
Theoretical Computer Science 813 (2020) 428–451
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Branching-time logic ECTL# and its tree-style one-pass

tableau: Extending fairness expressibility of ECTL+

Alexander Bolotov a,1, Montserrat Hermo b,∗,2, Paqui Lucio b,2

a University of Westminster, W1W 6UW, London, UK
b University of the Basque Country, P. Manuel de Lardizabal, 1, 20018-San Sebastián, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 February 2019
Received in revised form 23 December 2019
Accepted 8 February 2020
Available online 13 February 2020

Keywords:
Temporal logic
Fairness
Tableau
Branching-time
One-pass tableau

Temporal logic has become essential for various areas in computer science, most notably
for the specification and verification of hardware and software systems. For the specifica-
tion purposes rich temporal languages are required that, in particular, can express fairness
constraints. For linear-time logics which deal with fairness in the linear-time setting, one-
pass and two-pass tableau methods have been developed. In the repository of the CTL-type
branching-time setting, the well-known logics ECTL and ECTL+ were developed to ex-
plicitly deal with fairness. However, due to the syntactical restrictions, these logics can
only express restricted versions of fairness. The logic CTL�, often considered as ‘the full
branching-time logic’ overcomes these restrictions on expressing fairness. However, CTL�

is extremely challenging for the application of verification techniques, and the tableau tech-
nique, in particular. For example, there is no one-pass tableau construction for CTL� , while
one-pass tableau has an additional benefit enabling the formulation of dual sequent cal-
culi that are often treated as more ‘natural’ being more friendly for human understanding.
These two considerations lead to the following problem - are there logics that have richer
expressiveness than ECTL+ , allowing the formulation of a new range of fairness constraints
with ‘until’ operator, yet ‘simpler’ than CTL� , and for which a one-pass tableau can be de-
veloped? Here we give a positive answer to this question, introducing a sub-logic of CTL�

called ECTL#, its tree-style one-pass tableau, and an algorithm for obtaining a system-
atic tableau, for any given admissible branching-time formulae. We prove the termination,
soundness and completeness of the method. As tree-shaped one-pass tableaux are well
suited for the automation and are amenable for the implementation and for the formula-
tion of sequent calculi. Our results also open a prospect of relevant developments of the
automation and implementation of the tableau method for ECTL#, and of a dual sequent
calculi.

© 2020 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: A.Bolotov@westminster.ac.uk (A. Bolotov), montserrat.hermo@ehu.eus (M. Hermo), paqui.lucio@ehu.eus (P. Lucio).

1 The author would like to thank the University of Westminster for supporting the sabbatical in 2017.
2 These authors have been partially supported by Spanish Projects TIN2013-46181-C2-2-R and TIN2017-86727-C2-2-R, and by the University of the

Basque Country under Project LoRea GIU15/30.
https://doi.org/10.1016/j.tcs.2020.02.015
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.02.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.02.015&domain=pdf
mailto:A.Bolotov@westminster.ac.uk
mailto:montserrat.hermo@ehu.eus
mailto:paqui.lucio@ehu.eus
https://doi.org/10.1016/j.tcs.2020.02.015

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 429
1. Introduction

Temporal logic has become essential for the specification and verification of hardware and software systems. For the
specification of the reactive and distributed systems, or, most recently, autonomous systems, the modelling of the possi-
bilities ‘branching’ into the future is essential. Among important properties of these systems, so called fairness properties
are important. In the standard formalisation of fairness, operators ♦ (eventually) and � (always) have been used: A♦�p –
‘p’ is true along all computation paths except possibly their finite initial interval, where ‘A’ is ‘for all paths’ quantifier, and
E�♦p – ‘p’ is true along a computation path at infinitely many states, where ‘E’ stands for ‘there exists a path’ quantifier.
Branching-time logics (BTL) here give us an appropriate reasoning framework, where the most used class of formalisms are
‘CTL’ (Computation Tree Logic) type logics. CTL itself requires every temporal operator to be preceded by a path quantifier,
thus, cannot express fairness. ECTL (Extended CTL) [1] enables simple fairness constraints but not their Boolean combi-
nations. ECTL+ [2] further extends the expressiveness of ECTL allowing Boolean combinations of temporal operators and
ECTL fairness constraints (but not permitting their nesting). The logic CTL� , often considered as ‘the full branching-time
logic’ overcomes these restrictions on expressing fairness. However, CTL� is extremely challenging for the application of any
known technique of automated reasoning. Note that, unlike fair CTL [3] which, in tackling fairness, changes the underlying
trees to those with ‘fair paths’ only, ECTL and ECTL+ do not impose these changes.

From another perspective, the literature on fairness constraints, even in the linear-time setting, lacks the analysis of
their formulation with the U (‘until’) operator. To the best of our knowledge, there are only a few research papers that
raise or discuss the problem. For example, [4], introduces the logic LCTL, providing an extension of liveness constraints by
the “until” operator. However, LCTL belongs to ‘Fair CTL-type’ logics [5]. ‘Generalised liveness assumptions, which allow to
express that the conclusion f2 U f3 of a liveness assumption �(f1 ⇒ (f2 U f3)) has to be satisfied’ are addressed in [6].
The U operator in the formulation of the fairness can also be found in [7] which considers the sequential composition of
processes, providing the following example - the composition of processes P1 and P2 ‘behaves as P 1 until its termination
and then behaves as P 2’. Finally, [8] utilises restricted linear-time fairness constraints with U in the linear-time setting.
We are not aware of any other analysis of fairness constraints in branching-time setting using the U operator and without
restricting the underlying logic to be interpreted over the ‘fair’ paths. We bridge this gap, presenting the logic ECTL# (we
use # to indicate some restrictions on concatenations of the modalities and their Boolean combinations). It is weaker than
CTL� but extends ECTL+ by allowing the combinations �(A U B) or A U �B , referred to as modalities �U and U �. This
enables the formulation of stronger fairness constraints in the branching-time setting. The fairness constraint A(p U �q)

reads as ‘invariant q is true along all paths of the computation except possibly their finite initial interval, where p is true’.
For example, the following property specifies that whenever the user of an account is requested to change the current
password, either it is changed to a fresh one, or the account is deactivated:

A((P w
n U �(Rn ⇒ A�(P w ′

n ⇒ w �= w ′)) ∨ ((Ln ∧ P w
n)U �((Rn ∧ (¬P w ′

n ∨ w ′ = w)) ⇒ ¬Ln))) (1)

where P w
n (P w ′

n) stands for the account n has an associated password w (w ′); Ln stands for the account n is live, and Rn

means the account number n is requested to change the password, Note that formula (1) represents one of the difficult
cases of ECTL# structures - an A-disjunctive formula, see §2.

B(U ,◦) (CTL) extensions E(�♦q) E(�♦q ∧�♦r) A((p U�q) ∨ (sU�¬r)) A♦(◦p ∧ E◦¬p)

B(U ,◦,�♦) (ECTL)
√

X X X

B+(U ,◦,�♦) (ECTL+)
√ √

X X

B+(U ,◦, U�) (ECTL#)
√ √ √

X

B�(U ,◦) (CTL�)
√ √ √ √

Fig. 1. Classification of CTL-type logics and their expressiveness.

Fig. 1, which utilises another temporal operator - ◦ - ‘at the next moment of time’, places our logic in the hierarchy of
BTL representing their expressiveness: logics are classified by using ‘B’ for ‘Branching’, followed by the set of only allowed
modalities as parameters; B+ indicates admissible Boolean combinations of the modalities and B� reflects ‘no restrictions’
in either concatenations of the modalities or Boolean combinations between them.3 Thus, B(U , ◦) denotes the logic CTL.
In this hierarchy ECTL# is B+(U , ◦, U �).

We present a tree-style one-pass tableau for ECTL# continuing the analogous developments in linear-time case [11,12]
and for CTL [11]. An indicative feature of this approach is a context-based tableau technique. Context-based tableaux have
dual sequent calculi due to their handling of eventualities exclusively by using logical rules. To the best of our knowledge,

3 This notation goes back to [9], here we use its nice tuning by Nicolas Markey in [10]. In the last column we use a short CTL� formula A♦(◦p ∧ E◦¬p),
not expressible by weaker logics. We found this formula indicative for CTL� as its validity is directly linked to the limit closure property [9].

430 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
BTL more expressive than CTL have not enjoyed the context-based tableau though other kinds of tableaux exist for these
logics. There is a single-pass tableau for CTL that carries out an ‘on the fly’ eventualities checking (non-logical mechanism)
following the Schwendimann’s approach [13]. For CTL� , which definitely is a super-logic of ECTL#, different other kinds
of tableau-style methods exist, remarkably [14–18]. Since CTL� is much more expressive than ECTL#, such methods often
utilise additional mechanisms (non only inference rules) to control loops, which are, for example, automata-theoretic-based
mechanism [17]. This brings extra complexity, which is justified to handle the CTL� expressivity. However, simpler proofs
could be obtained for a weaker logic such as ECTL#. There are also extensions of the tableau methods to super-logics of
CTL� . For example, [19] introduces a two-pass tableau method for a logic that is a multiagent extension of CTL� . Tree-style
one-pass tableaux (without additional procedures for checking meta-logical properties) have dual (cut-free) sequent calculi,
see [12], enabling the construction of human-understandable proofs. In addition, these tableaux are well suited for the
automation and are amenable for the implementation.4 Our tableau is effectively an AND-OR tree where nodes are labelled
by sets of state (see the definitions in §2) formulae. There are difficult cases of ECTL# formulae that appear due to the
enriched syntax: disjunctions of formulae in the scope of the A quantifier and conjunctions of formulae in the scope of the
E quantifier. To tackle these cases, in addition to α − β rules, that are standard to the tableaux, we define novel β+-rules
which use the context to force the eventualities to be fulfilled as soon as possible.

Outline of the paper. The rest of this paper, an extended version of [21], includes more examples, explanations, and detailed
proofs of the results. It commences with §2 where we describe ECTL# as a sublogic of CTL� . The formulation of the tableau
method is given in §3, where we define and explain tableau rules. A systematic tableau construction and relevant examples
are introduced in §4. The soundness and completeness of our tableau method are proved in §5 and in §6, respectively; for
the latter, we prove the refutational completeness and termination of the presented method. Finally, in §7 we draw the
conclusions and prospects of future work that the presented results open.

2. The logic ECTL#

As ECTL# is a sublogic of CTL� we first recall CTL� syntax and semantics.

Definition 1 (Syntax of CTL�). Given Prop is a fixed set of propositions, and p ∈ Prop, we define sets of state (σ) and path
(π) CTL� formulae over Prop as follows: σ ::= T | p | σ1 ∧ σ2 | ¬σ | Eπ and π ::= σ | π1 ∧ π2 | ¬π | ◦π | π U π | �π . �

In CTL� , and all BTL logics, well formed formulae are state formulae.

Definition 2 (Labelled Kripke structure). A Kripke structure, K, is a triple (S, R, L) where S �= ∅ is a set of states, R ⊆ S × S is
a total binary relation, called the transition relation, and L : S → 2Prop is a labelling function. �

A fullpath x through a Kripke structure K is an infinite sequence of states s0, s1, . . . such that (si, si+1) ∈ R , for every
i ≥ 0. Let ‘fullpaths(K)’ be the set of all fullpaths in K. Given a fullpath x = s0, s1, . . . , sk, . . . (k ≥ 0), we denote its state
sk by x(k), its finite prefix by the sequence x≤k = s0, s1, . . . , sk and the suffix path x≥k = sk, sk+1, When a fullpath x is
given, instead of x(k) we will often write k, referring to k as ‘a state index of x’. If x is a fullpath and y is a path such that
y(0) = x(k), for some k > 0, then the juxtaposition x≤k y is a fullpath. Our Kripke structures are labelled directed graphs
that correspond to Emerson’s R-generable structures, i.e. the transition relation R is suffix, fusion and limit closed [9]. For
any K, any x ∈ fullpaths(K) and any natural number i, the notation K�x(i) denotes a Kripke structure with the set of states
of K restricted to those that are R-reachable from x(i).

Definition 3. Given the structure K = (S, R, L), the relation |=, which evaluates path formulae in a given path x and state
formulae at the state index i of the given path x, is defined bellow:

K, x, i |= T and K, x, i |= p iff p ∈ L(x(i)).
K, x, i |= ¬σ iff K, x, i |= σ does not hold.

K, x, i |= σ1 ∧ σ2 iff K, x, i |= σ1 and K, x, i |= σ2.

K, x, i |= Eπ iff there exists a path y ∈ fullpaths(K�x(i)) such that K, y |= π.

K, x |= ◦π iff K, x≥1 |= π.

K, x |= ¬π iff K, x |= π does not hold.

K, x |= π1 ∧ π2 iff K, x |= π1 and K, x |= π2.

K, x |= π1 U π2 iff there exists k ≥ i such that K, x≥k |= π2 and K, x≥ j |= π1 for all j ∈ {0, . . . ,k − 1}.
K, x |= �π iff K, x≥ j |= π for all j ≥ 0.

In addition, for any set � of state formulae, K, x, i |= � iff K, x, i |= σ , for all σ ∈ �. �
4 An excellent survey of the seminal tableau techniques for temporal logics can be found in [20].

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 431
Many other usual operators can be derived from those introduced, in particular, the ‘falsehood’ constant F ≡ ¬T, and the
disjunction operator ϕ1 ∨ϕ2 ≡ ¬(¬ϕ1 ∧¬ϕ2), as well as the temporal operator ♦π ≡ TU π and the universal path quantifier
Aπ ≡ ¬E¬π . It is also known that �π ≡ ¬♦¬π but, for technical convenience, we define it as a primitive operator. Let us
recall some meta-logical concepts that are essential for the paper.

Definition 4 (Syntactically consistent set of formulae). A set � of state formulae σ is syntactically consistent abbreviated as ��
if F /∈ � and {σ , ¬σ } �� for any σ ; otherwise, � is inconsistent denoted as �⊥ . �
Definition 5 (Satisfiability). For a set of state formulae �, the set of its models, Mod(�), is formed by all triples (K, x, i) such
that K, x, i |= �. � is satisfiable (Sat(�)) if Mod(�) �= ∅, otherwise � is unsatisfiable (UnSat(�)). �

If Mod(�) = Mod(�′) then � and �′ are equivalent denoted as � ≡ �′ . For a set of state formulae �, if for any fullpath
x ∈ fullpaths(K), we have K, x, 0 |= �, then we simply write K |= �.

Definition 6 (Cyclic sequence, cyclic path and cyclic Kripke structure). Let z be a finite sequence of states z = s0, s1, . . . , s j such
that, for every 0 ≤ k < j, (sk, sk+1) ∈ R . Then, z is cyclic iff there exists si, 0 ≤ i ≤ j such that (s j, si) ∈ R . Let z be a finite
cyclic sequence, the subsequence si, . . . , s j of z is called a loop and si is called the cycling element. We denote the loop as
〈si, . . . , s j〉ω . A cyclic path over z is an infinite sequence path(z) = s0, s1, . . . , si−1〈si, si+1, . . . , s j〉ω .5 A Kripke structure K is
cyclic if every fullpath is a cyclic path over a cyclic sequence of states. �

The fact that CTL� satisfiability can be reduced to the emptiness problem for automata on infinite trees (see [22,23]),
ensures that the (non-empty) collection of models of a given satisfiable CTL� formula can be obtained by infinitely unwind-
ing (in any possible way) a finite graph. Hence, for any CTL� formula φ, such that Mod(φ) �= ∅, there always exists a model
K ∈ Mod(φ) such that K is cyclic. Therefore, when speaking about the satisfiability in CTL� (hence ECTL#) we can consider
cyclic Kripke structures.

Proposing a new logic, ECTL#, we aim at defining a sublogic of CTL� that extends the ECTL+ formulae �♦σ and ♦�σ
(where σ means state formula), respectively, to �(σ U σ) and σ U �σ .

Definition 7 (Syntax of ECTL#). The set of ECTL# formulae, over a fixed set of propositions Prop, are formed according to
the following restriction of the CTL� grammar in Definition 1 for path formulae (state formulae are the same): π ::= σ |
π1 ∧ π2 | ¬π | ◦σ | σ U σ | �σ | σ U (�σ) | �(σ U σ). �

Note that the nesting of pure path formulae, totally unrestricted in CTL� , is now restricted by the grammar cases:
◦σ | σ U σ | �σ | σ U �σ | �(σ U σ). In particular, a U �(b ∧ �c) (where a, b, c ∈ Prop) is not an ECTL# formula because
b ∧ �c is directly in the scope of the � but is not a state formula. For technical convenience, we assume that the tableau
construction applies to the formulae in negation normal form (shortly, nnf). Therefore, we introduce here a grammar for the
set of ECTL# formulae that is closed under negation and requires the negation to apply to atomic propositions (instead of
state and path formulae).

Definition 8 (Syntax of ECTL# in nnf). Let Prop be a fixed set of propositions, let ρ ∈ Prop and let Lit ::= F | T | ρ | ¬ρ , be the
set of literals. The set FProp of ECTL# formulae in nnf (over Prop) is given by the grammar:
σ ::= Lit | σ1 ∧ σ2 | σ1 ∨ σ2 | Eπ | Aπ
π ::= π1 ∧ π2 | π1 ∨ π2 | ◦σ | σ U (�σ) | �(σ U σ) | �(σ ∨ �σ) | σ U (σ ∧ ♦σ)

where σ means a state formula, π means a path formula, and ♦σ abbreviates TU σ . �
The modified grammar is obtained by extending the state formulae grammar by Aπ -formulae and the path formulae

grammar by �(σ ∨ �σ) and σ U (σ ∧ ♦σ). Cases σ U σ and �σ are omitted because they respectively abbreviate σ U (σ ∧
♦T) and �(σ ∨ �F). Note that, for a, b, c ∈ Prop, the formula �(a ∨ �(b ∨ �c)) is not in FProp because b ∨ �c is not a state
formula. The following proposition ensures that the set FProp is closed under negation.

Proposition 9 (Closure under negation). For any ϕ ∈ FProp , we also have nnf(¬ϕ) ∈ FProp . Moreover, the negation of a state (resp.
path) formula is a state (resp. path) formula.

5 Cyclic paths are also known as ultimately periodic paths.

432 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
Proof. By structural induction on the formulae, using the following equivalences (and well known classical ones):

1. ¬Aϕ ≡ E¬ϕ 5. ¬�(ϕ1 U ϕ2) ≡ ♦�¬ϕ2 ∨ ♦((¬ϕ1) ∧ (¬ϕ2))

2. ¬Eϕ ≡ A¬ϕ 6. ¬(ϕ1 U �ϕ2) ≡ (�♦¬ϕ2) ∨ ♦(¬ϕ1 ∧ ♦¬ϕ2)

3. ¬◦ϕ ≡ ◦¬ϕ 7. ¬(ϕ1 U (ϕ2 ∧ ♦ϕ3)) ≡ �(¬ϕ2 ∨ �¬ϕ3) ∨ ((¬ϕ2)U (¬ϕ1 ∧ ¬ϕ2))

4. ¬�ϕ ≡ ♦¬ϕ

Equivalences 1-5 are very well known (e.g. [9]); the validity of 6 and 7 is easily established. It is also easy to see that 7,
when ϕ3 is T, is reduced to the known equivalence ¬(ϕ1 U ϕ2) ≡ (�¬ϕ2) ∨ (¬ϕ2 U (¬ϕ1 ∧ ¬ϕ2)). �

For simplicity, we will write ¬ϕ instead of nnf(¬ϕ). Thus, ¬A(p U �q) represents (E�♦¬q) ∨ E♦(¬p ∧ ♦¬q)). Also, for
a finite set � = {ϕ1, . . . , ϕn}, we let nnf(¬

∧n
i=1 ϕi) = ¬�.

Type of a difficult case A-disjunctive formula E-conjunctive formula

Example A(◦q ∨ �r) E(◦r ∧ qU�¬p)

Our representation A(◦q,�r) E(◦r,qU�¬p)

Fig. 2. Difficult cases of temporal operators in the scope of path quantifiers.

For ECTL#, we identify the following difficult cases of the nesting and Boolean combinations of temporal operators in the
scope of path quantifiers: A-disjunctive formula – disjunctions of temporal operators in the scope of A and E-conjunctive
formula – conjunctions of temporal operators in the scope of E. For convenience, we will, respectively, write A(π1, . . . , πn)

and E(π1, . . . , πn), where n ≥ 1, and if “,” is in the scope of A it means ∨ while being in the scope of E it means ∧. Formulae
serving as relevant examples in Fig. 2 will be used to illustrate tableau, in Fig. 6. Note that any A-formula (E-formula) σ can
be transformed into an equivalent Boolean combination of A-disjunctive formulae A(π1, . . . , πn) (E-conjunctive formulae
E(π1, . . . , πn)), such that every πi (1 ≤ i ≤ n) is of one of the following: ◦σ , σ U (σ ∧ ♦σ), σ U �σ , �(σ ∨ �σ), and
�(σ U σ), and σ stands for a state formula. For example, A(((◦q) ∧ (�E◦r)) ∨ ◦p) is equivalent to A(◦q) ∧ A(�E◦r, ◦p);
and E(((◦A◦r) ∨ (q U �E¬p)) ∧◦q) is equivalent to E(◦A◦r) ∨ E(q U �E¬p, ◦q). In what follows, Q abbreviates either of the
path quantifiers. For a set of path formulae = {π1, . . . , πn}, we write Q to denote Q(π1, . . . , πn), and Q◦ to denote
Q(◦π1, . . . , ◦πn). If � is an empty set of formulae it means T when � occurs in a conjunctive expression, and F in a
disjunctive expression. In particular, when is ∅ then A is F and E is T. We write �, σ to represent the set � ∪ {σ }.
We consider that every formula σ ∈FProp is given in its equivalent ‘negation normal form’, nnf(σ).

3. The tableau method

3.1. Preliminaries

Definition 10 (Tableau, consistent node, closed branch). A tableau for a set of ECTL# state formulae � is a labelled tree T ,
where nodes are τ -labelled with sets of state formulae, such that the following two conditions hold:

(a) The root is labelled by the set �.
(b) Any other node m is labelled with sets of state formulae as the result of the application of one of the rules in Figs. 3,

4, 5 and 7 to its parent node n. Given the applied rule is R , we term m an R-successor of n.

A node n of T is consistent, abbreviated as n� , if τ (n) is a syntactically consistent set of formulae (see Def. 4), else n is
inconsistent, abbreviated as n⊥ . If a branch b of T , contains n⊥ ∈ b, then b is closed else b is open. �

To make the presentation more transparent we give an informal overview of the tableau construction. Any tableau has
a root-node that is exclusively labelled by a set of state formulae. To extend a node we apply one of α, β or β+ rule. The
first two types of rules are standard to the tableau, and are essentially based on the fixpoint characterisation of Q� and
Q U modalities, while β+ rules are characteristic (and crucial!) for our construction. They tackle difficult cases of formulae
in ECTL#, and are related to our dedicated account of the eventualities. Namely, we treat an eventuality as occurring in
some context, which, in turn, is a collection of all state formulae, called ‘an outer context’ or path formulae called ‘an inner
context’. As we will see, β+ rules use the context to force eventualities to be fulfilled as soon as possible. The α − β − β+
rules apply repeatedly until they produce an inconsistent node n⊥ , or a node with the labels that already occurred within
the path under consideration. In the former case the expansion of the given branch terminates with n⊥ as its leaf. In
the latter case, a repetitive node in the branch suggests that the input formula is satisfied forever, and we select another
eventuality (if any) see §4.1. Obviously, n⊥ has an unsatisfiable τ (n) and is a ‘deadlock’ in the construction of a model.
However, open branches do not necessarily give us a model. In particular, an open branch could be a prefix of a closed one.
Later we introduce the notion of an expanded branch that enables the model construction. Once no more expansion rules

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 433
α Sα

(∧) σ1 ∧ σ2 {σ1, σ2}
(Eσ) E(σ1, . . . , σn,) {σ1, . . . , σn,E}

(E�U) E(�(σ1 U σ2),) {E(σ1 U σ2,◦�(σ1 U σ2),)}
(A�U) A(�(σ1 U σ2),) {A(σ1 U σ2,),A(◦�(σ1 U σ2),)}

Fig. 3. Alpha Rules. (Notation: σ ,σi stand for state formulae and is a set of path formulae, possibly empty.)

β_Rule β k Sβi (1 ≤ i ≤ k)

(∨) σ1 ∨ σ2 2
Sβ1 = {σ1}
Sβ2 = {σ2}

(Aσ) A(σ1, . . . , σn,) n + 1

Sβ1 = {σ1}
.
.
.

Sβn = {σn}
Sβn+1 = {A}

(E�σ) E(�(σ1 ∨ �σ2),) 2
Sβ1 = {σ1,E(◦�(σ1 ∨ �σ2),)}
Sβ2 = {¬σ1, σ2,E(◦�σ2,)}

(EU σ) E(σ1 U (σ2 ∧ ♦σ3),) 2
Sβ1 = {σ2,E(♦σ3,}
Sβ2 = {σ1,E(◦(σ1 U (σ2 ∧ ♦σ3)),)}

(EU �) E(σ1 U �σ2,) 2
Sβ1 = {E(�σ2,)}
Sβ2 = {σ1,E(◦(σ1 U �σ2),)}

(E�U) E(�(σ1 U σ2),) 2
Sβ1 = {σ2,E(◦�(σ1 U σ2),)}
Sβ2 = {σ1,E(◦�(σ1 U σ2),)}

(A�σ) A(�(σ1 ∨ �σ2),) 3

Sβ1 = {σ1,A(◦�(σ1 ∨ �σ2),)}
Sβ2 = {¬σ1, σ2,A(◦�σ2,)}
Sβ3 = {A}

(AU σ) A(σ1 U (σ2 ∧ ♦σ3),) 3

Sβ1 = {σ2,A(♦σ3,)}
Sβ2 = {σ1,A(◦(σ1 U (σ2 ∧ ♦σ3)),)}
Sβ3 = {A}

(AU �) A(σ1 U �σ2,) 2
Sβ1 = {A(�σ2,)}
Sβ2 = {σ1, σ2,A(◦(σ1 U �σ2),)}

Fig. 4. Beta Rules. (Notation: σ ,σi stand for state formulae, πi stand for path formulae, and is a (possibly empty) set of path formulae.)

are applicable to the given branch with the last node n� , we are ensured that τ (n) = �, A◦�1, . . . , A◦�n, E◦�1, . . . , E◦�m ,
where � is a set of literals. This labelling τ (n) is similar to a ‘state’ in the standard temporal tableau. Then the ‘next-state’
rule applies to generate the successors of n with the labels that are arguments of all Q◦ modalities. The whole cycle of
applying α − β − β+ and ‘next-state’ rules is repeated until the tableau construction terminates. The nature of our rules
ensures that the terminated tableau represents a model for the tableau input if all the leaves in a collection of branches,
called a bunch, are consistent and all eventualities occurring in looping branches are fulfilled, otherwise, the tableau input
is unsatisfiable.

(Q◦)
�,A◦�1, . . . ,A◦��,E◦�1, . . . ,E◦�k,

A�1, . . . ,A��,E�1 & . . . & A�1, . . . ,A��,E�k

Fig. 5. Next-State Rule. (Notation: � is a (possibly empty) set of literals, and �i ,�i are non-empty sets of formulae.)

434 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
3.2. Alpha, beta rules and next-state rule

The α- and β-rules are the most elementary rules of our tableau system. An α-rule enlarges a branch with a node
labelled by �, α, by a successor node labelled by �, Sα , where Sα is the set of formulae associated with α in Fig. 3. An
α-rule is represented as �,α

�, Sα
while β-rules as �,β

�, Sβ1 | · · · | �, Sβk
. β-rule splits a branch containing a node labelled by a

set �, β (where β is one of the formulae of Fig. 4), in k new nodes each labelled by the corresponding �, Sβi , according
to Fig. 4. The next-state rule (Q◦), Fig. 5, also splits the branch into k branches each of them rooted by node n labelled by
a set A�1, . . . , A��, E�i , for i ∈ {1, . . . , k}. This is the only rule of our system that splits branches in a conjunctive way. We
use the symbol & to represent the generation of AND-successors of node n. When � = k = 0, the rule yields a unique new
node labelled by the empty set. We assume that whenever k = 0 and � > 0, there exists a unique descendant labelled by
A�1, . . . , A�l .

Example 11. Let n be a node such that τ (n) = {a, ¬b, A◦c, E◦p, E◦¬p, A◦�((E◦p) ∧(E◦¬p))}. Then the next-state rule (Q◦)

applies to n generating the following AND-successors of n: {Ac, p, A�((E◦p) ∧ (E◦¬p))} and {Ac, ¬p, A�((E◦p) ∧ (E◦¬p))}.
Note that Ac requires the application of the β-rule (Aσ) to be reduced to c. �
3.3. The uniform tableau

In this subsection we explain how to construct a tableau where leaves are labelled by sets of formulae of a specific
form – Uniform sets of state formulae.

Definition 12 (Elementary set of ECTL# state formulae). A set of ECTL# state formulae is elementary if and only if it is exclu-
sively formed by literals and formulae of the form Q ◦. �
Proposition 13. Any set of ECTL# state formulae has a tableau T such that all its leaves are labelled by elementary sets of state
formulae.

Proof. Repeatedly apply to every expandable node any applicable α-rule or β-rule. �
Example 14. Fig. 6 depicts a tableau with elementary leaves for A(◦q, �r), E(◦r, q U �¬p), E◦q. Recall that A(◦q, �r) is an
abbreviation of A(◦q, �(r ∨ �F)).

Definition 15 (Basic path/state formula and uniform set of formulae). Every ECTL# path formula of the type ◦σ , σ1 U (σ2 ∧♦σ3),
σ1 U (�σ2), �(σ1 ∨�σ2), �(σ1 U σ2) is called basic. Every state formula Q where is a set of basic-path formulae is also
called basic. A set of state formulae � is uniform iff � is exclusively formed by literals and basic state formulae, and �
contains at most one E-conjunctive formula. �
Proposition 16. Any set of ECTL# state formulae � has a tableau T such that labels of all its leaves are uniform sets of state formulae.
Moreover, each open branch of T contains exactly one application of (Q◦).

Proof. Use Proposition 13 to construct a tableau with all its leaves labelled by elementary sets of formulae. Then apply the
rule (Q◦), to any relevant node and, finally, repeatedly apply (to every expandable node) the rules (Eσ), (Aσ), (∧), and
(∨). �
Definition 17 (Uniform tableaux). For any set � of ECTL# state formulae, the tableau for � provided by Proposition 16 is
denoted Uniform_Tableau(�). �

Fig. 6. A tableau whose leaves are elementary.

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 435
Example 18. Constructing a uniform tableau for the set {A(◦q, �r), E(◦r, q U �¬p), E◦q)}, we first obtain the tableau in
Fig. 6. Then we apply the (Q◦) rule enlarging each of the four branches and producing the following eight leaves, left to
right (we refer to the node by its labels):

1. A(q,�r),E(r,�¬p) 2. A(q,�r),Eq 3. Aq,E(r,�¬p) 4. Aq,Eq

5. A(q,�r),E(r,qU �¬p) 6. A(q,�r),Eq 7. Aq,E(r,qU �¬p) 8. Aq,Eq

Then we apply the rules (Aσ) and (Eσ): the first branch is split into q, r, E�¬p and A�r, r, E�¬p; the second into
q and A�r, q; the third yields only a child q, r, E�¬p; the fourth and the eighth yield only q; the fifth is split into
two nodes q, r, E(q U �¬p) and A�r, r, E(q U �¬p); the sixth into q and A�r, q; and the seventh yields the unique child
q, r, E(q U �¬p). �

β+-Rule �,β k S+
�,βi

(1 ≤ i ≤ k)

(AU σ)+ �,A(σ1 U (σ2 ∧ ♦σ3),) 3

S+
�,β1

= {σ2,A(♦σ3,)}
S+

�,β2
= {σ1,A(◦((σ1 ∧ (¬� ∨ ϕ))U (σ2 ∧ ♦σ3)),)}

S+
�,β3

= {A}

(AU�)+ �,A(σ1 U�σ2,) 2
S+

�,β1
= {A(�σ2,)}

S+
�,β2

= {σ1,A(◦((σ1 ∧ (¬� ∨ ϕ ∨ σ2))U�σ2),)}
β+-Rule �,β k S+

�,βi
(1 ≤ i ≤ k)

(EU σ�)+ �,E 2n

S+
�,β1

.

.

.

S+
�,βi

=
.
.
.

S+
�,βn

{
{σ2,E(♦σ3,−i)} if πi = σ1 U (σ2 ∧ ♦σ3)

{E(�σ2,−i)} if πi = σ1 U�σ2

S+
�,βn+1

.

.

.

S+
�,β2i

=
{

{σ1,E(◦((σ1 ∧ ¬�)U (σ2 ∧ ♦σ3)),−i)} if πi = σ1 U (σ2 ∧ ♦σ3)

{σ1,E(◦((σ1 ∧ ¬�)U�σ2),−i)} if πi = σ1 U�σ2

.

.

.

S+
�,β2n

Fig. 7. Beta-Plus Rules. (Notation: σ , σi stand for state formulae, � is a (possibly empty) set of state formulae, is a (possibly empty) set of basic-path
formulae. Formula ϕ is defined in Definition 19. We denote by U the set of all formulae in that have the forms σ1 U (σ2 ∧ ♦σ3) and σ1 U �σ2. U
is enumerated as {π1, . . . , πn} for n ≥ 1, and −i = \ {πi}.)

3.4. The beta-plus rules

In this subsection we extend our set of tableau rules with the new four rules named as β+-rules (Fig. 7). These rules,
similarly to β-rules, also split a branch, but this time into a number of branches depending on the treated formula. The
rules for A-disjunctive formulae apply to a label �, β , where β has the form A(π,), is a set of basic-path formulae, and
π is either σ U (σ ∧ ♦σ) or σ U �σ . The rule (E U σ�)+ for E-conjunctive formulae applies to a set �, β , where β has the
form E and is a set of basic-path formulae that contains at least one formula σ U (σ ∧ ♦σ) or σ U �σ . The β+-rules
are the only rules in our system that make use of the so-called context for forcing the eventualities to be satisfied as soon
as possible. The context is given by the sets � containing state formulae and containing path formulae. We name � the
outer context and the inner context. The outer context is used by all the β+-rules. The inner context is only needed to
deal with formulae A. The following formula, ϕ , introduced in Definition 19 is used to manage the inner context in
rules (A U σ)+ and (A U �)+ .

Definition 19 (Formula ϕ for β+-rules on A-disjunctive formulae). Let be a set of basic path formulae. We define the
formula ϕ to be the following disjunction of state formulae (ϕ is F, if the below disjunction is empty):∨

(σ1 ∨ σ2) ∨
∨

σ2 ∨
∨

E(♦σ2). �

�(σ1∨�σ2)∈ σ1 U �σ2∈ �(σ1 U σ2)∈

436 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
It is worth noting that each β+-rule, when applied to some formula of the form Q(σ1 U ϕ,) –where ϕ could be
σ2 ∧ ♦σ3 or �σ2– generates one or more successors that contain a formula of the form Q(◦((σ1 ∧ σ) U ϕ),) where σ
depends on both the inner and the outer context, and is defined depending on whether Q is E or A. We call (σ1 ∧σ) U ϕ the
next-step variant of σ U ϕ . Example 20 illustrates the main ideas behind the application of β+-rules (A U σ)+ and (A U σ).

Example 20. The β+-rules (A U σ)+ applies to one selected formula with exactly one marked eventuality. Consequently, the
(A U σ)-rule applies to all the eventualities (in the selected formula) except to the marked one.

Fig. 8. Application of (AU σ)+ and (AU σ) rules to {¬b,A(aU b, pU q)}.

In Fig. 8 the marked eventualities are in gray boxes. Assume a U b is the marked eventuality. Then, the (A U σ)+-rule can
be applied to a U b) with outer context � = {¬b} and inner context, = {p U q}. According to Definition 19, ϕ is F.
Therefore, S+

�,β1
= {b}, S+

�,β3
= {A(p U q)}, and S+

�,β2
= {a, A(◦((a ∧b) U b), p U q)} respectively generate nodes n1, n2 and n3.

In node n2, the (A U σ)-rule is applied to p U q. That produces three new nodes. Regarding node n3, the marked eventuality
disappears. Then, a new selection is made and p U q is marked. Consequently, (A U σ)+-rule is applied with outer context
� = {¬b}. The inner context is the empty set. Note that all leaves in Fig. 8 are elementary. Hence, the construction of the
tableau, would continue applying the next-state rule (Q◦). �
3.5. Simplification rules

A large set of simplification rules can be used to reduce the tableau construction. Here we only mention those that are
essential for termination. First, to stop the growth of the subformula σ in the successive next-step variants (σ1 ∧ σ) U ϕ ,
we use trivial simplification rules such as ϕ ∧ ϕ −→ ϕ and ϕ ∨ ϕ −→ ϕ , as well as classical subsumptions rules. Second,
to simplify the detection of equal labels (for looping in tableau branches) we use the following (subsumption-based) rules:

(�E�U) E(σ1 U σ2, �(σ1 U σ2),) −→ E(�(σ1 U σ2),).
(�A�U) If ′ ⊆ then A(σ1 U σ2,) ∧ A(�(σ1 U σ2), ′) −→ A(�(σ1 U σ2), ′).

Finally, to prevent the duplications of the original eventuality σ1 U σ2 and its successive new-step variants by rules
(Q�U) and (Q U σ)+ , and to ensure termination, we use the following (subsumption-based) simplification rules:

(�Aσ U) σ2 ∧ A(σ1 U σ2,) −→ σ2.
(�EU σ) E((σ1 ∧ σ) U ϕ, σ1 U ϕ,) −→ E((σ1 ∧ σ) U ϕ,).
(�AU σ) If ′ ⊆ then A((σ1 ∧ σ) U ϕ, ′) ∧ A(σ1 U ϕ,) −→ A((σ1 ∧ σ) U ϕ, ′).

3.6. The role of ϕ in the beta-plus rules

Let us consider a set of formulae � = �, A(σ U ϕ,). A model, K, of � could satisfy A(σ U χ,) because each fullpath
of K satisfies either σ U χ or some formula π ∈ . The next-step variant of σ U χ is ◦(σ ∧ (¬� ∨ ϕ)) U χ), which makes
¬� or ϕ satisfiable before χ is satisfied. The former produces open branches where χ is fulfilled as soon as possible,
whereas the latter produces open branches that satisfy some of the π ∈ . Therefore, ϕ allows to generate a model from a
branch in which σ U ϕ is not fulfilled, and some π ∈ is satisfied. Example 21 illustrates these ideas from the constructive
view, i.e. when we construct a tableau for a formula A(π1, . . . , πn).

Example 21. Let = {�c, r U �s, �(p U q)}, and consider an application of the rule (A U σ)+ to the formula A(a U b,),
where a, b, c, p, q, r, s ∈ Prop (see Fig. 9). The outer context, namely �, is empty and the inner context is . Then ¬�

is F and ϕ = c ∨ s ∨ E♦q. Hence, the second child, namely S+
�,β2

, raised by the application of (A U σ)+ is labelled by
{a, A(◦α1,)} where α1 = (a ∧ ϕ) U b = (a ∧ (c ∨ s ∨ E♦q) U b. Then, Uniform_Tableau applies the (corresponding) rules to
�c, r U �s, �(p U q), and, finally, (Q◦) and the simplification rule (�A�U), obtaining the node n3. Now, one of the leaves
raised by Uniform_Tableau is the fifth node; by applying here (Q◦) and (�A�U) we obtain the last node n6 such that

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 437
Fig. 9. A branch of a tableau for A(aU b,�c, r U �s,�(p U q).

τ (n6) = τ (n3). This branch represents a model of the initial A-disjunctive formula where both disjuncts �(p U q) and �c are
satisfied, though the other two disjuncts are not. Indeed, it represents the model {a, c, r, p}, ({a, c, r, p, q})ω . �
4. Systematic tableau construction

In this section we define an algorithm, Asys , that constructs a systematic tableau and illustrate its performance with
some examples. Recall that due to the rule (Q◦), any open tableau should have a collection of open branches including
all the (Q◦)-successors of any node labelled by an elementary set of formulae. These collections of branches are called
bunches. Any open bunch of the systematic tableau, constructed by the algorithm Asys introduced in this section, enables
the construction of a model for the initial set of formulae.

Algorithm 1 Systematic tableau construction.
1: procedure systematic_Tableau(�0) � where �0: set of state formulae
2: if �0 is not uniform then T := Uniform_Tableau(�0)

3: while T has at least one expandable node do
4: � Invariant: Any expandable node of T is labelled by an uniform set
5: Choose any node � in T such that τ (�) is expandable
6: Let � = τ (�) � � is uniform
7: if there are not selectable formulae in � then T := T [� ←Uniform_Tableau(�)]
8: else
9: Eventuality_Selection(�)

10: Apply_β+-rule(�)

11: Let k be the number of new leaves, �1, . . . , �k the new leaves and �1, . . . , �k their labels
12: for i = 1 .. k do
13: if �i is expandable and �i is not uniform then
14: T := T [�i ←Uniform_Tableau(�i)]

15: return T

4.1. The algorithm

The algorithm Asys constructs an expanded tableau (see Definition 37) for the given input. Asys applied to the input
�0, denoted as Asys(�0), returns a systematic tableau Asys

�0
. Intuitively, ‘expanded’ means ‘complete’ in the sense that

any possible rule has been already applied at every node. Though the best way to implement this algorithm is a depth-
first construction, for clarity, we formulate it as a breadth-first construction of a collection of subtrees. The procedure
Uniform_Tableau, in the above Algorithm 1, was introduced in Definition 17 along with the notion of a uniform set of state
formulae. The notation T1[� ← T2] stands for the tableau T1 where the expandable � is substituted by the tableau T2. In
particular, T [� ←Uniform_Tableau(�)] is the tableau T where the expandable � is substituted by the Uniform_Tableau(�).
Next, we define the other two auxiliary procedures: Eventuality_Selection and Apply_β+-rule, as well as the related concepts
of selectable formula, non-expandable node and eventuality-covered branch. From now on any basic path formula that is either
σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2 or �(σ1 U σ2) is called an eventuality. It is worth noting that ◦π is not called an eventuality in
this setting.

Definition 22 (Selectable formula). A formula is selectable if it is a Q and contains at least one eventuality. �

438 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
Procedure Eventuality_Selection chooses formula Q and if Q = A then the procedure also marks one eventuality, accord-
ing to the priorities of selection and marking in Definition 24. We denote by πU the marked eventuality in the selected
formula A.

Procedure Apply_β+-rule(�) applies the corresponding rules depending on the selected formula Q and on the marked
eventuality in the case Q = A:

• If Q = A and σ1 U (σ2 ∧ ♦σ3) ∈ is the marked eventuality, then apply (A U σ)+ .
• If Q = A and σ1 U �σ2 ∈ is the marked eventuality, then apply (A U �)+ .
• If Q = A and �(σ1 U σ2) ∈ is the marked eventuality, then first apply the rule (A�U) and then the rule (A U σ)+

with the marked eventuality σ1 U σ2.
• If Q = E and contains at least one σ1 U (σ2 ∧ ♦σ3) or one σ1 U �σ2 then apply (E U σ�)+ .
• If Q = E and contains at least one �(σ1 U σ2) (but none σ1 U (σ2 ∧ ♦σ3) and none σ1 U �σ2), then first apply the

rule (E�U) to every �(σ1 U σ2) and then the rule (E U σ�)+ .

Each application of a β+-rule on the selected A introduces a next-step variant of the marked eventuality and each appli-
cation of a β+-rule on the selected E introduces a next-step variant for each σ1 U (σ2 ∧ ♦σ3) and each σ1 U �σ2.

The call Eventuality_Selection(�) keeps the selection of the formula E such that contains at least one σ U (σ ∧ ♦σ)

or σ U �σ , or keeps the selection of the formula A ∈ � which contains the next-step variant of the marked eventuality,
or selects a new formula A ∈ � that contains an eventuality. The latter can happen for three reasons. When formulae E

do not contain any σ U (σ ∧ ♦σ) nor σ U �σ , or there is no marked eventuality in formulae A, or when there is one,
the node �, (� = τ (�)) is a loop-node (see Definition 25), and the branch from the root-node to � is not eventuality-covered
(see Definition 26). In this case, a new selection should be made because there are eventualities that have never been
marked but they should be. This way we introduce the term eventuality-covered. When a branch is eventuality-covered, its
leaf is a loop-node and we are sure that, along the loop, at least some eventuality in each A-disjunctive formula and all
eventualities in each E-conjunctive formula have been fulfilled. Consequently, the branch is an expanded open branch (see
Definition 37) and represents a path in a possible model. It is worth mentioning that the only requirement for a branch
to be eventuality-covered is to mark all necessary eventualities. The fact that formulae E are kept selected whereas they
contain some eventuality and formulae A are kept selected where the next-step variant of the marked eventuality is kept
marked ensures that every eventuality in E and at least one in each A is fulfilled.

When making the selection, priorities are used as stated in Definition 24. The idea behind priorities is that a tableau
branch represents a path in a cyclic Kripke structure that is a possible model for the input formula. Therefore, it consists
of a (possibly empty) initial sequence of states followed by a looping-sequence. Selectable formulae are classified into two
sets - those of the highest priority and those of the lowest priority. The non-looping initial sequence is the first part of the
model, hence we firstly select formulae A where is exclusively formed by formulae of the form σ1 U (σ2 ∧ ♦σ3) and
formulae E where contains at least one eventuality of the form σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2. These are the highest
priority formulae, which cannot produce a loop. When one of the former formulae A is selected, one of the σ1 U (σ2 ∧
♦σ3) is marked, namely π . By means of the rule (A U σ)+ , in a finite number of steps, either the branch close or π
is either fulfilled (note that in the first branch A(♦σ3,) is also of the highest priority) or deleted (the third branch of
(A U σ)+). In any case the original formulae A disappears. When one of the latter formulae E is selected, the successive
applications of the rule (E U σ�)+ ensure (excluding the case when the branch closes) the fulfilment of all σ1 U (σ2 ∧ ♦σ3)

or σ1 U �σ2 in a finite number of states. Note that E(♦σ3,) is also of the highest priority. Once such formulae are fulfilled,
all formulae σ1 U (σ2 ∧ ♦σ3) have disappeared from the E-conjunctive formula, whereas �σ2 remains in the conjunction
for all σ1 U �σ2 ∈ . Hence, the residual E′ is of the lowest-priority. On the contrary, the lowest priority formulae could
produce a loop. They are formulae A where contains at least one σ1 U �σ2 or �(σ1 U σ2) and formulae E where
contains at least one �(σ1 U σ2) (but are not of the highest priority). They could produce a loop in a finite number of steps,
since the subformulae starting by � remains forever in the E-disjunctive formulae, whereas in the A-disjunctive formulae
they can either remain or disappear. In the latter case, the residual A-disjunctive formulae could become non-selectable. It
is easy to see that non-selectable formulae necessarily produce a loop.

Example 23. Consider �0 = {A(a U b, b U c), E(p U q, �(r U s)), A�(cU d), ¬b, A�e}. The first two formulae have the highest-
priority, the third has the lowest priority, and the last two are non-selectable. Suppose that we select A(a U b, b U c) and
mark a U b, since ¬b ∈ �0, the left-most open branch of rule (A U σ)+ contains a, A(◦((a ∧ ¬�′

0) U b), b U c) where �′
0 =

�0 \ {A(a U b, b U c)}. After applying the corresponding α and β rules to the remaining formulae, the first stage s0 (the first
state of the model) contains the atoms {a, q, s, d, e}. Then, by the next-step rule (Q◦), the first node of the second stage s1
is �1 = {A((a ∧ ¬�′

0) U b, b U c), E�(r U s), A�(cU d), A�e} where the first formula is kept selected and the first eventuality
is kept marked. Note that the second formula has now the lowest priority. Then we apply (A U σ)+ to the first formulae and
the corresponding α and β rules to the remaining formulae in �1, generating the set of atoms in the left-most branch are
{b, s, d, e}. Then, by the next-step rule (Q◦), the first node of the third stage s2 is �2 = {E�(r U s), A�(cU d), A�e} where
the first two formulas are of the lowest priority and the third is non-selectable. By selecting the first formula, the atoms
in the stages s2 (of the left-most branch) are {s, d, e} and the new uniform set at the first node of the following stage is
�3 = �2. However, A�(cU d) has not been selected inside the loop, hence we produce one stage more, s3, with atoms

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 439
{s, d, e}. Then, by (Q◦), we obtain �4 = �2 and the branch is eventuality-covered. Therefore, we have a model for �0 is
s0, s1〈s2, s3〉ω . �

Fig. 10. A branch in the systematic tableau for A(p U ¬p,�p),A�(aU E�c).

Definition 24 (Priorities for eventuality selection). The selectable formulae of the highest priority for Eventuality_Selection are
the formulae of the following two forms:

• A where is exclusively formed by formulae of the form σ1 U (σ2 ∧ ♦σ3).
• E where contains at least one eventuality of the form σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2.

Consequently, the (selectable) formulae of the lowest priority are the formulae of the following two forms:

• A where contains at least one σ1 U �σ2 or �(σ1 U σ2).
• E where does not contain any σ1 U (σ2 ∧ ♦σ3) nor σ1 U �σ2, and contains at least one �(σ1 U σ2). �

Once all the highest priority formulae have been selected in a branch, the only selectable formulae are the lowest priority
formulae. At this point, the objective is to get a loop-node that makes the branch eventuality-covered.

Definition 25 (Loop-node). Let b be a tableau branch and ni ∈ b (0 ≤ i). Then ni is a loop-node if there exists n j ∈ b (0 ≤ j < i)
and τ (ni) = τ (n j). We say that n j is a companion node of ni . �
Definition 26 (Eventuality-covered branch). A tableau branch b = n0, n1, ..., ni is eventuality-covered if ni is a loop-node, with
a companion node n j (0 ≤ j < i), both labelled by a uniform set � of non-selectable and the lowest priority formulae such
that every selectable formula Q ∈ τ (ni) is selected in some node nk (j ≤ k < i) and for every selected A exactly one
eventuality in is marked in some node nk such that j ≤ k < i. �

440 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
The procedure Eventuality_Selection performs in some fair way that ensures that any open branch will ever be eventuality-
covered.

Definition 27 (Non-expandable node). A node n is non-expandable, if τ (n) = �⊥ or n is a loop-node of branch b which is
eventuality-covered. Otherwise, n is expandable. �

Consequently, an expandable node is either a node that is not a loop-node or a loop-node whose branch is not
eventuality-covered. It is worth noting that a formula of the lowest priority could be selected more than once in a branch
because the loop-node could change along the branch. In the following Example 28, we illustrate this issue.

Example 28. Fig. 10 shows a branch in the systematic tableau for �0 = {A(p U ¬p, �p), A�(a U E�c)} where, for readability,
the marked eventualities are in gray boxes. The call Eventuality_Selection(�0) selects the formula A(p U ¬p, �p) in n1. Gen-
erating n2, when we apply the (A U σ)+ rule to A(p U ¬p, �p), the inner context is p and the outer context is A�(a U E�c).
Hence, in the S+

�,β2
branch, the next-step variant of p U ¬p is p ∧ (¬(A�(a U E�c) ∨ p)) U ¬p. By classical subsumption (in-

cluded in our simplification rules), p ∧ (¬(A�(a U E�c) ∨ p) −→ p, hence the next-step variant is p U ¬p, and the formula
A(◦(p U ¬p), �p) is added to the current stage. Then, applying (A�σ) to A(◦(p U ¬p), �p), (A�U) to (A�(a U E�c), and
(A U σ) to A(a U E�c), the node n2 is obtained. After the application of (Q◦) and (�A�U), n3 is obtained. Node n3 is a
loop-node whose companion node is n1 (τ (n3) = τ (n1)). However, the branch is not eventually-covered since the eventual-
ity a U E�c is not selected inside the loop. Therefore, we obtain n4 by the call Eventuality_ Selection((τ (n3)) which selects
A(a U E�c). After applying the (A U σ)+ rule to A(a U E�c) (once the (A�U) rule is applied), the branch S+

�,β1
expands to

n5. After that, Uniform_Tableau gets one expandable node labelled by the uniform set {E�c, A(p U ¬p, �p), A�(a U E�c)} as
represented in n6. The call Eventuality_Selection((τ (n6)) selects again the formula A(p U ¬p, �p). Now, the inner context is
p and the outer context is {E�c, A�(a U E�c)}. Hence, by subsumption, p ∧ (¬(E�c) ∨ ¬(A�(a U E�c)) ∨ p) −→ p. Hence,
the S+

�,β2
branch contains again the next-step variant p U ¬p in n7. Then, expanding the Uniform_Tableau we obtain n8

which is an expandable loop-node because τ (n8) = τ (n6). However, the branch is not yet eventually-covered since a U E�c
has not been marked inside the loop. Then, the selected formula in n9 is A(a U E�c). Finally, Uniform_Tableau obtains a
non-expandable loop-node, thus the given branch is eventually-covered - depicted in Fig. 10 it represents {p, a}({p, c})w ,
which is a model of �0. However, considering all the nodes in the branch, one would realize that the model represented is
{p, a}{p, c}({p, a, c}{p, c})w . �
Definition 29 (Bunch in a tableau, closed bunch and tableau). A bunch b is a collection of branches that is maximal with respect
to (Q◦)-successor, i.e. every (Q◦)-successor of any node in b is also in b. A bunch is closed iff at least one of its branches
is closed, otherwise it is open. A tableau is closed iff all its bunches are closed. �

Therefore, any open tableau has at least one open bunch, formed by one or more open branches. To complete, this
section we provide two examples: a closed tableau and an open tableau. We mark eventualities in gray boxes and use large
circles to represent the generation of AND-nodes or bunches.

Fig. 11. A closed tableau for A(TU p),E�¬p.

Example 30. Fig. 11 shows a closed tableau for A(TU p), E�¬p. Note that, in the two applications of the rule (A U σ)+ , the
inner context is empty and the outer context is E�¬p whose negation in nnf is A♦p. Hence, the label of the rightmost
node, A◦((A♦p) U p), is the simplification of the selected formula A◦(((A♦p) ∧ (A♦p)) U p). �

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 441
Fig. 12. Open bunch in the tableau for p,A�(E◦p ∧ E◦¬p),A(♦¬p,�p) and represented model.

Example 31. On the left of Fig. 12 we depict a representative open bunch of a tableau for the set of formulae: p, A�(E◦p ∧
E◦¬p), A(♦¬p, �p). For saving space, we apply at once the Uniform_Tableau procedure subsequently choosing one of the
leaves produced. Note that, for each node, we draw only one of the OR-children, but all the AND-children. In the marked
eventuality, ¬p ∨E♦(A◦¬p ∨A◦p) comes from the negation of the outer context, and the disjunct p from the inner context.
By ‘Simplification’ ¬p ∨ E♦(A◦¬p ∨ A◦p) ∨ p is reduced to T (in the left-hand child). In the label of the right-hand node,
¬p subsumes A((. . .) U ¬p, �p). This open bunch represents a model (of the input set of formulae) that we depict on the
right of Fig. 12. �
5. Soundness

To prove the soundness of our tableau method (Theorem 34) we show that every tableau rule preserves satisfiability
(Lemma 33). To prove the latter we essentially use the limit closure property, ensuring that the satisfiability of the negated
inner context is preserved from segments of a limit path to the limit path itself (Proposition 32). The use of ϕ (Defini-
tion 19) is crucial here.

Proposition 32 (Preservation of the negated inner context). Let be any set of basic path formulae and let ϕ be as in Definition 19.
Let K be a Kripke structure, x1 ∈ fullpaths(K) such that K, x1, 0 |= ¬. Let y = x≤i1

1 x≤i2
2 · · · x≤ik

k · · · be a limit path in fullpaths(K),
for some i1 > 0 and some x≤i2

2 · · · x≤ik
k · · · . Then K, y, 0 |= ¬π holds for all π ∈ , provided that the following two conditions hold for

all n ≥ 1:

(a) K, x≤i1
1 x≤i2

2 · · · xn, j |= ¬σ2 for all σ1 U (σ2 ∧ ♦σ3) ∈ and all j ∈ {0..in}, and

(b) K, x≤i1
1 x≤i2

2 · · · x≤in
n , in |= ¬ϕ .

Proof. We check the four cases of a basic path formula π ∈ . If π is of the form ◦σ , then K, y, 0 |= ¬◦σ because
K, y, 0 |= ¬π and i1 > 0. If π is of the form σ1 U (σ2 ∧ ♦σ3), then property (a) ensures that every state in y satisfies
¬σ2. Therefore, ¬(σ1 U (σ2 ∧ ♦σ3)) is satisfied along the limit path y. For the remaining three cases, on the basis of (b)
and Definition 19, we can prove the following three facts: (1) If π = �(σ1 ∨ �σ2), then K, x≤i1

1 x≤i2
2 · · · x≤in

n , in |= ¬σ1 ∧ ¬σ2

for all n. (2) If π = �(σ1 U σ2), then we have that K, x≤i1
1 x≤i2

2 · · · x≤in
n , in |= ¬E(♦σ2) for all n. (3) If π = σ1 U �σ2, then

K, x≤i1
1 x≤i2

2 · · · x≤in
n , in |= ¬σ2 for all n. Therefore, in any of the three cases, we can ensure that K, y, 0 |= π . �

Lemma 33 (Soundness of the tableau rules). For any set of state formulae �:

(i) For any α-formula α: Sat(�, α) iff Sat(�, Sα).
(ii) For any β-formula β of range k: Sat(�, β) iff Sat(�, Sβi) for some 1 ≤ i ≤ k.

(iii) For any β+-formula β of range k: Sat(�, β) iff Sat(�, S+
�,βi

) for some 1 ≤ i ≤ k.
(iv) If � is a set of consistent literals: Sat(�, A◦�1, . . . , A◦�n, E◦�1, . . . , E◦�m) iff for all 0 ≤ i ≤ m:

Sat(A�1, . . . , A�n, E�i). �
Proof. Noting that (i), (ii) and (iv) can be easily proved by the ‘systematic’ application of the semantic definitions of tempo-
ral operators, we prove (iii). The ‘only if’ direction‘ for each of the cases of β+-rules is trivial. We will prove the ‘if’ direction

442 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
of the three rules (E U σ�)+ , (A U σ)+ and (A U �)+ , in this order.
For the ‘if’ direction of rule (E U σ�)+ , let us suppose that K |= �, E, where contains at least one eventuality. There
exists x ∈ fullpaths(K) such that K, x, 0 |= �, . We are going to prove that there exists K′ such that one of the following
properties holds:

(a) K′ |= �, σ2, E(♦σ3, −i) for some πi = σ1 U (σ2 ∧ ♦σ3) in U .
(b) K′ |= �, E(�σ2, −i) for some πi = σ1 U �σ2 in U .
(c) K′ |= �, σ1, E(◦((σ1 ∧ ¬�) U (σ2 ∧ ♦σ3)), −i) for some πi = σ1 U (σ2 ∧ ♦σ3) in U .
(d) K′ |= �, σ1, E(◦((σ1 ∧ ¬�) U �σ2), −i) for some πi = σ1 U �σ2 in U .

Since K, x, 0 |= πi for all π ∈ U , we define j to be the least i ≥ 0 such that K, x, i |= ϕ for some σ1 U ϕ ∈ U . If j = 0,
then (a) and (b) (depending on the form of ϕ) are trivially satisfied for K′ =K. Otherwise, if j > 0, it holds that K, x, j |= ϕ
and for all i < j: K, x, i |= σ1. Moreover, as j is the minimal index, for all 0 ≤ i < j: K, x, i |= σ ′

1 for all σ ′
1 U ϕ′ ∈ U .

Consider k to be the greatest index i such that 0 ≤ i < j and K, x, i |= �. Henceforth, we have that K, x, k |= � and K, x, h |=
¬�, for all h such that k + 1 ≤ h < j. Therefore, (c) and (d) hold for K′ =K�x(k).

For the ‘if’ direction of the rule (A U σ)+ , let us suppose that the three sets � ∪ S�,β1 , � ∪ S�,β2 , and � ∪ S�,β3 of
the rule (A U σ)+ are unsatisfiable. We will show that the set �, A(σ1 U (σ2 ∧ ♦σ3),) must be also unsatisfiable. By the
hypothesis, we know that any model of � is not a model of S�,βi for all i ∈ {1, 2, 3}. In other words, for any K such that
K |= �, the followings three facts holds:

(a) K �|= σ2 ∧ A(♦σ3,).
(b) K �|= σ1 ∧ A(◦((σ1 ∧ (¬� ∨ ϕ)) U (σ2 ∧ ♦σ3)),).
(c) K �|= A.

To show that �, A(σ1 U (σ2 ∧ ♦σ3),) is unsatisfiable, we consider an arbitrary K such that K |= � and prove that K �|=
A(σ1 U (σ2 ∧ ♦σ3),). Since K |= �, then (a), (b) and (c) hold. According to (b), there are two possible cases:
(Case 1): If K �|= σ1 then, by (a), either K |= ¬σ1 ∧ ¬σ2 or K |= ¬σ1 ∧ E(�¬σ3, ¬). In both cases, it is easy to see that
K �|= A(σ1 U (σ2 ∧ ♦σ3),).
(Case 2): Otherwise, if K �|= A(◦((σ1 ∧ (¬� ∨ϕ)) U (σ2 ∧ ♦σ3)),), then there exists x1 ∈ fullpaths(K) such that K, x1, 0 |=
◦¬((σ1 ∧ (¬� ∨ ϕ)) U (σ2 ∧ ♦σ3)) ∧ ¬. This yields two possible cases:
(Case 2.1): If K, x1, 0 |= ◦�(¬σ2 ∨ �¬σ3) ∧ ¬, then it is trivial that K �|= A(σ1 U (σ2 ∧ ♦σ3),).
(Case 2.2): Otherwise, there should exist i1 > 0 that satisfies the following three properties:

(i) K, x1, j |= (¬σ2) ∨ �¬σ3 for all j such that 0 ≤ j ≤ i1, and
(ii) K, x1, i1 |= ¬σ1 ∨ (� ∧ ¬ϕ), and

(iii) K, x1, 0 |= ¬.

If (i) is satisfied because K, x1, j |= �¬σ3 (for some j such that 0 ≤ j ≤ i1) then trivially K, x1, 0 �|= σ1 U (σ2 ∧ ♦σ3). This,
along with the fact (iii), not only ensures that K �|= A(σ1 U (σ2 ∧ ♦σ3),) but also applies to any other formula σ ′

1 U (σ ′
2 ∧

♦σ ′
3) in . Henceforth, in what follows, we can suppose that for all j such that 0 ≤ j ≤ i1: K, x1, j |= ¬σ2 and also that

K, x1, j |= ¬σ ′
2 for all σ ′

1 U (σ ′
2 ∧ ♦σ ′

3) ∈ .
If (ii) is satisfied because K, x1, i1 |= ¬σ1 then it is clear that K, x1, 0 �|= σ1 U (σ2 ∧ ♦σ3). Therefore, by (i) and (iii), K �|=
A(σ1 U (σ2 ∧ ♦σ3),).
Otherwise, if (ii) is satisfied because K, x1, i1 |= � ∧ ¬ϕ , then (a), (b) and (c) hold for K�x1(i1) (instead of K) because
K, x1, i1 |= �. Hence, applying the same reasoning for K�x1(i1) as we did above for K, we conclude that there should be a
path x2 ∈ fullpaths(K�x1(i1)) such that one of the following two facts holds:
(Case 2.2.1): K�x1(i1), x2 |= �¬(σ2 ∧ ♦σ3) ∧ ¬, and therefore K �|= A(σ1 U (σ2 ∧ ♦σ3),).
(Case 2.2.2): there should exist i2 > 0 such that K�x1(i1), x2, i2 |= � ∧ ¬ϕ and for all j ∈ {0..i2}:

• K�x1(i1), x2, j |= ¬σ2, and
• K�x1(i1), x2, j |= ¬σ ′

2 for all σ ′
1 U (σ ′

2 ∧ ♦σ ′
3) ∈

Now, (a), (b) and (c) apply to K�x2(i2). Hence, the infinite iteration of the second case yields a path y = x≤i1
1 x≤i2

2 · · · x≤ik
k · · ·

(that exists by the limit closure property) for which the Proposition 32 ensures that K, y, 0 �|= A(σ1 U (σ2 ∧ ♦σ3),).
The proof for the (A U �)+ rule follows the same scheme. �
Theorem 34 (Soundness of the tableau method). Given any set of state formulae �, if there exists a closed tableau for � then UnSat(�).

Proof. Let T� be a closed tableau for �. The set of formulae labelling at least one leaf in each bunch is inconsistent and
therefore unsatisfiable. Then, by Lemma 33, the labelling of the root node, �, is unsatisfiable. �

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 443
6. Completeness

In this section, we prove the completeness of the introduced tableau method. First, we define the notions of stage, ex-
panded bunch, and expanded tableau. Then we prove the refutational completeness: every unsatisfiable set of state formulae
has a closed tableau. In fact, we are going to prove that, for any set �0, if the systematic tableau Asys

�0
, given by Algorithm 1,

is open, then �0 is satisfiable. That is, Asys
�0

has at least one open bunch that allows us to construct a model of �0. The
final step of proving the completeness of the tableau method is establishing its termination.

6.1. Open bunch model construction

In this subsection, we define a method to associate a Kripke structure to any open bunch of the systematic tableau Asys
�0

.
Later, we prove that this Kripke structure is a model of �0.

Definition 35 (Stage). Given a branch, b of a tableaux T , a stage in T is every maximal subsequence of successive nodes
ni, ni+1, . . . , n j in b such that τ (nk) is not a (Q◦)-child of τ (nk−1), for all k such that i < k ≤ j. We denote by stages(b)

the sequence of all stages of b. The successor relation on stages(b) is induced by the successor relation on b. The labelling
function τ is extended to stages as the union of the original τ applied to every node in a stage. �

We prove that any open bunch of the systematic tableau Asys
�0

represents a model of the initial set of formulae �0.

Definition 36 (αβ+-saturated stage). A set of state formulae � is αβ+-saturated iff for all σ ∈ �:

1. If σ is an α-formula then Sσ ⊆ �.
2. If σ is a β-formula of range k, but it is not a β+-formula, then Sβi ⊆ � for some 1 ≤ i ≤ k.
3. If σ is a β-formula and also a β+-formula of range k then either Sβi ⊆ � or S+

�,βi
⊆ � for some 1 ≤ i ≤ k and � =

τ (n) \ {σ } for some n ∈ s.

We say that a stage s in Asys
�0

is αβ+-saturated iff τ (s) is αβ+-saturated. For a given set � of state-formulae, we denote
by Comp(�) the union of all the minimal sets that contains � and are αβ+-saturated. �
Definition 37 (Expanded bunch and tableau). An open branch b is expanded if each stage s ∈ stages(b) is αβ+-saturated and
b is eventuality-covered. A bunch is expanded if all its open branches are expanded. A tableau is expanded if all its open
bunches are expanded. �
Proposition 38. Given any set of state formulae �0, the systematic tableau Asys

�0
is expanded.

Proof. Trivial, by construction. �
Definition 39 (Open bunch model construction). For any expanded bunch H of Asys

�0
, we define the Kripke-structure KH =

(S, R, L) such that S = ⋃
b∈H stages(b) and for any s ∈ S: L(s) = {p | p ∈ τ (n) ∩ Prop for some node n ∈ s}; and R is the

relation induced in stages(b) for each b ∈ H . �
6.2. Properties of the open branches of Asys

�0

In order to prove that KH , as defined in Definition 39, is a model for the label of the root of H , we first prove the
required auxiliary properties of the systematic construction of the tableau Asys

�0
. The systematic construction of Algorithm 1

produces uniform sets as expandable nodes. The selection is always made in uniform sets and loop-nodes are also labelled
by uniform sets.

Remark 40 (Notation for eventualities and tableau rule application). In what follows, we use χ to represent a formula of one of
the two following forms: (σ2 ∧ ♦σ3) or �σ2. Then, σ1 U χ stands for one of the two possible eventualities. We say that the
corresponding β+ rule is applied to a selected A with some marked eventuality π ∈ , meaning that (A U σ)+ is applied
when π is σ1 U (σ2 ∧ ♦σ3), (A U �)+ is applied when π is σ1 U �σ2, and (A�U) followed by (A U σ)+ is applied when π
is �(σ1 U σ2). We say that the corresponding β+ rule is applied to a selected E meaning that (E U σ�)+ is applied when
 contains at least one σ1 U (σ2 ∧ ♦σ3) or at lest one σ1 U �σ2, and otherwise when contains at least one �(σ1 U σ2),
then (E U σ�)+ is applied just after (E�U) has been applied to every �(σ1 U σ2) in . For clarity, we consider sets S�,βi

and S+ used in the tableau rules creating child nodes from left (i = 1) to right, where i is the rank of the rule. �
�,βi

444 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
Definition 41 (Variants). For a given set of basic path formulae, we denote by Variants() the collection of all subsets
of the sets ′ that are obtained from by one simultaneous application of any number (including zero) of individual
substitutions of some π ∈ by π ′ that satisfies the following rules:

• π is an eventuality σ1 U (σ2 ∧ ♦σ3) and π ′ is either ♦σ3 or a next-step variant of π .
• π is an eventuality σ1 U �σ2 and π ′ is either �σ2 or a next-step variant of π .
• π is �(σ1 ∨ �σ2) and π ′ is �σ2. �

The following two propositions establish general properties of the rule-based decomposition of E-conjunctive and A-
disjunctive formulae (respectively) along open branches.

Proposition 42. Let b be an open branch of Asys
�0

, let si, s j (i < j) be any pair of consecutive stages in stages(b) and let � ∪ {E}
be the uniform set labelling the first node of si . There exists a (possibly empty and minimal) uniform set ′ ∈ Variants() such that
E′ ∈ τ (s j) and for all π ∈ :

(a) if π = σ1 U (σ2 ∧ ♦σ3) then there exists k ≥ i such that σ1 ∈ τ (sh) for all h ∈ i..k − 1 and
(a1) k < j and σ2 ∈ τ (sk) and σ3 ∈ τ (sk′) for some k′ such that k ≤ k′ ≤ j, or
(a2) k < j and σ2 ∈ τ (sk) and ♦σ3 ∈ ′ , or
(a3) k = j and π or some next-step variant of it is in ′,

(b) if π = σ1 U �σ2 then there exists k ≥ i such that σ1 ∈ τ (sh) for all h ∈ i..k − 1 and
(b1) k < j and σ2 ∈ τ (sh) for some h such that i ≤ h ≤ k and �σ2 ∈ ′ , or
(b2) k = j and σ1 U �σ2 or some next-step variant of it is in ′,

(c) if π = �(σ1 U σ2) then �(σ1 U σ2) ∈ ′ and for all h ∈ i.. j − 1: σ2 ∈ τ (sh) or σ1 ∈ τ (sh),
(d) if π = �(σ1 ∨ �σ2) then there exists k ≥ i such that σ1 ∈ τ (sh) for all h ∈ i..k − 1,

(d1) k = j and �(σ1 ∨ �σ2) ∈ ′ , or
(d2) k < j and there exists k′ ∈ k.. j − 1 such that σ2 ∈ τ (sh) for all h ∈ k′.. j − 1 and �σ2 ∈ ′ .

Proof. By simultaneous induction on , using the rules for the E-conjunctive formulae. Note that any stage in b is αβ+-
saturated and the procedure Uniform_Tableau applies exactly once between the last state of si and the first state of si+1.
More specifically, in (a) we use (E U σ) and (E U σ�)+ , and (a1) and (a2) come from the second application of (E U σ) to
E(♦σ3, . . .) where ♦σ3 abbreviates TU σ3. Similarly, item (b) comes from rules (E U �) and (E U σ�)+; Items (c) and (d)
are respectively obtained from the rules (E�U), (E U σ), and (E U σ�)+; and (E�σ). It is worth noting that ′ is empty if
all the formulae in satisfy the case (a1). �
Proposition 43. Let b be an open branch of Asys

�0
, let si, s j (j > i) be any pair of consecutive stages in stages(b) and let � ∪ {A} be

the uniform set labelling the first node of si . If there exists a non-empty uniform set ′ ∈ Variants() such that A′ ∈ τ (s j), then the
following four facts hold:

(a) For all σ1 U (σ2 ∧ ♦σ3) ∈ :
(a1) if σ1 U (σ2 ∧ ♦σ3) or a next-step variant of it is in ′, then σ1 ∈ τ (sh) for all h ∈ i.. j − 1,
(a2) if ♦σ3 ∈ ′ then σ2 ∈ τ (sk) for some k ∈ i.. j − 1 and σ1 ∈ τ (sh) for all h ∈ i..k − 1.

(b) For all σ1 U �σ2 ∈ : if �σ2 ∈ ′ or σ1 U �σ2 or a next-step variant of σ1 U �σ2 is in ′ , then {σ1, σ2} ⊆ τ (sh) for all h ∈
i.. j − 1.

(c) For all �(σ1 U σ2) ∈ ∩ ′: σ1 ∈ τ (sh) or σ2 ∈ τ (sh) for all h ∈ i.. j − 1.
(d) For all �(σ1 ∨ �σ2) ∈ ,

(d1) if �(σ1 ∨ �σ2) ∈ then σ1 ∈ τ (sh) for all h ∈ i.. j − 1,
(d2) if �σ2 ∈ ′ then for some k ∈ i.. j −1 {¬σ1, σ2} ⊆ τ (sk) and σ1 ∈ τ (sh) for all h ∈ i..k −1 and σ2 ∈ τ (sh) for all h ∈ k.. j −1.

Moreover, if there exists no A′ ∈ τ (s j) such that ′ ∈ Variants(), then there exists some σ1 U (σ2 ∧ ♦σ3) ∈ and some k, k′ ∈
i.. j − 1 such that k ≤ k′ and σ2 ∈ τ (sk) and σ3 ∈ τ (sk′).

Proof. By simultaneous induction on . For the proof we note that any stage in b is αβ+-saturated, and the following rules
for A-disjunctive formulae hold: (A U σ) and (A U σ)+ in (a); (A U �) and (A U �)+ in (b); (A�U), (A U σ), and (A U σ)+ in
(c); and (A�σ) in (d). It is worth noting that the rules (A U σ) and (A�σ) generate a child where the A-disjunctive formula
that comes from A is of the form A′ with ′ ⊂ (one formula is lost). �

From the previous two propositions it is easy to conclude that, for a given initial node (of stage si) labelled by a uniform
set � ∪{Q}, the mentioned sets ′ such that Q′ ∈ τ (si+1) exclusively consist of path subformulae and next-step variants
of the formulas in . It also follows that τ (si+1) exclusively contains Boolean combinations of state subformulae in � ∪{Q}

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 445
and the formula Q′ . The next proposition shows that the selection of an E-conjunctive formula in any open branch of Asys
�0

can only be kept along finitely many stages.

Proposition 44. Let b be an open branch of Asys
�0

, let si ∈ stages(b) and let � ∪ {E} be the uniform set labelling the first node of si

where the selectable formula E is selected. If E has the highest priority, then

(a) For all π = σ1 U (σ2 ∧ ♦σ3) ∈ : {σ2, E(♦σ3, ′)} ⊆ τ (sk) for some stage sk ∈ stages(b) (k ≥ i) and some ′ ∈ Variants(\
{π}).

(b) For all π = σ1 U �σ2 ∈ : E(�σ2, ′) ∈ τ (sk) for some stage sk ∈ stages(b) (k ≥ i) and some ′ ∈ Variants(\ {π}),

and if E has the lowest priority, then

(c) For all π = �(σ1 U σ2) ∈ : σ2 ∈ τ (sk) for some stage sk ∈ stages(b) (k ≥ i).

Proof. Suppose that E has the highest priority, then contains at least one σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2, then the β+-
rule (E U σ�)+ is applied in the first node of stage si where E is selected and the resulting E′ of the highest priority
in its children are kept selected, hence (E U σ�)+ is again applied to them, and so on. We proceed by contradiction,
supposing that (a) and (b) does not hold. We get a contradiction from the hypothesis that (a) does not hold, i.e. for some
σ1 U (σ2 ∧ ♦σ3) ∈ : {σ2, E(♦σ3, ′)} � τ (sk) for every stage sk ∈ stages(b) such that k ≥ i and all ′ ∈ Variants(\ {πi}).
The proof for the case where (b) does not hold is identical. The fact that (a) does not hold means that at the first node
of every stage s j ∈ stages(b) such that j ≥ i there is a selected formula Es j which satisfies that σ1 U (σ2 ∧ ♦σ3) or some
step-variant of it is in s j . Hence, except for a finite number of applications of (E U σ�)+ that extends the branch b with
some set S+

�s j ,βi
(where �s j is the context of the selected formula at the first node of each stage s j , in particular �si = �)

such that 1 ≤ i ≤ n, the branch b is repeatedly extended with some set S+
�s j ,βi

such that n + 1 ≤ i ≤ 2n, which includes a
next-step variant of at least one formula in s j . Note that this next-step variant could be of σ1 U (σ2 ∧ ♦σ3) or some other
formula of the form σ U (σ ∧♦σ) or σ U �σ . In any case, the uniform set labelling the first node of each stage s j (i ≤ j) has
the form �s j , Es j where s j contains at least one next-step variant of σ1 U (σ2 ∧ ♦σ3), Es j is the selected formula and
for every (except a finite number of) �sk where i ≤ k ≤ j, s j contains a formula of the form σ ∧ (¬�1 ∧ · · · ∧ ¬�r)) U χ

such that �h = �sk for some 1 ≤ h ≤ r. Since no other β+-rule is applied each �s j is a subset of the finite set formed by
all state formulae that are subformulae of some formula in �si ∪ and their negations. Hence, there exists a finite number
of different �s j . Therefore, after finitely many applications of the β+-rule (E U σ�)+ , for some k >= i, �sk = �sh for some
h ∈ {i, ..k − 1}, and ¬�sk ∈ τ (sk), hence, �sk must be inconsistent. Since b is open, this is a contradiction. It means that for
some k ≥ i, the application of the corresponding β+-rule (E U σ�)+ should produce a node whose label contains S+

�s j ,βi

where 1 ≤ i ≤ n. Henceforth, the open branch b must satisfy (a).
If E has the lowest priority, then contains at least one �(σ U σ) (and none σ U (σ ∧ ♦σ) and none σ U �σ). Let
us suppose there are n ≥ 1 formulae, i.e. E = E(�(σ 1

1 U σ 1
2), . . . , �(σ n

1 U σ n
2), ′) for some ′ that does not contain any

eventuality. Then, the α-rule (E�U) is applied n times transforming the selected E into

E(σ 1
1 U σ 1

2 , . . . , σ n
1 U σ n

2 ,◦�(σ 1
1 U σ 1

2), . . . ,◦�(σ n
1 U σ n

2),′)

which has the highest priority. Hence, by a particular application of the case (a), for all 1 ≤ j ≤ n: σ j
2 ∈ τ (sk) for some stage

sk ∈ stages(b) (k ≥ i). �
For A-disjunctive formulae, not only the outer context, but also the inner context, plays an important role. The next

propositions explain the role of both kinds of contexts.

Proposition 45. Let b be an open branch of Asys
�0

, let si ∈ stages(b) and let �si ∪ {A} be the uniform set labelling the first node
of si where A is selected and some eventuality πU ∈ is marked. Let b be any branch where the next-steps variants of πU are
successively marked and si = \ {πU } is the initial inner context. Then, one of the following two facts hold:

(a) There exists k ≥ i and some ′ ∈ Variants(\ {πU }) such that:
(a1) {σ2, A(♦σ3, ′)} ⊆ τ (sk) if πU = σ1 U (σ2 ∧ ♦σ3).
(a2) A(�σ2, ′) ∈ τ (sk) if πU = σ1 U �σ2 ∈ ′ .
(a3) σ2 ∈ τ (sk) if πU = �(σ1 U σ2) ∈ ′ .

(b) There exists k ≥ i such that the first node of sk is a loop-node whose companion node is in sh, for some h ∈ {i..k − 1}, some
′ ∈ Variants(\ {πU }) and some next-step variant π v

U of πU such that A(π v
U , ′) ∈ τ (s j) for all j ∈ {h..k}, and ϕ′ ∈ τ (sk).

Moreover, in both cases, for all j ∈ {i..k − 1}:

446 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
1. σ1 ∈ τ (s j) for all σ1 U (σ2 ∧ ♦σ3) ∈ ′ ∪ {πU },
2. {σ1, σ2} ⊆ τ (s j) for all σ1 U �σ2 ∈ ′ ∪ {πU },
3. σ1 ∈ τ (s j) or σ2 ∈ τ (s j) for all �(σ1 U σ2) ∈ ′ ∪ {πU }, and
4. σ1 ∈ τ (s j) for all �(σ1 ∨ �σ2) ∈ ′ .

Proof. If ϕπsi
= F, the uniform set labelling the first node at each stage s j (j ≥ i) of b has the form

�s j ,A((σ1 ∧ (¬�si ∧ · · · ∧ ¬�s j−1))U χ,s j)

where each �s j is the outer (resp. inner) context of the selected formula containing the marked next-step variant of πU) at
the first node of each stage s j . In particular, �si = �. Since no other β+-rule is applied each �s j is a subset of the finite set
formed by all state formulae that are subformulae of some formula in �si ∪ and their negations. Hence, there are a finite
number of different �s j . Therefore, after finitely many applications of the β+-rule, �sh = �s j , for some h >= i, for some
j ∈ {i, ..h − 1}, and σ1 ∧ (¬�si ∧ · · ·∧¬�sh−1) ∈ τ (sh). In particular, ¬�sh ∈ τ (sh), hence, �sh must be inconsistent. Since b is
open, this is a contradiction. This means that, for some k ≥ i the application of the corresponding β+-rule should produce
a node generated by the corresponding set S+

β1
. Henceforth, the open branch b must satisfy (a1) or (a2) or (a3), depending

on the case of πU .
If ϕπsi

�= F, then, the uniform set labelling the first node at each stage s j (j ≥ i) has the form

�s j ,A((σ1 ∧ (¬�si ∨ ϕsi
) ∧ · · · ∧ (¬�s j−1 ∨ ϕs j−1

))U χ,s j)

where each sh is the inner context at the first node of each stage sh . In particular, si = \ {πU }. Since no other β+-rule
is applied, then

• each �s j is a subset of the following finite set LC(�,): LC(�,) is formed by all state formulae that are subformulae
of some formula in � ∪, their negations, and a formula E♦σ2 for each subformula �(σ1 U σ2) in (see Definition 19),
and

• each s j is a subset of the finite set of all state formulae that are subformulae of some formula in . Indeed, each
s j+1 ∈ Variants(s j) for all j ≥ i.

In particular, there are a finite number of different outer and inner contexts. Henceforth, there are two possibilities. First,
for some h, k such that k > h ≥ i, both �sk = �sh and sk = sh ; and second for some h ≥ i, the formula ϕπsh

is F. In the
latter case, the item (a) must be satisfied for some k ≥ h. In the former case, by Definition 41 and Proposition 43, for all
j ∈ {h..k}: s j = sk . Let ′ = sk , then the first nodes at the sequence of stages sh, sh+1, . . . , sk are respectively labelled
by

�sh ∪ {A((σ1 ∧ δ)U χ,′)}, �sh+1 ∪ {A((σ1 ∧ δ)U χ,′)}, . . . , �sk ∪ {A((σ1 ∧ δ)U χ,′)}
where δ = (¬�si ∨ ϕsi

) ∧ · · · ∧ (¬�sh ∨ ϕ′) ∧ · · · ∧ (¬�sk−1 ∨ ϕ′) or equivalently δ = (¬�si ∨ ϕsi
) ∧ · · · ∧ ((¬�sh ∧ · · · ∧

¬�sz−1) ∨ ϕ′). Hence, in node sk , the application of the β+-rule to the marked eventuality produces a right-hand child
that contains �sk and σ1 ∧ δ. Therefore, by rules (∧) and (∨), it also contains ¬�sh = ¬�sk . Therefore, since b is open, τ (sk)

must contain ϕ′ , which completes the proof of item (b). Moreover, in both cases (a) and (b), for all j ∈ {i..k − 1}, each
inner context s j+1 satisfies the properties of ′ in Proposition 42 with respect to s j as . Consequently, the last four
items of the proposition hold. �

The next two propositions provide a detailed description of how the highest priority formulae evolve in open branches.

Proposition 46. Let b be an open branch of Asys
�0

, and let E be of the highest priority that is selected at some stage si ∈ stages(b).
Then there exists a state sk ∈ stages(b) (for some k ≥ i) and some (possibly empty and minimal) set ′ ∈ Variants() such that
E′ ∈ τ (sk), E′ is of the lowest priority and for all π ∈ the following facts hold:

(a) If π = σ1 U (σ2 ∧ ♦σ3) then there exists j, j′ such that i ≤ j ≤ j′ ≤ k, for all h ∈ {i, . . . , j − 1}: σ1 ∈ τ (sh), σ2 ∈ τ (s j), and
σ3 ∈ τ (s j′).

(b) If π = σ1 U �σ2 then there exists j such that i ≤ j ≤ k and for all h ∈ {i, . . . , j − 1}: σ1 ∈ τ (sh), and for all h ∈ { j, . . . , k}:
σ2 ∈ τ (sh) and �σ2 ∈ ′ .

(c) If π = �(σ1 U σ2) then �(σ1 U σ2) ∈ ′ , and for all j ∈ {i, . . . , k}: either σ1 ∈ τ (s j) or σ2 ∈ τ (s j).
(d) If π = �(σ1 ∨ �σ2) then one of the following two facts holds:

(d1) For all j ∈ {i, . . . , k}: σ1 ∈ τ (s j) and �(σ1 ∨ �σ2) ∈ ′ .
(d2) There exists j such that i ≤ j ≤ k and for all h ∈ {i, . . . , j − 1}: σ1 ∈ τ (sh), and for all h ∈ { j, . . . , k}: σ2 ∈ τ (sh) and

�σ2 ∈ ′ .

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 447
Proof. By simultaneous induction on the structures of formulae in and Propositions 44 and 42((a) and (b)), the above
items (a) and (b) hold for some k ≥ i. Note that in case (a), E(♦σ3, ′) (for some ′ such that {♦σ3} ∪ ′ ∈ Variants()) is
kept selected at stage s j . Hence, the eventuality σ3 ∈ τ (s j′) for some j′ ≥ j. Therefore, by Proposition 44, the existence of
such j′ is ensured. In case (b) E(�σ2, ′) ∈ τ (s j) for some j ≥ i, hence, by Proposition 42(d), for all h ∈ { j, . . . , k}: σ2 ∈ τ (sh)

and �σ2 ∈ ′ . Items (c) and (d) are ensured by Propositions 42 (c) and (d). Additionally, by minimality, ′ only contains
formulae of the forms �(σ1 U σ2) and �(σ1 ∨ �σ2), hence E′ is of the priority. �

The other kind of the highest-priority formulae are A such that is exclusively formed by formulae of the form
σ1 U (σ2 ∧ ♦σ3).

Proposition 47. Let b be an open branch of Asys
�0

, and let A be a formula of the highest priority that is selected at some stage
si ∈ stages(b). Then there exists π = σ1 U (σ2 ∧ ♦σ3) ∈ and some stage sk ∈ stages(b) (for some k ≥ i) such that for all j ∈
{i, . . . , k − 1}: σ1 ∈ τ (s j), {σ2, A(♦σ3, ′)} ⊆ τ (sk) for some ′ ∈ Variants(\ {π}). Moreover, A(♦σ3, ′) is also a formula of the
highest priority.

Proof. According to Definitions 24 and 26, one eventuality in must be marked at the stage si of b. Hence, there exists
σ1 U (σ2 ∧ ♦σ3) ∈ that is the marked eventuality at stage si . Since ϕ is F when is exclusively formed by formulae of
the form σ1 U (σ2 ∧♦σ3), the item (a) of Proposition 45 holds. Hence, by Proposition 45 (a1), there exists k ≥ i and ′ such
that {σ2, A(♦σ3, ′)} ∈ τ (sk). Since ′ ∈ Variants(\ {π}), every formula in ′ is of the form σ1 U (σ2 ∧♦σ3) (in particular,
♦σ which abbreviates TU (σ ∧ ♦T)). Hence, A(♦σ3, ′) is also of the highest-priority. �

Next, we show that any open branch of Asys
�0

is eventuality-covered. In the sequel, we deal with uniform sets formed
by non-selectable and the lowest priority formulae (i.e., without the highest-priority formulae), we call them cycle-uniform
sets.

Proposition 48. Any open branch b of Asys
�0

is eventuality-covered.

Proof. Let b be any open branch of Asys
�0

, we are going to show that there must exist some stage s� in b with the first node
n� labelled by a cycle-uniform set �� such that any selection of a formula of the lowest priority in �� produces a loop-node
whose companion node is n� .

Let � and �′ be any two cycle-uniform sets of state formulae, we say that �′ � � iff every formula in �′ is either
a proper subformula of some formula Q ∈ � or its negation, or a formula Q′ such that there exists Q ∈ � such
that ′ ∈ Variants(). It is worth noting that the formulae E♦σ2 that can be introduced by ϕ (see Definition 19) are
of the highest priority, then they cannot belong to any cycle-uniform set. Let b = s0, . . . , si, . . . , s j, . . . (0 ≥ i > j) be any
open branch of Asys

�0
, and let � and �′ respectively be the cycle-uniform sets labelling the first node of si and s j . By

Propositions 42, 43, 44 and 45, �′ � �. Moreover, for any cycle-uniform set �, � is a well-founded order on the collection
of all cycle-uniform sets �′ such that �′ � �.

Let b = s0, . . . , si, . . . , s j, . . . , sk, . . . (0 ≥ i > j ≥ k) be any open branch of Asys
�0

. Suppose that every highest priority
formula in the initial uniform set has been selected before the stage si . Let � be the cycle-uniform set labelling the first
node of s j which is a loop-node whose companion is the first node of si . Suppose that � contains at least one lowest
priority formula A that was selected at si . If b is not already eventuality-covered, this means that there exists A′ ∈ �

of the lowest priority that has not been selected. Suppose that A′ is selected at s j and there exists a loop-node at sk
labelled by �′ then, �′ � �. If � = �′ and there are no more selectable formula in �, b is already eventuality covered and
the first node of si is n� . Otherwise, �′ ≺ �, so that the companion node of the first node of sk is the first node of some
stage sh such that h > i. In general, for any number of the lowest priority formulae in �, by well-foundness of ≺ there
should exist a minimal node n� labelled by a cycle-uniform set �� such that any selection of the lowest priority formula
in �� produces a loop-node whose companion node is n� . Hence, the branch b ends by a subsequence of n ≥ 2 (possibly
non-consecutive) stages si1 , . . . , sin whose first node is labelled by �� , where n� is the first node of si1 , and each selectable
(lowest priority) formula in �� is selected at some stage in si1 , . . . , sin . In particular, �� could be empty, then n = 2 and b
is trivially eventuality-covered. �
6.3. Refutational completeness

In this subsection we prove that our tableau method is refutationally complete, that is if a set of state formulae is
unsatisfiable then there exists a closed tableau for it. For that, we first ensure the existence of a model for any open bunch
of Asys

�0
.

Lemma 49 (Model existence). Let H be an expanded bunch of Asys
�0

and KH = (S, R, L) be as in Definition 39. For every state s ∈ S, if
σ ∈ L(s) then KH , s, 0 |= σ . Therefore, KH |= �.

448 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
Proof. Let H be any expanded bunch of Asys
�0

and let b be any open branch in H . The construction of any branch of Asys
�0

starts by selecting a formula of the highest-priority (if any) and marking eventualities as explained in Definition 24. At most
one eventuality is marked inside the unique selected Q and the rules of Fig. 7 are applied to this formula and to no
one else. When a β+-rule is applied to a formula of the highest priority (independently of the marked eventuality), then
only the outer context (but no the inner context) is used to construct the new-step variant. Therefore, while some highest
priority formulae is selected, previous labels cannot be repeated. Consequently, the initial segment of any open branch has
no loop-nodes. This initial segment can be empty or not. According to Proposition 48, the branch b is eventuality covered.
Hence, there exists a (possibly empty) cycle-uniform set �� such that for some i ≥ 0: b = s0, s1, . . . , si−1, si, si+1, . . . , s j, n� ,
where each sh stands for a stage and n� is a non-expandable loop-node labelled by �� whose companion node is the first
node at stage si . Let si1 , si2 , . . . , siz be the subsequence formed by all the stages in si, si+1, . . . , s j whose first node is labelled
by �� (in particular, si1 = si). Then, each lowest priority formula in �� has been selected at some node nh (h ∈ i.. j + 1).
The tableau branch b represents a cyclic branch (of a model) such that path(b) = s0, s1, . . . , si−1〈si, si+1, . . . , s j〉ω where each
state sh (h ∈ 0.. j) is labelled by the set of all atoms occurring in the label τ (sh) of the tableau stage sh (in the label of some
tableau node at stage sh).

We are going to prove that KH , sa, 0 |= σ for any a ∈ 0... j and any formula σ in τ (sa), by structural induction on the
formula σ . The base of the induction σ = p ∈ Prop is ensured by Definition 39: KH , sa, 0 |= p.

The bunch H allows us to ensure that whenever a tableau node in stage sa is labelled by an elementary set
{�, A◦�1, . . . , A◦�n, E◦�1, . . . , E◦�m} ⊆ L(s) then, by rule (Q◦), the bunch H contains one successor stage si

a+1, for
each i ∈ 1..m, that contains {A�1, . . . , A�n, E�i}. Since by induction hypothesis, we can assume that KH , si

a+1, 0 |=
A�1, . . . , A�n, E�i for all i ∈ 1..m, and � is a consistent set of literals, then we can infer that KH , sa, 0 |= {�, A◦�1,

. . . ,A◦�n,E◦�1, . . . , E◦�m}.
To complete the proof, we prove different cases for σ being a formula of the form Q, depending on whether σ is

selectable or not and, in the selectable case, depending on the σ priority for the selection strategy.
Let σ = E ∈ τ (sa) be non-selectable. Then every π ∈ is of the form �(σ1 ∨ �σ2). Hence, by Proposition 42 (d)

and the induction hypothesis, there exists a state sk (for some k ≥ a) and some non-empty set ′ ∈ Variants() such that
KH , sk, 0 |= E′ , �(σ1 ∨ �σ2) ∈ ′ , and for all π ∈ :

• KH , s j, 0 |= σ1 for all a ≤ j ≤ k, and
• there exists j such that a ≤ j ≤ k and for all h ∈ a.. j − 1: KH , sh, 0 |= σ1, and for all h ∈ j..k: KH , sh, 0 |= σ2 and

�σ2 ∈ ′ .

Therefore, KH , sa, 0 |= E.
Let σ = A ∈ τ (sa) be non-selectable. Then every π ∈ is of the form �(σ1 ∨ �σ2). By Proposition 43 (d) and the

induction hypothesis, there exists a state sk (for some k ≥ a) and some non-empty set ′ ∈ Variants() such that KH , sk, 0 |=
A′ and for all π = �(σ1 ∨ �σ2) ∈ :

• If �(σ1 ∨ �σ2) ∈ ′ then KH , s j, 0 |= σ1 for all j ∈ a..k, and
• if �σ2 ∈ ′ then there exists j such that a ≤ j ≤ k and for all h ∈ a.. j −1: KH , sh, 0 |= σ1, and for all h ∈ j..k: KH , sh, 0 |=

σ2.

Therefore, KH , sa, 0 |= A.
Let σ = E ∈ τ (sa) be a (selectable) formula of the highest priority. According to Proposition 46 and the induction

hypothesis, there exists a state sk (for some k ≥ a) and some (possibly empty and minimal) set ′ ∈ Variants() such that
KH , sk, 0 |= E′ and for all π ∈ the following facts hold:

• If π = σ1 U (σ2 ∧ ♦σ3) then there exists j, j′ such that a ≤ j ≤ j′ ≤ k, for all h ∈ i.. j − 1: KH , sh, 0 |= σ1, KH , s j, 0 |= σ2,
and KH , s j′ , 0 |= σ3.

• If π = σ1 U �σ2 then there exists j such that a ≤ j ≤ k and for all h ∈ a.. j − 1: KH , sh, 0 |= σ1, and for all h ∈ j..k:
KH , sh, 0 |= σ2 and �σ2 ∈ ′ .

• If π = �(σ1 U σ2) then �(σ1 U σ2) ∈ ′ , and for all j ∈ a..k: either KH , s j, 0 |= σ1 or KH , sa, 0 |= σ2.
• If π = �(σ1 ∨ �σ2) then one of the following two facts holds:

– For all j ∈ a..k: KH , s j, 0 |= σ1 and �(σ1 ∨ �σ2) ∈ ′ .
– There exists j such that a ≤ j ≤ k and for all h ∈ a.. j − 1: KH , sh, 0 |= σ1, and for all h ∈ j.., k: KH , sh, 0 |= σ2 and

�σ2 ∈ ′ .

Therefore, KH , sa, 0 |= E.
Let σ = A ∈ τ (sa) be a formula of the highest-priority where σ1 U (σ2 ∧ ♦σ3) ∈ is marked. By Proposition 47 and

the induction hypothesis, we have that KH , sv , 0 |= σ2 for some v ≥ a, KH , sz, 0 |= σ1 for all z ∈ a..v − 1. In addition,
A(♦σ3, ′) ∈ τ (sv) (which is also the highest priority formula). Hence, by induction hypothesis, KH , sv , 0 |= A(♦σ3, ′).
Additionally, by Proposition 43 and the induction hypothesis:

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 449
(a) For all σ ′
1 U (σ ′

2 ∧ ♦σ ′
3) ∈ :

• If σ ′
1 U (σ ′

2 ∧ ♦σ ′
3) is also in ′ , then KH , sz, 0 |= σ ′

1 for all z ∈ a..v − 1.
• If ♦σ ′

3 ∈ ′ then KH , sz, 0 |= σ ′
2 for some z ∈ a..v − 1.

(b) For all σ ′
1 U �σ ′

2 ∈ :
• If σ ′

1 U �σ ′
2 ’is also in ′ , then KH , sz, 0 |= σ ′

1 for all z ∈ a..v − 1.
• If �σ ′

2 ∈ ′ then there exists j ∈ a..v −1 such that KH , s j, 0 |= σ ′
1 for all z ∈ a.. j −1 and KH , sz, 0 |= σ ′

2 for all z ∈ j..v .

Therefore, KH , sa, 0 |= A.
Let σ = E ∈ τ (sa) be a (selectable) formula of the lowest priority. If a < i then, by Proposition 42 ((c) and (d)), there

exists non-empty ′ ∈ Variants() such that E′ ∈ τ (ni) ⊆ τ (si) and

• For all �(σ1 U σ2) ∈ : �(σ1 U σ2) ∈ ′ and for all z ∈ a..i − 1: σ1 ∈ τ (sz) or σ2 ∈ τ (sz).
• For all �(σ1 ∨�σ2) ∈ : either �(σ1 ∨�σ2) ∈ ′ and σ1 ∈ τ (sz) for all z ∈ a..i − 1; or �σ2 ∈ ′ and there exists j such

that a ≤ j ≤ i, so that for all h ∈ a.. j − 1: σ1 ∈ τ (sh) and for all h ∈ j..i: σ2 ∈ τ (sh).

Since E′ ∈ τ (n1) is selected at some node nh for some i ≤ h ≤ j, then by Proposition 44(c), σ2 ∈ τ (sw) for some w ∈ i.. j.
Moreover, by Proposition 42(c), for all z ∈ i.. j: σ1 ∈ τ (sz) or σ2 ∈ τ (sz). In addition τ (nh) = �� for all h ∈ i.. j + 1, hence-
forth by Proposition 42(d), for all �(σ1 ∨ �σ2) ∈ ′: σ1 ∈ τ (sz) for all z ∈ i.. j. Therefore, the application of the induction
hypothesis to every σ1 and every σ2, allows us to ensure that KH , sa, 0 |= E. The case a ≥ i can be seen as the particular
case where ′ = and E ∈ τ (nh) for all h ∈ i.. j + 1.

Let σ = A ∈ τ (sa) be a (selectable) formula of the lowest priority. Then, contains at least one σ1 U �σ2 or �(σ1 U σ2).
We study two cases depending on whether there exists ′ ∈ Variants() such that A′ ∈ �� or not. In the negative case,
by Proposition 43 and the induction hypothesis, there exists σ1 U (σ2 ∧ ♦σ3) ∈ and some j, j′ such that a ≤ j ≤ j′ ≤ k,
for all h ∈ i.. j − 1: KH , sh, 0 |= σ1, KH , s j, 0 |= σ2, and KH , s j′ , 0 |= σ3. Therefore, KH , sa, 0 |= A. Otherwise, let A′ ∈
�� ⊆ τ (si) such that ′ ∈ Variants(). By induction hypothesis and Proposition 43, KH , si, 0 |= A′ suffices to ensure that
KH , sa, 0 |= A. Hence, we are going to prove that KH , si, 0 |= A′ . If A′ is non-selectable, then KH , si, 0 |= A′ holds
because KH , sh, 0 |= σ1 for all �(σ1 ∨ �σ2) ∈ ′ and all h ∈ i.. j. Otherwise, A′ is the lowest priority formula that is in the
label of all the stages si, si+1, . . . , s j , hence for all h ∈ i.. j:

• σ1 ∈ τ (sh) for all σ1 U (σ2 ∧ ♦σ3) ∈ ′. • {σ1, σ2} ⊆ τ (sh) for all σ1 U �σ2 ∈ ′.
• σ1 ∈ τ (sh) or σ2 ∈ τ (sh) for all �(σ1 U σ2) ∈ ′. • σ1 ∈ τ (sh) for all �(σ1 ∨ �σ2) ∈ ′.

Moreover, A′ contains at least one σ1 U �σ2 or �(σ1 U σ2), and one of its eventualities (that could be also of the form
σ1 U (σ2 ∧♦σ3)) is selected at some of the stages si1 , si2 , . . . , siz . Hence, Proposition 45, along with the induction hypothesis,
ensure that KH , si, 0 |= A′ . �
Corollary 50. For any expanded bunch H of Asys

�0
, KH |= �0 .

Proof. Immediate consequence of Lemma 49. �
Now, we prove the refutational completeness of the tableau method.

Theorem 51 (Refutational completeness). For any set of state formulae �0, if UnSat(�0) then there exists a closed tableau for �0.

Proof. Suppose the contrary, that there exists no closed tableau for �0. Then the systematic tableau Asys
�0

would be open and
there would be at least one expanded bunch H in Asys

�0
. By Corollary 50, KB |= �0. Consequently �0 would be satisfiable. �

6.4. Termination

Most tableau systems for modal and temporal logics, satisfy the analytic super-formula property (ASP): for every finite
set of formulae �, there exists a finite set that contains all the formulae that may occur in any tableau for �. Such a set
is usually called the closure of �. The ASP also ensures the non-existence of infinite branches where all the nodes have
different labels. Hence, by controlling loops, the finiteness of proof search can be ensured. In our case, as a consequence of
the β+-rules, the tableau system fails to satisfy the ASP, but it satisfies a slightly weaker variant which ensures completeness
and that we call the weak analytic superformula property (WASP): for every finite set of state formulae �0 there exists a finite
set (usually called the local closure of �) that contains all the formulae that may occur in any (systematic) tableau for �
constructed by Algorithm Asys . For this purpose, the eventuality selection policy used in the Asys is crucial.

Theorem 52 (Termination of the tableau method). For any set of state formulae �0, the construction of the expanded tableau Asys
�0

terminates.

450 A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451
Proof. Tableau rules produce a finite branching, hence König’s Lemma, applies. The subsumption-based simplification rules
(Subsection 3.5) do prevent the generation of formulae containing the original eventuality when a “new variant” has been
generated. By Propositions 44 and 45, the application of a β+-rule to a selected formula stops after a finite number of steps.
Finally, Proposition 48 ensures that any open branch is eventually-covered. �
Theorem 53 (Completeness of the tableau method). For any set of state formulae �0, if �0 is satisfiable then there exists a (finite) open
expanded tableau for �0 .

Proof. The existence of the systematic tableau Asys
�0

suffices to prove this fact, by Theorem 52. �
7. Conclusion

We introduced a new logic, ECTL#, in the family of BTL and its tree-style one pass tableau. This extends the expres-
siveness of fairness by a new class of fairness constraints with the U operator. The tableau method handles inputs in an
‘analytic” way, due to the new, crucial for branching structures, concept of ‘inner context’, in which eventualities are to
be fulfilled. The tableau rules that invoke the inner context, are essential to handle A-disjunctive formulae. Our analysis of
A-disjunctive and E-conjunctive formulae and of the prioritisation of eventualities, based on their structure and the context
for their fulfilment, are important from the methodological point of view.

Our tableau technique is not directly extensible to CTL� . Without any significant modifications, β+-rules become un-
sound for inputs that are beyond ECTL# syntax due to nested path subformulae as in A♦(◦p ∧ E◦¬p) mentioned in Fig. 1.
However, for the proof of correctness of β+-rules, we developed the technique to identify relevant state-formulae inside the
specific path-modalities. This technique will be useful in studying more expressive logics (e.g. CTL�), as it allows to identify
those subformulae that do not affect the ‘context’, thus enabling the simplification of the structures.

We note that the size of the systematic tableau for the input of size m is bounded by 22O (m2)
(see technical report at

http://www.sc .ehu .es /jiwlucap /TechReport18 .pdf). However, the method aims at the ‘shortest’ way to fulfil the eventualities
and, for many examples, finds the first open bunch, giving us a model for the tableau input. This significantly reduces the
complexity. Finally, the presented technique is amenable for implementation – and this will be another stream of our future
work. In the refinement and implementation of the algorithm we will be able to rely on similar techniques used in the
implementation of its linear-time analogue.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] E.A. Emerson, J.Y. Halpern, Decision procedures and expressiveness in the temporal logic of branching time, J. Comput. Syst. Sci. 30 (1) (1985) 1–24.
[2] E.A. Emerson, J.Y. Halpern, Sometimes and not never revisited: on branching versus linear time temporal logic, J. ACM 33 (1) (1986) 151–178.
[3] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state concurrent systems using temporal logic specifications, ACM Trans. Program.

Lang. Syst. 8 (2) (1986) 244–263.
[4] B. Josko, Model checking of ctl formulae under liveness assumptions, in: T. Ottmann (Ed.), Automata, Languages and Programming, 14th International

Colloquium, Springer-Verlag Berlin Heidelberg, Karlsruhe, 1987, pp. 5–24, Federal Republic of Germany.
[5] E.A. Emerson, C.-L. Lei, Temporal reasoning under generalized fairness constraints, in: B. Monien, G. Vidal-Naquet (Eds.), STACS 1986, in: Lecture Notes

in Computer Science, vol. 210, Springer-Verlag Berlin Heidelberg, Karlsruhe, 1986, pp. 21–37, Federal Republic of Germany.
[6] T. Berg, H. Raffelt, Model checking, in: M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, A. Pretschner (Eds.), Model-Based Testing of Reactive Systems,

Springer-Verlag, Berlin Heidelberg, 2005, pp. 557–603.
[7] J. Sun, Y. Liu, J.S. Dong, H.H. Wang, Specifying and verifying event-based fairness enhanced systems, in: S. Liu, T. Maibaum, K. Araki (Eds.), Formal

Methods and Software Engineering: 10th International Conference on Formal Engineering Methods ICFEM 2008, Springer Science and Business Media,
Kitakyushu-City, Japan, 2008, pp. 5–24.

[8] J. Kretinsky, R. Ledesma Garza, Rabinizer 2: Small deterministic automata for LTL\GU, in: Automated Technology for Verification and Analysis – 11th
International Symposium, ATVA 2013, Springer, Heidelberg Dordrecht London New York, 2013, pp. 446–450.

[9] E.A. Emerson, Temporal and modal logic, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science (Vol. B), MIT Press, Cambridge, USA,
1990, pp. 995–1072.

[10] N. Markey, Temporal logics, course notes, Master Parisien de Recherche en Informatique, Paris, France, http://www.lsv.ens -cachan .fr /Publis /PAPERS /PDF /
NM -coursTL13 .pdf, 2013.

[11] K. Brünnler, M. Lange, Cut-free sequent systems for temporal logic, J. Log. Algebraic Program. 76 (2) (2008) 216–225.
[12] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, F. Orejas, Dual systems of tableaux and sequents for PLTL, J. Log. Algebraic Program. 78 (8) (2009)

701–722.
[13] P. Abate, R. Goré, F. Widmann, One-pass tableaux for computation tree logic, in: N. Dershowitz, A. Voronkov (Eds.), Logic for Programming, Artificial

Intelligence, and Reasoning, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 32–46.

http://www.sc.ehu.es/jiwlucap/TechReport18.pdf
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib1F47F4D1428935B0AD3D0B9AE944CCDBs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib7185828B2BB3917C397B7F25BBE28D1Cs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib1CF958DFF3F5C78D94435137FF14C702s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib1CF958DFF3F5C78D94435137FF14C702s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib70245B782B7AC1D97678D65BC49A0BDBs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib70245B782B7AC1D97678D65BC49A0BDBs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibF1CFB49AC33F3536557864372461E316s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibF1CFB49AC33F3536557864372461E316s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib4A9964B5CEACC92F21EED3A346E18A58s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib4A9964B5CEACC92F21EED3A346E18A58s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib40F3733EFB7D455E16F43359652B0FF5s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib40F3733EFB7D455E16F43359652B0FF5s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib40F3733EFB7D455E16F43359652B0FF5s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib6A54E43820ACC9624B034F12D6F45580s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib6A54E43820ACC9624B034F12D6F45580s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibE8029BD15704E9710366CD7427892377s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibE8029BD15704E9710366CD7427892377s1
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/NM-coursTL13.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/NM-coursTL13.pdf
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib599FD3F3E3246A5966057F6ACF7A57E0s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibDEF39565AB2ABDC57517F72CC5EEF7CFs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibDEF39565AB2ABDC57517F72CC5EEF7CFs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibB49E27BECEA9821FA7187E00391ED5E1s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibB49E27BECEA9821FA7187E00391ED5E1s1

A. Bolotov et al. / Theoretical Computer Science 813 (2020) 428–451 451
[14] O. Friedmann, M. Latte, M. Lange, A decision procedure for CTL* based on tableaux and automata, in: J. Giesl, R. Hähnle (Eds.), Automated Reasoning,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 331–345.

[15] A. Pnueli, Y. Kesten, A deductive proof system for CTL*, in: L. Brim, M. Křetínský, A. Kučera, P. Jančar (Eds.), CONCUR 2002 — Concurrency Theory,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 24–40.

[16] J.C. MaCabe-Dansted, M. Reynolds, Rewrite rules for CTL*, J. Appl. Log. 21 (2017) 24–56.
[17] M. Reynolds, A tableau for CTL� , in: A. Cavalcanti, D. Dams (Eds.), Proceedings. FM 2009: Formal Methods, Second World Congress, Eindhoven, The

Netherlands, November 2–6, 2009, in: Lecture Notes in Computer Science, vol. 5850, Springer, 2009, pp. 403–418.
[18] M. Reynolds, A tableau-based decision procedure for CTL*, Form. Asp. Comput. 23 (6) (2011) 739–779.
[19] S. Cerrito, A. David, V. Goranko, Optimal Tableau Method for Constructive Satisfiability Testing and Model Synthesis in the Alternating-Time Temporal

Logic ATL+, vol. 17, 2014.
[20] R. Gore, Tableau methods for modal and temporal logics, in: M. D’Agostino, D.M. Dov Gabbay, R. Hähnle, J. Posegga (Eds.), Handbook of Tableau

Methods, Springer, Netherlands, Dordrecht, 1999, pp. 297–396.
[21] A. Bolotov, M. Hermo, P. Lucio, Extending fairness expressibility of ECTL+: a tree-style one-pass tableau approach, in: N. Alechina, K. Nørvåg, W. Penczek

(Eds.), 25th International Symposium on Temporal Representation and Reasoning (TIME 2018), in: Leibniz International Proceedings in Informatics
(LIPIcs), vol. 120, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 5.

[22] R.S. Streett, E.A. Emerson, The propositional mu-calculus is elementary, in: J. Paredaens (Ed.), Automata, Languages and Programming. Proceedings,
11th Colloquium, Antwerp, Belgium, July 16–20, 1984, in: Lecture Notes in Computer Science, vol. 172, Springer, 1984, pp. 465–472.

[23] O. Kupferman, M.Y. Vardi, P. Wolper, An automata-theoretic approach to branching-time model checking, J. ACM 47 (2) (2000) 312–360.

http://refhub.elsevier.com/S0304-3975(20)30099-2/bibEF72E2B3E1B5BDB011DFC67A14300215s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibEF72E2B3E1B5BDB011DFC67A14300215s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib9DFCB8701A6A9A7203B1E65620D80262s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib9DFCB8701A6A9A7203B1E65620D80262s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib0F3E004EFD372345A462DA9D6697C3C4s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib302684AAE9EA9DFA602545922D332B7Fs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib302684AAE9EA9DFA602545922D332B7Fs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib095A27ACD8828A97CD9D64BF50FE7790s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib1F6896381E64F18DF3A762C83F4C63FFs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib1F6896381E64F18DF3A762C83F4C63FFs1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib1C4362962A0845063FB384385ED40026s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib1C4362962A0845063FB384385ED40026s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib96DCE9D271A4C053CA899317BC491C77s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib96DCE9D271A4C053CA899317BC491C77s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bib96DCE9D271A4C053CA899317BC491C77s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibA94D55F7BCB6E945666EAF1431CC4D21s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibA94D55F7BCB6E945666EAF1431CC4D21s1
http://refhub.elsevier.com/S0304-3975(20)30099-2/bibD86C99CD95CFED838742DCC059E00C8Es1

	Branching-time logic ECTL# and its tree-style one-pass tableau: Extending fairness expressibility of ECTL+
	1 Introduction
	2 The logic ECTL#
	3 The tableau method
	3.1 Preliminaries
	3.2 Alpha, beta rules and next-state rule
	3.3 The uniform tableau
	3.4 The beta-plus rules
	3.5 Simplification rules
	3.6 The role of φΠ in the beta-plus rules

	4 Systematic tableau construction
	4.1 The algorithm

	5 Soundness
	6 Completeness
	6.1 Open bunch model construction
	6.2 Properties of the open branches of AsysΣ0
	6.3 Refutational completeness
	6.4 Termination

	7 Conclusion
	Acknowledgements
	References

