A Generalization of the Folding Rule
for the Clark-Kunen Semantics*

Javier Alvez and Paqui Lucio

Basque Country University
{javier.alvez, paqui.lucio}@ehu.es

Abstract. In this paper, we propose more flexible applicability condi-
tions for the folding rule that increase the power of existing unfold/fold
systems for normal logic programs. Our generalized folding rule enables
new transformation sequences that, in particular, are suitable for re-
cursion introduction and local variable elimination. We provide some
illustrative examples and give a detailed proof of correctness w.r.t. the
Clark-Kunen semantics.

1 Introduction

Unfold/fold transformation systems were originally adapted by Tamaki and Sato
in [28] to logic programming from the well-known Burstall-Darlington method for
functional programming (see [6]). Tamaki and Sato’s seminal unfold/fold system
works on definite logic programs preserving their equivalence in the sense of the
least Herbrand model. Since then, unfold/fold transformations of logic programs
have been extensively studied and used (see [21] for a survey). In particular,
different extensions of the Tamaki and Sato’s system for dealing with negation
have been proposed. The various semantics of negation in logic programming
lead to different requirements in transformation rules depending on which se-
mantics is intended to be preserved. The main motivation of this paper comes
from our previous work (see [18,1]) in constructive negation (see [7]), which is
sound and complete w.r.t. the Clark-Kunen semantics (see [8,16]). Hence, we are
interested in transformation systems that preserve the Clark-Kunen semantics.
The choice of the negation semantics is crucial for defining the side conditions
of transformation rules. The following example illustrates this point.

Example 1. Given the following two clauses
Py: 1. p—gq,r 2. g—gq

by unfolding ¢ in the body of clause 1 with clause 2 we obtain clause 3, which
is a copy of the clause 1

Pr: 3. p—gq,r 2. q+q.

* This work has been partially supported by Spanish Project TIN2004-079250-C03-03.

Now, if we allow to fold the body of the clause 3 using clause 1 (which can be
seen as either a self-folding or a folding with a deleted clause) then we obtain

Ps: 4. p<p 2. g+<gq. O

First, note that the programs in the above example are propositional and posi-
tive, which makes more intrinsic the following problem. Let us consider another
popular declarative semantics for negation: the well-founded semantics (see [13]).
The programs Py and P; are equivalent w.r.t. both the Clark-Kunen and the
well-founded semantics. Besides, Py and P» are equivalent w.r.t. the well-founded
semantics, but they are not equivalent w.r.t. the Clark-Kunen semantics. More
precisely, the well-founded model of Py and P» is (0, {p,q,7r}), where no atom
is true nor undefined and every atom is assigned to be false. However, Clark’s
completion of Py is

(pe=(gAr)) AN (ge=q) N (1 false)

so that —p is a three-valued consequence of it, whereas P,’s completion is

(pe=p) A(geq) A (1« false)

and —p is not a three-valued consequence of P,’s completion. Therefore, we
need to provide extra-conditions to the folding rule in order to preserve the
Clark-Kunen semantics, but these extra-conditions would be unnecessary if we
considered the well-founded semantics.

There are many proposals for extending Tamaki and Sato’s system (see [28])
for dealing with different semantic notions of negation. Seki (see [25]) showed
that the system in [28] does not preserve finite-failure and introduced a modified
folding rule that preserves finite failure and perfect model semantics in stratified
normal programs. An extension of this system for general logic programs and for
well-founded semantics was presented in [26]. The folding rule of [28] was also
generalized in [14] to a simultaneous folding rule. Maher (see [20]) also extended
the system to stratified general programs and the perfect model semantics. A
more recent work on preserving stable and well-founded model semantics is [22].
In fact, as shown in Example 1, all these transformation systems do not preserve,
in general, the Clark-Kunen semantics. Regarding the systems designed to pre-
serve some completion-related semantics (see [19,12,4]), they enforce very rigid
transformations. Indeed, they disable some useful transformations which do not
spoil correctness w.r.t. the Clark-Kunen semantics, as illustrated in the next
example.

Ezample 2. Given the following definition of a predicate g such that ¢(x1,z2)
checks whether the list 21 is not a sublist of x9

1. q(x1,22) «— member(y,x1), ~member(y, x2)
2. member(v, [v|]) «
3. member(vy, [-|va]) «— member(vy,va) .

! It is well known that the well-founded model is one of the stable models, which is
minimal in some sense.

First, we unfold member(y,z1) in clause 1 w.r.t. clauses 2 and 3

4. q([z1]d, 22) « —member(z1, z2)
5. q([-|z1], z2) « member(w, z1), ~member(w, z2) .

Then, we fold clause 5 using clause 1, which has been removed in the previous
step. The resulting definition of ¢ is

4. q([z1]d, 22) <« —member(z1, z2)
6. q([z1], 22) —q(21, 22) - o

The transformation in Example 2 is forbidden in all the existing systems
which consider completion-related semantics, in spite of the fact that it is correct
w.r.t. the Clark-Kunen semantics. For example, the so-called reversible folding
requires the folded and folder clauses to be in the current program. This is the
folding used in [19,12]. In the above Example 2, the folder clause is not in the
current program, hence the systems in [19,12] cannot be used. In [4], folding is
allowed through the use of semantic conditions if the folded clause comes from
the folder one, which has to be non-recursive, and all the literals to be folded
have been obtained by unfolding. In Example 2, the literal?> —member(w, z2) is
inherited from the original program, thus it is not the result of an unfolding
step. Other systems split the predicates into new/old predicates, where the old
predicates cannot depend on the new predicates and the new predicates are non-
recursive. This is case in the previously cited system in [25] where the following
two conditions are required:

(1) only the clauses with a new predicate in its head can be used as folder clauses,
and

(2) the predicate in the head of the folded clause is an old predicate or all the
literals to be folded are the result of a previous unfolding.

In Example 2, the predicate in the head of the folder and folded clause is the
same (that is, the predicate ¢), thus we cannot use the system in [25] since
—~member(w, z2) is inherited from the original program. The four-step transfor-
mation schema proposed in [5] uses the same partition of predicates, and, once
again, when the predicate in the head of the folded clause is new, all the literals
to be folded have to be the result of an unfolding, therefore this system cannot
be used in Example 2. Finally, the folding rule in the system proposed in [23]
for first-order general programs, which also uses the new/old partition,® requires
the same condition.

In this paper, we introduce a transformation system for normal logic pro-
grams that preserves the Clark-Kunen semantics and is more flexible than the
existing ones with the following two advantages:

1. the folder clause can be taken from any program in the transformation se-
quence.

2 The negative character of the literal is not relevant for this discussion.
3 By contrast, the new predicates can be recursive in this proposal.

2. the folded literals do not necessarily come from unfolding.

Outline of the paper. In the next section, Section 2, which is split in three
subsections, we establish the notations and describe necessary results on seman-
tics of logic programs and unfold/fold systems. Section 3 is devoted to defining
new conditions for the folding rule, where we motivate the problem using some
examples and we then prove the correctness of the resulting system. In Section
4, we give some concluding remarks and indicate some of the open problems
which need to be solved.

2 Preliminaries

We assume that the reader is familiar with the basic concepts of logic program-
ming. Throughout the paper we use the standard terminology of [17] and [2]. In
particular, we will use the standard notions of substitution of variables by terms,
unifier and most general unifier (briefly mgu). A bar is used to abbreviate tuples
of objects. For example, T denotes a tuple of variables x4, . . ., x,, the tuple of lit-
erals Ly, ..., L, is denoted by L and the substitution o = {xy « t1, ..., z, «—
tn} is abbreviated as {T < t}. Besides, o is sometimes interpreted as the con-
junction of equations ¥y &~ t; A ... A x, ~t, (abbreviated as T ~ 1), and hence
—o is interpreted as the disjunction of disequations x1 % t1V ...V z, % t,
(abbreviated as T % 1).

We consider (normal) logic programs which are finite sequences (not sets) of
normal clauses of the form A « L. Throughout this work, programs are given
modulo reordering of the literals in bodies and standardization apart is always
assumed.

The definition of the atom L in a program P, denoted by Def p[L], is the
sequence of clauses from P such that its clause head unifies with L. If L is a flat
atom on the predicate p, then we also say that Defp[L] is the definition of the
predicate p.

An atom L directly depends on the atom N in a program P iff there exists a
clause (H « B) € Defp[L] such that N € B. Besides, L is also said to directly
depend on every clause in Def p[L]. The dependence relation on atoms/clauses is
given by the reflexive and transitive closure of the directly dependence relation.

2.1 The Clark-Kunen Semantics and Non-failure

In [8], Clark proposed the following to complete the definition of predicates.

Supposing that Def p[p(Z)] consists of the following m clauses (p(fk) B |1<
k <m), the completion formula of a predicate p € Pred,(P) is

(p@ — \/ I (2~ AB")) (1)

where zF = Var(fk ~§k) for each 1 < k < m. If m = 0, then it is equivalent
to (p() <« false)¥. The Clark completion of a program P, denoted by

Comp(P), consists of the conjunction of the completion formulas of each predicate
p € Pred,(P) and the axioms of the free equality theory FET. (see [9]). Whenever
the definition of p is free of local variables, the negation of (1)

(~p@) = AV (z#TV-B"))"
k=1

can be transformed (see [24,3]) into a logically equivalent formula of the form

(~p@) = \/ I (T~5"ATL")).
h=1

From this formula, we obtain a finite sequence of expressions
—h
(=p(E") M |1<h<n)

which yields Def p[—p(T)]. Otherwise, if some clause in Def p[p(T)] contains local
variables, then we consider that Defp[—p(Z)] is undefined, i.e. =p(Z) has no
definition. Once we have a definition for negative literals, the dependence relation
is extended to negative literals in the natural way.

Ezample 3. Let us consider the following definition of the predicate member

1. member (v, [v].]) —
2. member(vy, [|va]) «— member(vy,ve) .

The completion formula of member is
(member(z1,x2) < v, v (21 v Axe = [v|v)])V
Juy, v9, 0" (1 =~ v1 Az = [V |U5] A member(vy,vs)))Y,
From the above formula, we obtain
(~member(xy1,x2) < Yu,v' (1 % vV 22 % [V]V]) A
Vo, v, 0" (21 % v1 V ae % [v|va] V mmember(vi, v2)).
Refining the right-hand subformula, we get
(=member(xy,z2) « [V (@2 % [21|V']) AVva, v (22 % [V 2])]V
[Vo' (@2 7 [21]0]) A
Fuy,ve, 0" (@1 = vy A xg = [V |va] A ~member(vy,vs))
which is, after simplification, equivalent to
(—member(xy,x2) « 21,22 (1 =21 A2 = 22 AVy1,y2 (22 % [yily2])) V
321, 22,23 (X1 & 21 A\ To &2 [22]23) A 21 % 22 A
—~member(z1, z3)).

Since the second argument of member is a list from the last formula we can
obtain the following normal* clauses that define ~member

4 w1 % wy is a negative literal since ~ should be defined by the single clause = ~ x «—

3. —member(_,[]) «
4. —member(wy, [wa|ws]) < w1 % wa, “member(wy,ws) . O

In this work, the semantics given to a program is the Clark-Kunen semantics
as proposed in [16]; that is, the three-valued logical consequence of the Clark
completion. Following [21], the Clark-Kunen semantics of a program P is defined
by

COMP[P, « L] = { ¢ | Comp(P) =3 (L A)" }

where « L is a goal, ¢ is a general equality constraint and =3 stands for the
three-valued logical consequence relation, as defined in [16]. Regarding equiv-
alence of programs, we consider that two programs P; and P are equivalent,
denoted by P; = P, iff the set of logical consequences of Comp(P;) and Comp(P)
are identical.

Definition 1. Given two programs P, and Ps,

(i) Py = Py iff COMP[Py, « L] C COMP[Py, « L] for any goal « L.

(ZZ) PlEPQ ZﬁpleQ andPQjPl. O

A desirable property of a semantic notion is relevance, which is defined in [11]
and extensively used in [21]. Intuitively, a semantics is relevant iff the semantic
value of any goal « L w.r.t. a program P is exactly given by the clauses on
which the literals in L depend. In the absence of relevance, some transformation
rules, such as new definition and deletion, are not trivially correct (see [21]).
As defined above, the Clark-Kunen semantics is relevant. However, by changing
=3 by the classical bi-valued logical consequence notion (as in [21]), relevance is
lost.

The so-called Shepherdson operators T and F, which were introduced in [27],
give a very useful characterization of the Clark-Kunen semantics. These opera-
tors provide a bottom-up scheme for computing the success- and fail-answers of
any literal by means of equality constraints. In the next definition, we adapt the
original definition of the operators in [27] to our purposes.

Definition 2 ([27]). Let P be a program and L a literal such that Defp[L] =
(Hy — B |1 <k <m). The operators T and F are inductively defined as

TY[L] = false FU[L] = false
TP L) = Vil 37 (TR[B0Y) FDL(L] = AP vEt (FE[BY0)

—k .
where 0, = mgu(L, H) and T = Var(Hy - B") for 1 < k < m. Besides, the
extension to constants and connectives is

T [true] = true TZ[L6) =TP[LInG
FZ[true] = false FPILO) =FP[L]v -0

Ty (L] =F}[L] Tp[M AN] =17 [M] AT/ [N]
Fp L] =T, [L] F, [M AN =F/[M]VF][N]|

for any n € N, every substitution 6 and every tuple of literals L, M and N. O

It is easy to see that TE[L] / FE[L] represents the successes/failures of L that can
be derived from P in n steps. In particular, facts produce the one level successes.

Ezample 4. Let Fr = {0,9, s/1} and P be the following program

1. p(0) «
2. p(s(s(x))) —p(x) .

We obtain the following constraints from the Shepherdson operators

[p(z)] = (2= 0) Flp(@)] = (2 £ 0A Y (22 5(s(v))))
[p()] = (z~0Vars(s0)) F{[p(s(z)] =Y (= 7 s(v)). o

The operators T and F are dual and, hence, they satisfy dual properties.
Moreover, the proofs for both operators also follow dual steps and, since the
operator T is existentially quantified, the proofs for T are usually easier than for F.
Thus, we formulate properties for both operators using the notation 0 € {T, F},
but only give proofs for the operator F, because they can be easily adapted to T.

An easy consequence of Definition 2 is the following monotonicity property.

i
TS

Proposition 1. For any program P, literal L, n € N and 0 € {T,F},
FET. |= (0[] — 0/[L])". U

The characterization of the Clark-Kunen semantics by the Shepherdson op-
erators directly follows from Lemma 4.1 in [27] and Theorem 6.3 in [16], and can
be stated as

Theorem 1 ([16,27]). For any normal program P and any goal L,
0 € COMP[P, L) <= there exists some n € N such that FET, |= TL[L]. O

By means of this characterization, we obtain the following result that is very
useful for proving equivalences between programs in the rest of this paper.

Corollary 1. Let Py, Py be two programs. Py <X Py iff for all ny € N, p €
(Preds(Py) NPreds(P2)) and 0 € {T, F}, there exists some ny € N such that

FET. f=5 (071 [p(@)] — 0:2[p(@)])")
Finally, we define the class of goals that do not fail on some variables.

Definition 3. Let P be a program, <+ L a goal and T C Var(L). The goal «— L
is non-failing on w.r.t. P iff for alln € N
FET. |= VZ 35 - FL[I)

where y = Var(L) \ T. O

Next, we illustrate the notion of non-failing goals with two examples.

Example 5. Let us consider the following program

1. add(0,n,n)
2. add(s(n1),na, s(n3)) < add(ny,ne,ns) .

The literal add(z1, x2, r3) is non-failing on the variables {z1, x2}. However, the
literal add(z1, x2, x3) is failing on {xa, z3}. O

Example 6. Let us consider the following program

1. ack(0,n,s(n))
2. ack(s(n1),0,n2) < ack(ny, s(0), nz)
3. ack(s(n1),s(n2),n3) « ack(s(n1),n2,y), ack(ny,y,ns) .

The goal ack(s(z1), z2,v), ack(z1,v,z3) is non-failing on {x3} . O

The interested reader is referred to [10] for details on algorithms that decide
if a goal is non-failing. Roughly speaking, given a goal G and a set T of its
variables, the algorithm checks whether the set of constraints associated to all
the non-failing goals that can be obtained by resolution from G covers all the
possible values for Z. According to [10], the covering problem is co-NP-hard.

2.2 Unfold-fold Transformation Systems

In this section, we recall the classical unfold/fold transformation rules that were
introduced in [28], adapting them to our notation. We also provide some well-
known correctness results that we will use later.

A sequence of programs (P, ..., P,) is a transformation sequence if for
each 1 <14 < n, P; is the result of transforming P;_; using some rule. Besides,
(Po, ..., Pp) is correct if Py and P; are equivalent for every 1 < i < n. By

extension, a transformation rule is said to be correct if it preserves equivalence.

Program transformation systems usually work with some information related
to the transformation process itself. For example, in d la Tamaki-Sato systems
(see [26,28]), the clauses that are obtained after unfolding are marked “foldable”.
In [23], literals (instead of clauses) are marked “foldable”. In other systems (see
[15]), counters of unfolding/folding steps are associated with clauses in order to
both formulate folding applicability conditions and to characterize the improve-
ment of execution. In this paper, we associate two natural numbers (Lyys, Lsia)
with each body literal L, called unfolding and folding time-stamps. A time-stamp
Luns / Ls1g is either zero or the index i of the program P; in the transforma-
tion sequence (P, ..., P,) in which L is obtained by unfolding/folding. Hence,
in the initial program Py, all time-stamp are zero and they are appropriately
updated at each transformation step.

Before recalling the usual rules in unfold/fold systems, let us fix the following
conventions that we will use in the formulation of the transformation rules:

(1) we always refer to a transformation sequence (P, ..., Pi),

(2) Pj41 is the next program obtained by the transformation from P;, and
(3) if a clause C has not been transformed from P; to P11, then the time-stamps
for the literals in C' are equal in both programs.

Next, we re-formulate unfold/fold systems incorporating time-stamps issues.

Rule 1 New Definition. If p & J;_oPreds(P;) and S = (Cy, ..., Cp) is a
definition of the predicate p such that Pred,(S) C (Predcs(P;) U {p}), then
Py1 = P, U S. The pair of time-stamps (Luns, Ls1a) s (0, 0) for every

literal L occurring in the body of any clause from S.

Rule 2 Unfolding. If C = H « M, L is a clause in P; (unfolded clause) and
Defp,[L] = <Lk<—Nk |1 <k <m) for some0 < j < i, then Pry; =
(P\C)U((H « M, Nk)t?k | 1 <k <m) where 0 = mgu(L, L) for every
1 <k <m. For every clause (H «— M, Nk)t?k in the program P;y1, the pair of
time-stamps (N(¢, Ni1q) @5 (¢ +1, Le1q) for each literal N € N0, and, besides,

unf

the pair (M. s, Ml1,) is equal to (Mg, Ms1g) in P; for each M' = M6, € M6.

unf

If P, = P; and the unfolded clause (H «— M, L) € Defp,[L], then the Unfolding
transformation is said to be a self-unfolding.

Rule 3 Folding. If H « M, N is a clause in P; (folded clause), L « N isa
clause in P; (folder clause) for some 0 < j < i and o is a substitution such that

(a) domain(o) = Var(L),
(b) H— M, N and H «+— M, N'o are equal modulo variable renaming,
(¢) L — N is the only clause in P; whose head is unifiable with Lo,

then Piyy = (P;\(H + M, N)) U (H <« M, Lo). The pair of time-stamps
(Lowns, Losia) 1s (0,1 + 1). Besides, the pair (Mg, Mg14) in Py is equal to
(Mg, Ms1a) in P; for each M € M.

Rule 4 Deletion. If S is the definition of the predicate p in P;, p & Preds(Py)
and p & Pred,(P; \ S), then Piy1 = (BP;\ S).

Note that the above rules can be used only if the definition of the involved literals
exists. The definition of every positive literal always exists, but this is not the
case for negative literals.

Using the above set of rules, an unfold/fold transformation system that pre-
serves the Clark-Kunen semantics was introduced in [12].

Theorem 2. [12] If (Py, ..., P,) is a transformation sequence that is obtained
using the rules New Definition, Unfolding, Folding and Deletion with the following
two restrictions for each 0 <1< n—1

— Unfolding is applied at the step i + 1 only if it is not self-unfolding and the
definition of the unfolded literal is taken from P;,

— Folding is applied at the step i + 1 only if the folder clause is taken from P;
and s different from the folded one,

then Py and P; are equivalent for every 0 < j < n.

Proof. A formal proof of this result can be found in [12]. In fact, the authors
provide a stronger result there since they prove the preservation of equivalence
w.r.t. completion semantics. In particular, the rules New Definition and Deletion
are correct since the Clark-Kunen semantics and completion semantics are rele-
vant. O

In the above unfold/fold transformation system, self-unfolding is not allowed.
Next, we show that it is possible to prove the correctness w.r.t. the Clark-Kunen
semantics if we allow self-unfolding. However, it is well known that self-unfolding
does not preserve completion semantics (see [19]); that is, the logical equivalence
between programs’ completion.

Lemma 1. Let (Py, ..., P;) be a correct transformation sequence. If the pro-
gram P;1 is obtained by self-unfolding, then Piy1 = P; for every 1 < j < 1.

Proof. Since P; and P; are equivalent for every 1 < j < ¢, it suffices to prove
that P; and P;;, are equivalent. For this purpose and according to the stated
notion of equivalence, we have to prove that P; < P;;1 and P41 = P;. Let us
assume that the unfolded literal L occurs in a clause

C=H«M,L
where Z = Var(H - M - L) and that the definition of L in P; is given by
Detp|L] = C U (LN |1<k<m)

where 7* = Var(L, ~Nk) for each 1 < k < m. Without loss of generality, we also
assume that Def p, [H| exclusively consists of the clause C. Hence, the definition
of H in the program P; is

Defp, [H] = ((H—DM N |1<k<m)

where 0, = mgu(H, L) and Z is renamed as Z* in the k-th clause for each
1<k<m.

Then, we first prove that P; < P, ;1. That is, we prove that for all0 € {T, F},
p € (Pred.(P;) NPreds(P;4+1)) and n € N there exists some n’ € N such that

FET; = (05 [p(@)] — 0L [p(@)])7

The proof for operator F is constructed by induction on n. The case n = 0 is
trivial since the operator F always returns false at the first iteration. Assuming
that the hypothesis holds for n, we prove the case for n + 1. The proof for every

literal that is not an instance of H directly follows from the induction hypothesis,
since P; \ Defp,[H] = Pi;1 \ Defp,,, [H]. Regarding H, the proof is

Foia[H] = VZ (FR[M] VL]V o) (by Defp, [H])
= A\ vzt 7 (FRMVER [NV =6,) (by Defp,[L))
k=1
— N\ vz* -y (FL (M) v [NV —6r) (by the induction
k=1 hypothesis and Prop. 1)
= £, [H] (by Detp,,, [H])

where n” =n1 + 1 and « is a renaming from the variables in H to the variables
in the head of C, since both literals are equal modulo variable renaming.

Second, we also prove that P;;1; =< P;. In this case, we show that for all
0 € {T, F}, p € (Preds(P;) NPred,s(P;41)) and n € N there exists some n” € N
such that

FET; | (0, [p(@)] — 07[p(@)])"

by induction on n. As before, the case n = 0 is trivial and, assuming that the
hypothesis holds for n, the case n+1 for any literal that is not an instance of H
directly follows from the induction hypothesis. Hence, focusing only on H, the
proof is

; ek
Fo i [H] = /\ vzt gt (FRo M) VFR [NV 6) (by Defp,,,[H])
. /\ V25 g (FE(M) VER [NV =6) (by the induction
hypothesis)
= Vz (Fi[M|VF L [L]V -a) (by Defp,[L])
— FPH] (by Def p,,,[H] and Prop. 1)
where n” = ny + 2 and « is a renaming from Var(H) to Var(head(C)). O

The next theorem is a direct consequence of Theorem 2 and Lemma 1.

Theorem 3. If (Py, ..., P,) is a transformation sequence that is obtained
using the rules New Definition, Unfolding, Folding and Deletion with the following
two restrictions for each 0 <1 <n—1

— Unfolding s applied at the step i + 1 only if the definition of the unfolded
literal is taken from P;,

— Folding is applied at the step i + 1 only if the folder clause is taken from P;
and is different from the folded one,

then Py and P; are equivalent for every 0 < j < n.

However, Example 2 shows a natural way for obtaining a recursive definition
that cannot be obtained by the system described in Theorem 3.

3 Generalized Folding

In this section, we introduce less restrictive conditions for the rule Folding than
the ones in Theorem 3. Our main aim is twofold. First, we will allow the
folder clause to be taken from any program in the transformation sequence
(Po, ..., P;). Second, we relax the requirement that every folded literal should
come from unfolding. In our proposal, this condition is combined with a non-
failure requirement of the literals that do not come from unfolding.

If the folder clause comes from the actual program P;, then Theorem 3 only
requires the folder and the folded clause to be different, because the so-called
self-folding is clearly incorrect. Note that the result of folding a clause p « r
with itself is p < p. Besides, when the folder clause could come from a program
P; where 0 < j < i, the self-folding transformation sometimes involves several
clauses, which makes difficult to detect it. As a consequence, applicability con-
ditions must be carefully designed to avoid problems related to the self-folding.
The following example tries to illustrate this kind of problems.

Ezxample 7. Let us consider the following transformation sequence.

Py 1. p—r 2. g 3. 1
(by folding r in the clause 1 using the clause 2 of Py)
P 4. p—gq 2. g 3. 1
(by folding r in the clause 2 using the clause 1 of Py)
P 4. p—gq 5. g« p 3. 1.
The first two programs are trivially equivalent. However, the goal < p loops in

P5, whereas it succeeds in the programs Py and P;.]

In order to prove that a transformation rule preserves equivalence we have
to ensure that P41 < P; and P; X P;41. In Theorem 4, we show that P11 < P;
holds whenever P;; is obtained by Folding from P;.

Theorem 4. Let (Py, ..., P;) be a correct transformation sequence. If the pro-
gram P;1 is obtained by the rule Folding, then P;11 X P; for every 1 <j <.

Proof. Assume that we fold the clause
C =H«M,N
in the program P; using the clause
LN
in a program P; for some 1 < j < i, where Defp,[H] = C U (Hy + B |2 <

kE<m), z' = Var(C) and z¥ = Var(H, ~§k) for each 2 < k < m. Hence, P;y;
consists of the clauses

PfL'Jrl = (Pl\C) U (H%M,LU)

where domain(o) = Var(L), N = No, w= Var(H - M - Lo) and § = z* \ w.
Since (P, ..., P;) is a correct transformation sequence, then P; = P; for every
1 < j <. Thus, it suffices to show that P;y; < P;. According to Corollary 1, we
have to prove that for all 0 € {T, F}, p € (Preds(P;) NPreds(P;41)) and n € N
there exists some n’ € N such that

FET; = (0,7 [p(@)] — 0. [p(@)])". (2)

The proof (for the operator F) is obtained by induction on n. The case n =0 is
trivial because the operator F always returns false at the first iteration. Assuming
that the hypothesis holds for n, the we prove the case for n+1. The proof directly
follows from the induction hypothesis for every literal that is not an instance of
H. Regarding H, the proof starts as follows

FUUNH] = V2" (FE+ M)V FEH Lol v —ap) A
/\ Vzk (FSiJrl [Fk] \Vi Qg) (by DefPi+1 [H])
k=2
— Vz' (FL M) VEL [Lo] V —aq) A

n

/\ vzh (FL . [Ek] V —ag) (by the induction hypothesis)
k=2

where «y, = mgu(H, Hy) for 2 < k < m and «; is a renaming from the variables
in H to the variables in the head of C. Since (L « N/) € P;, we know that

FET |= (F)4[Lo] — V5 (FEI[N'o]))"

holds for all n € N. Further, we have that P; = F;, thus for all n € N there exists
some n” € N such that

FET. |25 (FL[Lo] — Vg (FL[N'o]))" (3)

Hence, the proof continues as follows.

FLALH] — V2L g (FR M) VER [N o]V —ar) A
A\ V2" (FEBYV —ar) (by (3))
k=2
— vzl g (FO M| VFE [N o]V =a;) A
A V2 (FE (B v -ay) (by Prop. 1)
k=2
= F.\] (by Detp, [H])

where nz = max{ni, ns}. Therefore, P11 < P; and, by extension, P11 =< P;
for every 1 < j <n. ad

However, when allowing use of a folder clause from any program in the trans-
formation sequence, additional conditions are necessary in order to accomplish
that P; < P;j41. We formulate (in Theorem 5) side conditions for the Folding
rule that depend on the literal that is introduced by Folding. To that end, we
first introduce the following notion of fold-partitioned goals and then provide
two auxiliary results.

Definition 4. Let (P, ..., P;, ..., P;) be a transformation sequence and
(H — M, N)€ P, (L + N/) € P; be two clauses such that N = N'o. The
goals «— N and «— N are fold-partitioned by j into «+ A, B and « Z/, B iff

— Ngg < j for every N G_N,
— Buns > j for every B € B,
— no literal in B depends on L in P;. a

Lemma 2. Let (Py, ..., P;) be a correct transformation sequence. If the pro-
gram Pjy1 is obtained using the rule Folding from the program P; and the intro-
duced literal does not depend on the head of the folded clause in P;, then Pjiq
and P; are equivalent for every 0 < j < 1.

Proof. Since the programs F; and P; are equivalent for every 0 < j <14, then it
suffices to prove that P;y; = P;. Besides, by Theorem 4, we have that P11 =X P;.
Hence, it remains to prove that P; < P;;1. Let us assume that the program P; 4
is obtained by folding the clause

C =H«M,N
in the program P; using the clause
L—N
in a program P, for some 0 < h < i, where domain(c) = Var(L), N = No,
Detp[H] = C U (Hy— B |2<k<m), 7 =Var(C), 7 = Var(Hy, - B")

for each 2 < k < m and Lo does not depend on H in the program P;. Therefore,
the program P;1; is given by

PfL'Jrl = (Pl\C) U (H%M,LU)

where domain(c) = Var(L), N = No, w= Var(H - M - Lo) and j = 2z \ w.
Since (Py, ..., P;) is a correct transformation sequence, we know that P; =

P; for every 1 < j < i. Then, we have to prove that for all 0 € {T, F}, p €

(Preds(P;) NPreds(P;11)) and n € N, there exists some n’ € N such that

FET. |= (05 [p(@)] — 0, [p(@)])" (4)

The above implication is the reverse of the implication in formula (2) of Theorem
4. Because of this, the proofs by induction on n for the operator F of the formulas
(4) and (2) follow the same steps, but in the reverse order. As in Theorem 4,

it also follows from the induction hypothesis that for every n € N there exists
some n” € N such that

FET. |= (Vg (FD#+1[N]) — FLi[Lo])Y

(that is, the dual property of (3)), since Lo does not depend on H in P;. O

Lemma 3. Let (P, ..., P;) be a correct transformation sequence and P;1 the
program that is obtained by folding a (folded) clause

C =H<M,N
in the program P; using the (folder) clause
D=L«N
in the program P; for some 0 < j <4 such that

- N=N,
— H and L are unifiable, o
— the goal « N is fold-partitioned by j into — A, B.

For any n € N there exists some n’ € N such that
(a) FET. |= (F ' [B] — F,,"'[Lo])Y,

Moreover, if A is non-failing w.r.t. Var(Lo), then for any n € N there exists
some n” € N such that

(b) FET; = (05 [Lo] — 0fi'[Lo]).

Proof. By condition (c¢) of the rule Folding (that is, D is the only clause whose
head and Lo unify), we know that Def p,[Lo] consists of the single clause D.
Besides, since H and L are unifiable, we also know that the clause C' has been
obtained from D by Unfolding. Since the goal «— N is fold-partitioned by j into
«— A, B, the clause D can be rewritten as D = L « Z/, B'. For the sake of
simplicity, we consider that B (resp. F/) consists of a single literal B (resp. B’)
and also that C has been obtained by (exactly) one unfolding step from D. The
extension to the general case (that is, tuples consisting of more than one literal
and an arbitrary number of unfolding steps) is straightforward.

According to the above conditions, we have that P; = P;_; and that the
clause C has been obtained by unfolding the literal B’ in the clause D = L «
Z/, B’, where v = Var(L A B'). Without loss of generality, we assume that
the definition of B’ in P;_; is

Defp, ,[B'| = (B, — M', By) U
(By — M"|2<k<m)

where aj, = mgu(B’, By) for each 1 < k < m, z! = Var(B; I - By) and
zZF = Var(By, ~Mk) for each 2 < k < m. Moreover, since B’ does not depend on
L in P;, D is not in Def p, , [B’]. Therefore, the definition of Lo in P; is given
by
Defp,[Lo] = (L « Ml, A, By)ag U
(LA, MYax|2<k<m)
where the tuple of variables ¥ is renamed as T* in the k-th clause of Def p,[Lo]

for each 1 < k < m. Without loss of generality, we assume that the first clause
in Def p, [Lo] is the folded one and, hence

C = (H—DM A B) = (L—2M,4A, Byou. (5)
Finally, we fold the clause C' using D, obtaining the following definition of Lo
Defp,,,[Lo] = (H « M, Lo) U
((L—A, M| 2<k<m)
in the program P;;q, where (Z/ -BYo = A-B, w = Var(H - M - Lo) and

=@ uzh)\w.
Then, we first prove property (a). Since B = B’c, for any n € N

Fh [B] = V2t (FD# (M v FR+ [Bo] V61) A

A\ v (P 00
k=2

where 0, = mgu(B’c, By) for each 1 < k < m. Besides, since oy, = mgu(B’, By),
each pair of literals (B’c0y, Bi0y) is necessarily an instance of (B'ay, Brag).
Therefore, if py, = mgu(B’c, Byag) = mgu(B’o, B'ay) for every 1 < k < m, then
the substitution 0y can be rewritten as the composition agpg and, thus

FPULB] = vzt (FE (BT] V R+ [Bo] Vv —ar V -pr) A

N\ V2 (FL BV e v =y)
k=2
=vz! (FF+1 (M on] V FE*1 [Boau] V =p1) A

N VE* (FEH [A] v —an v =) (by Definition 2)
k=2

=vz' (FE+ (M oy] VEE [B]V —p1) A

N\ V2 (BRI ma v =y). (by (5))
k=2

Now, according to the definition of Lo, we have that for any n € N

P;
FL (Lo] = v

gl

(Fpt* [M] VR [Lo] V=) A

Vol 2 (PR (A ag] VL (M] V -)

n—1

(Fptt [M]VE [La] V =71) A

Vot (PR [A)VE M)V mai Vo) (by Def. 2)

n—1

>:F >: 3 E>S

(FP+ M o] VFP+ [Lo] V =1) A

Vot 2 (B AV 1]V e v) (by (5))

n—1

e
U
o

where v = mgu(Lo, Lay) for every 1 < k < m.® Hence, since py, = mgu(B’c, B'ay),
each substitution ~ is identical to p; and the above formula remains

FL [Lo) =V (FL+ M on] V EE# [Lo] v =p1) A

/\ vtz (LA VELSS (] V —an v oo).

Thus, by induction on n, it is easy to see that the k-th conjunct in anll [B]

trivially implies the k-th conjunct in anll [Lo] for each 1 < k < m. Therefore,
property (a) holds.

Next, we prove property (b). A proof for the operator T can be found in [15],
where the authors provide an unfold/fold transformation system that allows even
more transformations than the system described in Theorem 5 and prove that
their system is correct w.r.t. the least Herbrand model. Here, assuming that
A is non-failing w.r.t. Var(Lo) and using property (a), we prove that property
(b) also holds for the operator F. For this purpose, we prove that for all p €
(Preds(P;) NPreds(P;11)) and n € N there exists some n’ € N such that

FET, = (FL[p(@)] — FLi [p(@)])".

The proof is obtained by induction on n. The case n = 0 is trivial since the
operator F always returns false at the first iteration. Assuming that the hypoth-
esis holds for n, we prove the case for n 4+ 1. The proof directly follows from
the induction hypothesis for every literal that is not an instance of Lo, since
(P;\Defp,[Lo]) = (Pi41 \Defp,,,[Lo]). Regarding to Lo, the proof is as follows

FP[Lo] = Wo' - 2" (D) v A VED[B] V —1) A

N\ Vo* -2 (FEAVEREIV -) (by Def p, [Lo])
k=2

® Recall that H = Loy by (5).

= Vo2 (T [M]VE AV ES [B]V oy) A

/\ vt -2 (FRe [A] v FEin (L") V =) (by the induction

k=2 hypothesis)
— o' -2t (FO (M) VEE S (A VER Lol V =1) A

A\ vo* 2 (PR A VERA]V) (by property (a)

k=2 and Prop. 1)
= v (Fpit [M] v vy (Fpt [A]) VERir Lol vV =m) A

AV F (PR A VRS T Y)
k=2
= V@ (FE5 (V] V ELL Lol v 1) A

N\ vt -z (FL [A]VEL (A7) v =y,) (4 is non-failing
k=2 on Var(Lo))
= F [Lo] (by Defp,,, [Lo])

n’

where n’ = ng + 1 and 4, = mgu(Lo, Lay) for each 1 < k < m. Note that
Var(A) C (Var(Lo) U7), that is, we have defined 7 as the tuple given by (7" U
ZY\w = Var(H-M-A-B)\Var(H - M - Lo) and, hence, we can define 7 as
Var(A - B) \ Var(Lo), which trivially implies Var(A) C (Var(Lo) U7). O

Now, we can formulate the side conditions for Folding in Theorem 5.

Theorem 5. If (Py, ..., P,) is a transformation sequence that is obtained
using the rules New Definition, Unfolding, Folding and Deletion with the following
restrictions for each 0 <i<n —1

— Unfolding is applied at step i + 1 only if the definition of the unfolded literal
is taken from P;.

— Folding is applied at the step i+ 1 if the folded clause (H «+ M, N) € P; and
the folder clause (L «— N/) € Pj such that 0 < j < i and 0 = mgu(N, N/)
satisfies one of the following conditions:

(1) i =j and the folded clause is different from the folder one.

(2) i > j and the literal Lo does not depend on H in the program P;.

(3) i >34, H and L are unifiable, «— N ‘is fold-partitioned by j into — A, B
and A is non-failing on Var(Lo).

Then, Py and Py are equivalent for every 0 < k <mn.
Proof. This is a direct consequence of Lemmas 2 and 3. ad

In the above theorem, condition (1) is given by Theorem 3. In condition
(2), the literal introduced by Folding does not depend on the head of the folded
clause in the program P;. Condition (2) is illustrated by means of the following
example.

Example 8. Given the following program P;

1. add(0,n,n) «—
2. add(s(ni),na, s(n3) « add(ny, ne,ns)
3. add3(ny,ne,ns, ng) — add(ni, na,y), add(y,ns,ng) .

First, we unfold the literal add(n, no,y) in clause 3, obtaining

4. add3(0,ng,ng,ng) «— add(ng, n3, ng)
5. add3(s(ni), ne2,ng,ng) < add(ni, ne,y), add(s(y), ns,n4)

and then we unfold the literal add(s(y), ns,n4) in clause 5, which yields
6. add3(s(ni),nz,ns, s(na)) — add(ni,n2,y), add(y,ns, na).

Second, we fold the literals (add(ni,ns2,y), add(y,ns,n4)) in clause 6 using
clause 3. Note that this transformation preserves equivalence according to Condi-
tion 3, since both literals have been obtained by Unfolding and, hence, A denotes
the empty tuple. The resulting clause is

7. add3(s(ni), ne, ns, s(n4)) — add3(n1,n2, n3, na)

in the program P = (1,2,4,7). Third, we introduce a new predicate add4
defined by the single clause

8. addd(ny,n2,n3, n4,ns5) — add(ni,n2,y1), add(yi,n3, yz2),
add(yz, 4, ns)

and obtain the program P; = P, U {8}. By means of Condition (2), the body
literals (add(n1,n2,y1), add(yi,ns,y2)) in clause 8 can be folded using clause 3
in the program P; and the resulting literal is add3(nq, na, ns, y2), which does not
depend on add4(ny, na, ns, ng,ns) in the program Ps. Hence, the final program
is

1. add(0,n,n) «—

2. add(s(ni),na, s(n3) « add(ny, ne,n3)

4. add3(0,ng,ng,ng) «— add(ng, n3, ng)

7. add3(s(ni),ne, ns, s(n4)) — add3(ni,n2, n3, na)

9. add4(ny,ne,n3, ng,ns) «— add3(n1, ne, n3,y2), add(yz,n,ns) . O

It could be argued that there exists a reordering of the above transformation
sequence in such a way that the system described in Theorem 3 allows to fold
the literals (add(ni,n2,y1), add(yi,n3,y2)) in the definition of add4,5: in this
case, it would be enough to introduce add4,5 and fold its body literals before
transforming the definition of sum3,4. However, such a restriction in the order of
rule application unnecessarily complicates some transformation sequences, which
may involve a large number of clauses.

Regarding condition (3), it is worthwhile to remark that its combination with
condition (c¢) of Folding (that is, the literal introduced by Folding only unifies
with the head of the folder clause in the program P;) ensures that the folded
clause has been obtained exclusively by unfolding transformations from the folder

clause. Otherwise, if the folded clause is not obtained from the folder one, then
the introduced literal would unify with the head of at least two clauses in P;.
Condition (3) corresponds to Examples 2 and 7, where the new literal depends
on the clause head in P;. Note that Example 7 does not satisfy Condition 3 since
q and p do not unify. Besides, as we have already mentioned in Example 8, if
A is an empty tuple (that is, all the literals in the folded clause comes from
Unfolding), then the Folding rule using condition (3) is very similar to the one in
the proposals [5,23], where the authors also require all the literals to come from
an unfolding to allow folding.

Next, we show that the transformation in Example 2 can be performed using
the system in Theorem 5.

Ezample 2 (Contd.). From the initial program Py = (1, 2, 3), we obtain P; =
(2, 3, 4, 5) by unfolding member(y, z1) in clause 1 using the clauses 2 and 3.
Then, Theorem 5 allows the folding of the body

(member(w, z1), ~member(w, z2))

of clause 5 using clause 1 by means of the third condition in Folding . First, the
head of the folder and the folded clause, which are taken from different programs
(Py and P, respectively), unify. Second, the literal member(w, z1) has been ob-
tained by unfolding from Py. Finally, the literal -member(w, z2), which has not
been obtained by unfolding, is non-failing on 20% according to the definition of
—member in Example 3. That is, there always exists a value for w such that the
goal «— —~member(w, z2) does not fail. O

Note that if the literal —member(w, z2) were failing on z2, then the goal «—
q(x1, x2) would fail in Py, whereas ¢(z1, x2) could not fail in P,. That is the case
in Example 1, where the literal r is failing and, thus, the goal « p fails in the
program Py and cycles in Ps.

The following example shows a transformation using the system in Theorem
5 that is mentioned in [25] as an example of unfeasible transformation under the
system proposed in that paper.

Ezample 9. Let Fr = {ao, bjo, cjo} and Py be the following program
1. reach(z,y) « arc(z,y)

2. reach(x,y) « arc(x,w), reach(w,y)
3. br(z,y,z) « reach(x, z), reach(y, z)
4. arc(a,b)
5. arc(b,c)

6. arc(c,a) .

First, we unfold the literal reach(z, z) in the clause 3 using the clauses 1 and 2.
The resulting program is P; = (1,2,7,8,4,5,6) where

7. br(z,y,z) « arc(z, z), reach(y, z)
8. br(xz,y,z) « arc(z,w), reach(w, z), reach(y, z) .

6 The variable z; from q(z1, z2) is omitted since it does not occur in ~member(w, z2).

Then, Theorem 5 allows the folding of literals (reach(w, z), reach(y, z)) in clause
8 using clause 3 and obtaining the literal br(w,y, z), since reach(w, z) has been
obtained by unfolding from clause 3 and reach(y, z), which is inherited from
clause 3, is non-failing on (y, z). Note that reach(y, z) cannot fail since all the
nodes a, b and c are reachable from any node. The resulting program is P, =
(1,2,7,9,4,5,6) where

9. br(z,y,z) «— arc(z,w), br(w,y, z)

which is equivalent to the programs Py and P;.
Now, let us consider the program Pj = (1,2,3,4,5,6") where

6. arc(cb).

As before, by unfolding reach(zx, z) in the clause 3 using the clauses 1 and
2, we obtain the program P; = (1,2,7,8,4,5,6'). However, we cannot fold
(reach(w, z), reach(y,z)) in the clause 8 using the clause 3 since reach(y, z),
which is inherited from P}, is failing on (y, z); for example, a is not reachable
from b.

It is worth noting that the non-failing condition, which depends on the facts
arc(-, -), makes the first transformation possible but not the second one. Thus,
we allow only the transformations that are correct w.r.t. the graph. However,
in [25] any transformation of this kind is forbidden irrespectively of the graph
definition. ad

4 Conclusions and Future Work

We have introduced syntactic conditions for the rule Folding under which un-
fold/fold systems perform new kinds of transformations. In particular, the new
conditions enable us to obtain recursive definitions and to remove local variables.
This is possible because we allow the use of folder clauses from any program in
the transformation sequence. The proposed transformation system is applicable
to the whole class of normal logic programs and it is worth noting that only the
negative literals without definition (due to the presence of local variables in the
definition of its positive counterparts) cannot be used by Unfolding and Folding.

The need for providing new applicability conditions for the rule Folding has
been motivated by means of some examples that show the risk of allowing trans-
formations which use removed clauses. In this paper, we have concentrated on
the rule Folding. However, similar problems arise in other transformation rules,
such as Unfolding. For example, if we allowed unfolding by using definitions in
previous programs, then the following transformation sequence could be obtained

Py: pPq qer re
(by unfolding ¢ in the 2"? clause using the definition in Pp)
P pe—rT q—r T

(by folding h in the 3"¢ clause using the 2"¢ clause)

Py per q<—p T
(by unfolding p in the 3" clause using the definition in Py)

Pg: p<=r q<—q ro—

Clearly, the last program is not equivalent to any of the previous ones (even w.r.t.
the least Herbrand model), because the goal < ¢ loops instead of succeeding. To
find syntactic conditions that ensure correctness when using clauses from any
program in the transformation sequence in other transformations rules (such as
Unfolding, Replacement, etc.) is an interesting open problem.

References

1

10.

11.

12.

13.

. J. Alvez, P. Lucio, F. Orejas, E. Pasarella, and E. Pino. Constructive negation

by bottom-up computation of literal answers. In H. Haddad, A. Omicini, R. L.
Wainwright, and L. M. Liebrock, editors, Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC), pages 1468-1475, 2004.

. K. R. Apt. Logic programming. In Handbook of Theoretical Computer Science,

Volume B: Formal Models and Sematics (B), pages 493-574. Elsevier, 1990.

R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A transformational ap-
proach to negation in logic programming. J. Log. Program., 8(3):201-228, 1990.
A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal programs.
J. Log. Comput., 6(1):79-120, 1996.

A. Bossi and S. Etalle. More on unfold/fold transformations of normal programs:
Preservation of fitting’s semantics. In L. Fribourg and F. Turini, editors, Logic
Programming Synthesis and Transformation - Meta-Programming in Logic. 4th
Internation Workshops, LOPSTR’94 and META 94, Pisa, Italy, June 20-21, 1994,
volume 883 of Lecture Notes in Computer Science, pages 311-331. Springer, 1994.
R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. J. ACM, 24(1):44-67, 1977.

D. Chan. Constructive negation based on the completed database. In R. A. Kowal-
ski and K. A. Bowen, editors, Proceedings of the Fifth International Conference and
Symposium on Logic Programming, pages 111-125. MIT Press, 1988.

K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322. Plenum Press, 1978.

H. Comon and P. Lescanne. Equational problems and disunification. J. Symb.
Comput., 7(3/4):371-425, 1989.

S. K. Debray, P. Léopez-Garcia, and M. V. Hermenegildo. Non-failure analysis for
logic programs. In L. Naish, editor, Logic Programming, Proceedings of the Four-
teenth International Conference on Logic Programming, July 8-11, 1997, Leuven,
Belgium, pages 48-62. MIT Press, 1997.

J. Dix. A classification theory of semantics of normal logic programs: II. weak
properties. Fundam. Inform., 22(3):257-288, 1995.

P. A. Gardner and J. C. Shepherdson. Unfold/fold transformations of logic pro-
grams. In Computational Logic - Essays in Honor of Alan Robinson, pages 565583,
1991.

A. V. Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well-founded seman-
tics for general logic programs. In PODS ’88: Proceedings of the seventh ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages
221-230, New York, NY, USA, 1988. ACM Press.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for definite clause
programs. In M. V. Hermenegildo and J. Penjam, editors, Programming Language
Implementation and Logic Programming, 6th International Symposium, PLILP’94,
Madrid, Spain, September 14-16, 199/, volume 844 of Lecture Notes in Computer
Science, pages 340-354, 1994.

T. Kanamori and H. Fujita. Unfold/fold transformation of logic programs with
counters. Technical Report TR-179, ICOT Institute for New Generation Computer
Technology, 1986.

K. Kunen. Negation in logic programming. J. Log. Program., 4(4):289-308, 1987.
J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

P. Lucio, F. Orejas, and E. Pino. An algebraic framework for the definition of
compositional semantics of normal logic programs. J. Log. Program., 40(1):89-
124, 1999.

M. J. Maher. Correctness of a logic program transformation system. Technical
Report RC 13496, IBM T.J. Watson Research Center, 1988.

M. J. Maher. A tranformation system for deductive databases modules with perfect
model semantics. Theor. Comput. Sci., 110(2):377-403, 1993.

A. Pettorossi and M. Proietti. Transformation of logic programs. In D. M. Gab-
bayand, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artifi-
ctal Intelligence and Logic Programming, Vol. 5, pages 697-787. Oxford University
Press, 1998.

A. Roychoudhury, K. N. Kumar, C. R. Ramakrishnan, and I. V. Ramakrishnan.
Beyond tamaki-sato style unfold/fold transformations for normal logic programs.
Int. J. Found. Comput. Sci., 13(3):387-403, 2002.

T. Sato. Equivalence-preserving first-order unfold/fold transformation systems.
Theor. Comput. Sci., 105(1):57-84, 1992.

T. Sato and H. Tamaki. Transformational logic program synthesis. In Proceedings
of the International Conference on Fifth Generation Computer Systems, pages 195—
201, 1984.

H. Seki. Unfold/fold transformations of stratified programs. Theor. Comput. Sci.,
86(1):107-139, 1991.

H. Seki. Unfold/fold transformation of general logic programs for the well-founded
semantics. J. Log. Program., 16(1):5-23, 1993.

J. C. Shepherdson. Language and equality theory in logic programming. Technical
Report PM-91-02, University of Bristol, 1991.

H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In S.-
A. Térnlund, editor, Proceedings of the Second International Logic Programming
Conference, Uppsala University, Uppsala, Sweden, pages 127-138, 1984.

