System PS in Dafny
	Dafny Proofs of Soundness and Completeness
	Modular Structure
	Implementation
	Experience
	Acknowledgements
	References

