
Equational Constraint Solving using

Quasi-solved Forms?

Javier Álvez and Paqui Lucio

Dpto de Lenguajes y Sistemas Informticos, Facultad de Informática,
Universidad del Páıs Vasco, Paseo Manuel de Lardizabal, 1,

Apdo 649, 20080-San Sebastián, Spain.
jibalgij,jiplucap@si.ehu.es

Abstract. In this paper, we present a deterministic syntactic method
for solving general equational constraints. Our method is based on a class
of equational formulas, called answers, which allows restricted universal
quantification and for which the satisfiability test is not hard but not triv-
ial. Thus, we consider it as a quasi-solved form. The procedure keeps, at
each step of quantifier elimination, the inner formula being a disjunction
of answers. For that, we only need two basic operations - negation and
conjunction - on answers which can be efficiently implemented. With
respect to purely existential solved forms, answers provide two main ad-
vantages for efficiency purposes: (1) they are weaker restricted, thus each
quantifier elimination step requires less transformational work and (2)
they are more compact - or represent greater sets of solutions - so, each
step deals with a smaller quantity of disjuncts.

1 Introduction

A constraint is a logical formula that represents a (possibly infinite) collection of
data which are its solutions. In fact, a solution of a constraint is an assignment of
domain values to its free variables that satisfies the constraint. That leads us to
consider a domain for constraint interpretation. A constraint solving method (or
algorithm) takes as input a constraint and produces the set of all its solutions
or, more precisely, some particular representation of it. Syntactic methods are
rewriting process that transform the input constraint into a disjunction of con-
straints in the so-called solved form which represents its solutions. Hence, solved
form is a key notion for any syntactic constraint solving method. Following [5]
and [9], solved forms are supposed to have the following three properties:

1. Solvability: Every solved form not identical to the constant False has at least
one solution

2. Simplicity: Every solution can be easily obtained from a solved form
3. Completeness: Every constraint is equivalent to a finite disjunction of solved

forms.
? This work has been partially supported by the Spanish Project TIC 2001-2476-C03.

It is worthy to notice that 1 and 3 depend on the considered interpretation
domain and also that “easily” is a vague point in 2.

An equational constraint is an arbitrary first-order formula built over a sig-
nature of function symbols and equality as unique predicate symbol. Equational
constraints are interpreted over term algebras. Equational solving is useful in so
many areas of computer science that it is difficult to enumerate them. In partic-
ular, there are some special cases − such as unification, term complement, word
problems, etc − which are of great interest and have been extensively studied
(e.g. [3, 8, 11, 13]).

A unification constraint is an equational constraint which does neither con-
tain negation nor universal quantification. It is well-known that every unification
constraint can be reduced to a finite disjunction of most general unifiers. This is
the standard solved form notion in unification constraint solving. A most gen-
eral unifier is an idempotent substitution

∧n
i=1(xi = ti) of the variables xi (each

appears once) by the terms ti (whose variables are considered to be existential).
Universal quantification and negation arise naturally in many applications of

equational reasoning, such as inductive theorem proving, using counter-examples
in learning and theorem proving, normal logic programming, etc. The general
validity problem of equational formulas in term algebras has been proved to
be decidable by different methods and for different classes of term algebras (cf.
[8,10, 12, 15–18,21]). In equational constraint solving, negation is unavoidable.
For example, the constraint ∀v(x 6= f(v, v)) can not be finitely represented
without disequations. Hence substitutions (or mgu’s) do not serve as solved
forms. Many effort has been dedicated to study the transformation of (subclasses
of) equational formulae into the so-called “equations only” solved forms. It has
been proved (in [19]) that whenever an equational formula is equivalent to a finite
set of unifiers, then they can be computed. There are solving methods (cf. [6, 7,
14]) for reducing certain subclasses of equational constraints into (a disjunction
of) “only equations” solved forms. These methods fail when the input constraint
can not be expressed without negation.

The syntactic methods for total solving of general equational constraints
(such as [8,15, 16]) require a more general notion of solved form, in which nega-
tion should be allowed. On the contrary, universal quantification can be dropped
from any equational formula (see [8]) on the basis of the quantifier elimination
technique. Solving methods usually work by quantifier elimination. In order to
erase all the universal quantifiers of the original constraint, some other exis-
tential quantifiers must also be eliminated. Let us remind the essence of this
early technique of symbolic logic. Initially, the input constraint is transformed
into its prenex form 〈Q∗

iu
i〉ni=1(ϕ) where Q∗

i ∈ {∀∗, ∃∗} is a block of identical
quantifiers on a tuple of variables ui and ϕ is a quantifier-free equational con-
straint. Then, the technique consists on iterate a basic procedure that removes
the innermost block of quantifiers. In this iteration, each step alternates the (uni-
versal/existential) character of the quantifier to be eliminated. However, by the
double negation equivalences (∀∗u(ϕ) ≡ ¬∃∗u(¬ϕ) and ∃∗u(ϕ) ≡ ¬∀∗u(¬ϕ)),
it is enough to implement a basic procedure for one concrete quantifier. Let us

suppose that the basic procedure eliminates the innermost existential 1 block of
quantifiers. That is, it transforms any formula ∃∗v(ϕ) into a finite disjunction∨k

j=1 ψj of solved forms. As a result, a prenex formula whose prefix is ended by
an existential block 〈Q∗

iu
i〉mi=1∃∗vm+1(ϕ) is rewritten as

〈Q∗
iu

i〉mi=1

k∨

j=1

ψj where each ψj is in solved form. (1)

Whereas, if the last block is universal, then double negation is applied before
the subformula ∃∗vm+1¬(ϕ) is converted into a disjunction of solved forms:

〈Q∗
iu

i〉mi=1∀∗vm+1(ϕ) 7−→ 〈Q∗
iu

i〉mi=1¬∃∗vm+1¬(ϕ)

7−→ 〈Q∗
iu

i〉mi=1¬
k∨

j=1

ψj (2)

It is clear that the chosen notion of solved form hardly binds the efficiency of
this technique. In practice, we must take care over two dependent aspects. First,
the number of disjuncts (k in (1) and (2)) handled at each step. Notice that
every two steps the disjunction is negated (see (2)). Then, the resulting formula
has to be adapted for the next step, by applying the distributive law. Second,
the amount of transformational work that is necessary to produce solved forms
(from general constraints). This is related to the syntactical restrictions that
define a solved form. The more one restricts, the more one transforms, although
the commitments of solvability and simplicity should not be forgotten. For a
survey of equational solving methods based on different solved form notions the
reader is referred to [5]. Usually, solved form notions are existential formulas (as
in [8], see Fig. 1) or boolean combinations of existential formulas (cf. [15]).

∃x′
1 . . .∃x′

k(x1 = t1 ∧ . . . xn = tn ∧ x′
1 6= s1 ∧ . . . ∧ x′

m 6= sm)
where • each variable xi occurs once, and

• each term si is distinct from the variable x′
i

Fig. 1. Basic Formulas ([8])

The satisfiability test for purely existential solved forms is trivial. In return
of this advantage, the solver must remove all universal quantifiers. This often
requires to apply the so-called Explosion Rule ([8])2 that we recall in Fig. 2. That
means, to substitute a formula by a disjunction of as many formulas as function
symbols are in Σ. This increases the number of disjuncts to be treated in later
1 The dual step can be easily formulated for the universal case. The method of [15] is

based on existential elimination, whereas [8] deals with universal elimination.
2 That is the Weak Domain Closure Axiom (WDCA for short) in the nomenclature of

[15].

steps and, also, increments the transformational work. Our proposal is to use a
notion of quasi-solved form that represents solutions in a more compact form. It
allows some restricted form of universal quantification, which is enough to avoid
the above rule (ER). We consider that an answer is a quasi-solved form because,
in the case of finite signature, an answer could be unsatisfiable, but there is a
weak satisfiability test. In particular, this test does not further transform the
answer. Besides, an answer is always satisfiable for an infinite signature. The
reader is referred to Sect. 3 for definition and examples of answers. We consider
answers as a reasonably simple, enough expressive and user-friendly notion3.

(ER) ∀y(ϕ) 7−→
∨

f∈Σ

∃∗w(ϕ[f(z)/y])

where z are fresh variables and Σ is a finite signature

Fig. 2. The Explosion Rule (ER)

Outline of the paper: In the next section we recall some useful definitions
and denotational conventions. Section 3 is devoted to the notion of answer. In
Sect. 4 we introduce the answer satisfiability test and prove its correctness. In
Sect. 5 we present the other two basic operations - conjunction and negation -
on answers. We give a summarizing example in Sect. 6. Finally, we resume some
conclusions and related work.

2 Definitions and Notation

A term is a variable, or a constant, or a function symbol of arity n applied to n
terms. A term is ground if none variable occurs in it. We denote by V ar(t) the
set of all variables occuring in the term t and t(v) denotes that V ar(t) ⊆ v. We
say Σ-terms to emphasize that the function symbols are taken from a signature
Σ and H(Σ) stands for the algebra of all ground Σ-terms or Herbrand universe.

A bar is used to denote tuples of objects, like x as abbreviation of the n-
tuple of variables x1, . . . , xn. Subscripts are used for objects and superscripts for
tuples of objects, xj and xj for example. Concatenation of tuples is denoted by
the infix · operator, i.e. x·y represents the concatenation of x and y.

A Σ-equation is t1 = t2, where t1 and t2 are Σ-terms, whereas t1 6= t2 is a
Σ-disequation (that abbreviates ¬(t1 = t2)). By a collapsing equation (or dise-
quation) we mean that at least one of its terms is a variable. To avoid confusion,
we use the symbol ≡ for the metalanguage equality. We abbreviate collapsing
Σ-equation by Σ-CoEq.

A Σ-substitution σ is a mapping from a finite set of variables x, called its
domain, into a set of Σ-terms. It is assumed that σ behaves as the identity for
the variables outside its domain.
3 Actually, we use answers, as user-answers, in a prototypic implementation of con-

structive negation (cf. [1] and ˜http://www.sc.ehu.es/jiwlucap/BCN.html).

We intentionally confuse a substitution σ with domain x with the conjunction
of equations

∧
i xi = ti where each ti ≡ σ(xi). Besides, we also write ϕ[t/x] to

denote the simultaneous substitution of each variable xi by the term ti in ϕ.
We say that a term t1 subsumes another term t2 if there exists a substitution

σ such that σ(t1) = t2.
A Σ-substitution σ such that σ(xi) is ground for each xi ∈ x is called an

Σ-assignment.
The most general unifier of a set of terms {s1, . . . , sn}, denoted mgu(s), is

an idempotent substitution σ such that σ(si) ≡ σ(sj) for all i, j ∈ 1..n and
for any other substitution θ with the same property, θ ≡ σ′ ·σ holds for some
substitution σ′. For tuples, mgu(s1, . . . , sm) is an abbreviation of σ1·. . .·σn where
σi ≡ mgu(s1i , . . . s

m
i) for all i ∈ 1..n.

3 The Notion of Answer

In this section we present the notion of answer and give some illustrative ex-
amples. The following definition also introduces some notational conventions on
the variables occurring in an answer.

Definition 1. A Σ-answer for the variables x is either a constant (True, False)
or a formula of the form ∃∗w(a(x,w)) where a(x,w) is a conjunction of both

– Σ-CoEqs of the form xi = ti(w), and
– Σ-UQCDs4 of the form ∀∗v(wj 6= s(w, v)) where wj does not occur in the

term s and s is not a single universal variable in v.

where each xi occurs at most once and every left-hand side variable wj of a
UQCDs occurs in at least one term ti(w).

Notice that the scope of universal variables is restricted to one single disequation.
However, there is no restriction about repetition of existential, neither universal,
variables. We use a Prolog-like notation to write answers in the computer. Tra-
ditional Prolog-variables 〈char〉 are used to represent existential variables and
for universal ones we introduce new variables of the form ∗〈char〉. For instance,

∃w1∃w2(x = f(w1, w2) ∧w1 6= g(w2) ∧ ∀v1(w2 6= f(w1, v1)))

is an answer for the variable x which is written as follows:

x = f(A, B), A 6= g(B), B 6= f(A, ∗D)

It is obvious that any answer can be represented in this notation.
The following examples show that answers provide a compact and explanative

description of the sets of solutions that they represent.

4 Σ-UQCD stands for universally quantified collapsing Σ-disequation.

Example 2. Let Σ ≡ {a/0, g/1, f/2}, the Σ-answer:

∃w1∃w2(x = f(w1, w2) ∧w1 6= g(w2) ∧ ∀v1(w2 6= f(w1, v1)))

is equivalent to the disjunction of the following eight basic formulas:

1. x = f(a, a)
2. ∃w1∃w2(x = f(a, f(w1, w2)) ∧w1 6= a)
3. ∃w1(x = f(a, g(w1)))
4. ∃w1∃w2(x = f(f(w1, w2), a))
5. ∃w1∃w2∃w3∃w4(x = f(f(w1, w2), f(w3, w4)) ∧w3 6= f(w1, w2))
6. ∃w1∃w2∃w3(x = f(f(w1, w2), g(w3)))
7. ∃w1(x = f(g(w1), a) ∧w1 6= a)
8. ∃w1∃w2∃w3(x = f(g(w1), f(w2, w3)) ∧w2 6= g(w1))

Example 3. The following equational constraint of signature Σ ≡ {a/0, g/1, f/2}:

∃w1∃w2∀y1∀y2(f(f(w1, a), f(w2, x2)) 6= f(f(y1, a), f(y2, y2)) ∧
f(g(y2), x1) 6= f(x2, f(y1, y1)))

is equivalent to the following two answers:

(A1) ∃w(x2 = w ∧ ∀v(w 6= g(v)))
(A2) ∃w1∃w2(x1 = w1 ∧ x2 = g(w2) ∧ ∀v(w1 6= f(v, v))).

which are written as x2 = A, A 6= g(∗B) and x1 = A, x2 = g(B), A 6= f(∗C, ∗C).
It is also equivalent to the disjunction of the following five basic formulas:

(B1) x2 = a
(B2) ∃w1∃w2(x2 = f(w1, w2))
(B3) ∃w(x1 = a ∧ x2 = g(w))
(B4) ∃w1∃w2(x1 = g(w1) ∧ x2 = g(w2))
(B5) ∃w1∃w2∃w3(x1 = f(w1, w2) ∧ x2 = g(w3) ∧w1 6= w2)

It is easy to realize that the answer (A1) is equivalent to (B1)∨(B2) and the
answer (A2) is equivalent to (B3)∨(B4)∨(B5).

4 The Satisfiability Test

We deal with the satisfiability of answers in the domain H(Σ) for some Σ that
can be finite or infinite. It is easy to realize that a conjunction of CoEq of the form
x = t(w) where each xi ∈ x occurs at most once is always satisfiable in H(Σ). In
fact, it is a substitution. With regard to the disequational part of an answer, if
Σ is infinite, then any finite conjunction of UQCDs is satisfiable in H(Σ). This
is due to the fact that, having infinite many symbols, it always remain infinite
possible assignment values for each variable wi ∈ w that keep satisfiable a given
finite set of UQCDs. On the contrary, if Σ is finite, the disequational part of an
answer is not necessarily satisfiable in H(Σ).

Example 4. The following two conjunctions of Σ-UQCDs are unsatisfiable in
H(Σ) (for Σ ≡ {a/0, g/1, f/2}):

1. w 6= a ∧ ∀v(w 6= g(v)) ∧ ∀v1∀v2(w 6= f(v1, v2))

2. w 6= a ∧ w 6= g(a) ∧ ∀v(w 6= g(g(v))) ∧
∀v1∀v2(w 6= g(f(v1, v2))) ∧ ∀v1∀v2(w 6= f(v1, v2))

Notice that H(Σ), for finite Σ, can be finite or infinite. The most interesting
case is when H(Σ) is infinite and Σ is finite.

An answer ∃∗w(a(x,w)) is satisfiable in H(Σ) if and only if there is at least
one Σ-assignment with domain w that makes true the conjunction of UQCDs
inside a(x,w). Figure 3 outlines our answer satisfiability test for a finite signature
Σ and a finite conjunction of UQCDs. For exposition purposes, we represent the
domain Dom(wi) of the possible assignment values for the variable wi by a
domain formula denoted by ∆(wi). In other words

Dom(wi) ≡ {t ∈ H(Σ) | H(Σ) |= ∆[t/wi]}

Initially, each wi ∈ w can take any value in H(Σ). For example, the initial
domain of each wi ∈ w for Σ ≡ {a/0, g/1, f/2} is given by

∆(wi) ≡ wi = a ∨ ∃u(wi = g(u)) ∨ ∃u1∃u2(wi = f(u1, u2))

For the lack of efficiency, our answer satisfiability test does not exhaustively
obtain the domain Dom(wi) of each wi ∈ w. Instead of that, it works by value
elimination in two step. The basic idea is that a UQCD disallows some values
in Dom(wi). Each step takes into account a different (syntactic) subclass of
UQCDs. The first step treats the UQCDs without existential variables (that is
w ≡ ∅) and without repetitions in their universal variables v. Roughly speaking,
this is the only subclass of UQCDs that can transform an infinite domain into a
finite one. Let us give an example of this process for eliminating values from the
initial domains that is used at the first step and outlined in Fig. 4.

Example 5. Let ∀v1∀v2(w1 6= f(a, f(v1, v2))) be the input UQCD and let

∆(w1) ≡ w1 = a ∨ ∃u(w1 = g(u)) ∨ ∃u1∃u2(w1 = f(u1, u2))

be the initial domain formula. Since f(a, f(v1, v2)) does neither unify with a nor
g(u), therefore both terms remain in the domain Dom(wi) (in other words, the
already treated part of ∆(w1) is w1 = a ∨ ∃u(w1 = g(u))). Now, f(a, f(v1, v2))
does not subsume f(u1, u2), so we unfold it in u1. Hence, the not yet treated
part of the domain formula ∆(w1) becomes

∃u2(w1 = f(a, u2)) ∨ ∃u1∃u2(w1 = f(g(u1), u2)) ∨ ∃u(w1 = f(f(u1 , u3), u2))

Again f(a, f(v1, v2)) does not subsume f(a, u2). Therefore, we unfold it in u2

w1 = f(a, a) ∨ ∃u2(w1 = f(a, g(u2))) ∨ ∃u(w1 = f(a, f(u2, u3))) ∨
∃u1∃u2(w1 = f(g(u1), u2)) ∨ ∃u(w1 = f(f(u1 , u3), u2))

Input: Σ ≡ {f1\a1, . . . , fk\ak} −− signature: function-symbol\arity

∃∗w(
∧

∀∗v(wi 6= s(w, v))) −− disequational part of a Σ-answer

Precondition: For all wi ∈ w: ∆(wi) ≡
∨

f∈Σ
∃∗u(wi = f(u))

where each ui appears once.

First Step: Eliminate all values in Dom(wi) disallowed by the UQCDs of the
form: ∀∗v(wi 6= s(v)) where each vk occurs at most once in s(v)
(according to the algorithm of Fig 4)

If Dom(wi) ≡ ∅ for some i
then the answer is unsatisfiable
else let Fin(w) ≡ {wi|Dom(wi) is finite}

If Fin(w) ≡ ∅
then the answer is satisfiable
else go to Second step

Second Step: Search an assignment σ such that σ(wi) ∈ Dom(wi)
for each wi ∈ Fin(w) and σ satisfies all UQCDs of the form:
∀∗v(wi 6= s(w, v)) where wi ∈ Fin(w) and V ar(s) ⊆ Fin(w) ∪ v

If such σ exists then the answer is satisfiable
else the answer is unsatisfiable

Fig. 3. Answer Satisfiability Test

Finally, f(a, f(v1, v2)) subsumes f(a, f(u2, u3)) and does not unify with none of
the other four terms. Therefore, the resulting domain is given by

w1 = a ∨ ∃u(w1 = g(u)) ∨w1 = f(a, a) ∨ ∃u2(w1 = f(a, g(u2))) ∨
∃u1∃u2(w1 = f(g(u1), u2)) ∨ ∃u(w1 = f(f(u1 , u3), u2))

After the elimination algorithm of Fig. 4, each Dom(wi) can be either empty
or a finite set of ground terms or infinite. The last case is expressed by a ∆(wi)
with at least one auxiliary existential variable. Then, it decides that the input
answer is unsatisfiable when some Dom(wi) ≡ ∅. By the contrary, the answer
is satisfiable whether it remains infinite values in all Dom(wi). The first step is
very often enough to decide.

Example 6. The answer of Example 2 and also (A1) and (A2) of Example 3 are
decided to be satisfiable at the first step, since Fin(w) ≡ ∅. Only in the case
of (A1) one UQCD is treated. In the other two cases, no UQCD satisfies the
condition. Moreover, the unsatisfiability of both constraints in Example 4 is also
decided at the first step.

By the contrary, if no Dom(wi) is empty and at least one Dom(wi) is fi-
nite, then the procedure looks for the existence of an assignment σ such that

σ(wi) ∈ Dom(wi) for each wi ∈ Fin(w). The remaining variables are not taken
into account because (as we will prove) they are irrelevant for the satisfiability
decision. Moreover, the assignment σ must satisfy only one concrete subclass
of the remaining UQCDs: the ones whose existential variables are included in
Fin(w). The existence of such σ decides the satisfiability of the input answer.

Input: Σ −− Signature
Dom(wi) −− Domain
∀∗v(wi 6= s(v)) −− Σ-UQCD s. t. each vk occurs at most once in s(v)

For each tj ∈ Dom(wi) do
If mgu(s(v), tj) doesn’t exist

then tj remains in Dom(wi)
elsif s(v) subsumes tj

then tj is removed from Dom(wi)
else Refine Dom(wi) by unfolding the term tj (according to Σ)

at one of its existential variables.

Fig. 4. Elimination Algorithm (First Step of Fig. 3)

In order to prove the correctness of the satisfiability test, the only crucial
matter is that all the rejected disequations are really irrelevant for deciding
the satisfiability of the input answer. Along the test, we discard all the UQCDs
∀∗v̄(wi 6= s(w, v)) which satisfy the following two properties:

(P1) V ar(s) ∩w 6≡ ∅ or some vk appears more than once in s, and
(P2) At least one existential variable wj is not in Fin(w).

We will show that these UQCDs do not matter for the decision. Our proof is
based on the fact that the domain of each variable wj ∈ (w \ Fin(w)) is, along
the whole test, defined by a uniform domain formula ∆(wj).

Definition 7. We say that ∆(wj) ≡
∨

k ∃∗u(wj = tj,k(u))) is uniform if and
only if each ui occurs at most once in tj,k(u).

The following auxiliary result will allow us to extend any assignment σ with
domainFin(w) to the variables w\Fin(w), giving an assignment σ′ that satisfies
every uniform domain formula ∆(wi) for wi ∈ w \ Fin(w).

Proposition 8. Let ϕ(w) be a finite conjunction of UQCDs that satisfy the
above properties (P1) and (P2). If ∆(wj) is uniform for each variable wj ∈
w \ Fin(w), then any assignment σ with domain Fin(w) can be extended to an
assignment σ′ with domain w that satisfies:

σ ∧ ϕ(w) ∧
∧

wj∈w\Fin(w)

∆(wj)

Proof. Since σ(wi) is a ground term ti ∈ H(Σ) for each wi ∈ Fin(w), we can
substitute in ϕ(w) each wi ∈ Fin(w) for its value ti. Then, we obtain an equiv-
alent equational formula ϕ′(w \Fin(w)) which is a finite conjunction of UQCDs
of one of the following two types:

(T1) ∀∗v(wk 6= s(v)) where at least one vj occurs repeatedly in s
(T2) ∀∗v(tw 6= s(w, v)) where there is at least one wj in s and tw is used to

denote that it is either a ground term ti or a variable wk.

Now, σ′ should extend σ by assigning a value in H(Σ) to each wk ∈ w \Fin(w)
for satisfying:

ϕ′(w \ Fin(w)) ∧
∧

wj∈w\Fin(w)

∆(wj)

Indeed there are infinite possibilities for such assignment σ′. By the uniformity
of each ∆(wj), its conjunction with any finite collection of formulas of type
(T1) preserves the infinity of Dom(wj) (although they also disallow infinite
values) for each wj. Therefore, there are infinite possible tuples of values which
can be assigned to the tuple of variables in w \ Fin(w) for satisfying the finite
conjunction of UQCDs of type (T2).

Theorem 9. The satisfiability test given by Figures 3 and 4 is correct.

Proof. Initially, ∆(wi) is uniform (in the sense of Def. 7) for each wi. It is easy
to see that uniformity is preserved along the first step, because the UQCDs used
to refine the domains have neither existential variables nor repeated universal
variables. Therefore, on the basis of Proposition 8, if the second step is able to
find an assignment σ, then σ can be extended for satisfying the whole answer.
Notice that σ is empty when such decision is taken at the first step, and the same
reasoning can be applied. Otherwise, if the second step says that the answer
is unsatisfiable after checking a subset of UQCDs, then the whole answer is
necessarily unsatisfiable.

5 Basic Operations on Answers

In this section. we explain how the solving method transforms any equational
constraint into a disjunction of answers which are filtered by the satisfiability
test. As we explain in Sect. 1, we use the quantifier elimination technique by
keeping, at each step, the inner formula as a disjunction of answer. Hence, we
must transform the inner formula of (2) (in Sect. 1) into a disjunction of answers.
To do that, in addition of distribution, we use only two basic operations on
answers (below denoted (1) and (2)):

¬
k∨

j=1

ψj 7−→
k∧

j=1

¬ψj 7−→(1)
k∧

j=1

mj∨

r=1

ϕr
j 7−→

∨

r

k∧

j=1

ϕr
j 7−→(2)

∨

r

∨

h

γr
h

(1) The negation of an answer ψj is reduced to a disjunction
∨mj

r=1 ϕ
r
j of answers.

(2) The conjunction
∧k

j=1ϕ
r
j of k answers is reduced to a disjunction

∨
h γ

r
h of

answers.

Now, let us explain that these two operations - negation and conjunction -
can be efficiently performed. To do that, we use an auxiliary transformation rule
(UD) of Fig. 5 which allows to separate a conjunction of equations in a negated
existential formula. We first prove the correctness of the rule (UD).

(UD)¬∃∗v[x = t(w, v) ∧ ϕ] 7−→ ¬∃∗v1[x = t(w, v1)] ∨ ∃∗v1[x = t(w, v1) ∧ ¬∃∗v2ϕ]

where v1 ≡ free(t) ∩ v and v2 ≡ v\v1

Fig. 5. Transformation Rule (UD)

Proposition 10. The transformation rule (UD) of Figure 5 is correct.

Proof. The rule (UD) is obtained by successive applications of its simplified
version for separating only one equation:

(UB) ¬∃∗v[x = t(w, v)∧ϕ] 7−→ ¬∃∗v1[x = t(w, v1)] ∨ ∃∗v1[x = t(w, v1)∧¬∃∗v2ϕ]

where v1 ≡ free(t) ∩ v and v2 ≡ v\v1. To realize this it is enough to see that a
formula of the form:

¬∃∗v1,1[x1 = t1(w, v1,1)] ∨
∃∗v1,1[x1 = t1(w, v1,1) ∧ ¬∃∗v1,2(x2 = t2(w, v1,2))] ∨

... (3)
∨

∃∗v1,1 · · ·v1,n−1[x1 = t1(w, v1,1) ∧ . . .∧ xn−1 = tn−1(w, v1,n−1) ∧
¬∃∗v1,n(xn = tn(w, v1,n))]

is equivalent (in H(Σ)) to ¬∃∗v1[x = t(w, v1)] where v1 ≡ v1,1 · · ·v1,n. Hence, it
suffices to prove that rule (UB) is correct. By conjunction (and distribution) of
¬∃∗v[x = t(w, v) ∧ ϕ] with the tautology

¬∃∗v(x = t(w, v)) ∨ ∃∗v(x = t(w, v))

we obtain two disjuncts. The first one is trivially equivalent to ¬∃∗v(x = t(w, v)).
The second disjunct

¬∃∗v[x = t(w, v) ∧ ϕ] ∧ ∃∗v(x = t(w, v))

is equivalent to the following adequately renamed constraint:

∃∗v1∀∗z∀∗v2[x = t(w, v1) ∧ (x 6= t(w, z) ∨ ¬ϕ[z · v2/v])]

By distribution and unification, we obtain a first disjunct v1 6= z which is elimi-
nated after substituting z by v1 in the second disjunct: x = t(w, z)∧¬ϕ[z ·v2/v].

Hence, we obtain ∃∗v1∀∗v2[x = t(w, v1) ∧¬ϕ[v1 · v2/v]] which is trivially equiv-
alent to the second disjunct in the right-hand of rule (UB).

Proposition 11. The negation ¬∃∗w(a(x,w)) of an answer for x can be trans-
formed into an equivalent disjunction

∨
j ∃∗w(aj(x,wj)) of answers for x.

Proof. We apply the transformation rule (UD) to the negated answer:

¬∃∗w[x = t(w) ∧
∧

∀∗v(wj 6= s(w, v))] 7−→

¬∃∗w[x = t(w)] ∨ ∃∗w[x = t(w) ∧
∨

∃∗v(wj = s(w, v))]

The first disjunct ¬∃∗w(x = t(w)) is tranformed into (3) (see the proof of Prop.
5). Then, we replace the variables xi in the disequations by new variables w′

i,
adding the corresponding equation xi = w′

i, to obtain a disjunction of answer
for x. For the second disjunct, it suffices to distribute the internal disjunction
into: ∨

∃∗w[x = t(w) ∧ ∃∗v(wj = s(w, v))]

and then substitute wj by s(w, v) in t(w) to yield:
∨

∃∗w∃∗v(x = t(w)[s(w, v)/wj])

Proposition 12. The conjunction
∧k

i=1 ∃∗w
i(ai(x,wi)) of k answers for x can

be transformed into an equivalent disjunction
∨

j ∃∗wja′j(x,w
j) of answers for

x.

Proof. If the mgu(t1(w1), . . . , tk(wk)) does not exist, then the result of the con-
junction k∧

i=1

∃∗wi[x = t
i(wi) ∧

∧

h

∀∗v(wi
h 6= s(wi, v))]

is the constant False that can be seen as the empty disjunction. Otherwise, it is
a substitution σ. Therefore, we join the equational parts as follows:

∃∗w1 . . .∃∗wk[x = σ(t1(w1)) ∧
∧

i

∧

h

∀∗v(σ(wi
h) 6= σ(s(wi, v)))]

That is a constraint of the form:

∃∗w[x = t′(w) ∧
∧

h

¬∃∗v(rh(w) = sh(w, v))]

where w ≡ w1 · . . . ·wk. If σh ≡ mgu(r(w), s(w, v)) does not exist, then the cor-
responding conjunct is True. Otherwise, since σh is an idempotent substitution,
¬∃∗v(σh) can be transformed into a disjunction

∨
j ∃∗z(aj(w, z)) of answers for

w (similar to (3) in Prop. 5). Hence, the constraint has the form:

∃∗w[x = t′(w) ∧
∧ ∨

j

∃∗z(aj(w, z))]

To finish, we apply (in this order) distribution, conjunction of answers, lifting of
the internal disjunction and substitution of the equational part of each answer
aj(w, z) in t′(w).

6 A Complete Example

In this section we demonstrate the application of our deterministic solving method
to the following equational constraint with a five-length prefix of quantifier blocks
and free variables x1, x2, x3:

∀y1(∃w1(∀y2(f(x1, g(y2)) 6= f(f(w1, x2), a) ∧
w1 6= f(y1, y1) ∧
∃w2(∀y3(f(x2, a) 6= f(g(y3), w1))) ∧
∀y3(∀y4(f(x1, x2) 6= f(g(x3), f(y3, y4)))))))

The preliminary transformation gives the following disjunction of answers for
x1, x2, x3, y1, w1 prefixed by ∀y1∃w1:

∀y1(∃w1(∃∗z(x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ w1 = z5 ∧
z5 6= f(z4, z4) ∧ ∀v1∀v2(z2 6= f(v1, v2)) ∧ ∀v(z2 6= g(v))) ∨

∃∗z(x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ w1 = z5 ∧
z5 6= f(z4, z4) ∧ z1 6= g(z3) ∧ ∀v(z2 6= g(v))) ∨

∃∗z(x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ w1 = z5 ∧
z5 6= f(z4, z4) ∧ ∀v1∀v2(z2 6= f(v1, v2)) ∧ z5 6= a) ∨

∃∗z(x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4 ∧ w1 = z5 ∧
z5 6= f(z4, z4) ∧ z1 6= g(z3) ∧ z5 6= a)))

Notice that the prefix is shorter because answers allow universal quantification
and also that they are answers for the free variables of the original constraint
and for the variables of the prefix. After that preliminary treatment, quantifier
elimination is successively applied until the prefix is erased. The innermost block
∃w1, likewise any existential block, is easily eliminated. In general, we can remove
all the CoEqs on the affected variables and the UQCDs whose existential variable
has been just removed. In the example, w1 = z5, z5 6= f(z4, z4) and z5 6= a
are erased everywhere. Now, we have a disjunction of answers for x1, x2, x3, y1
prefixed by ∀y1 which, by double negation, is equivalent to (where x · y1 = z
abbreviates x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ y1 = z4):

¬∃y1(¬∃∗z(x · y1 = z ∧ ∀∗v(z2 6= f(v1, v2)) ∧ ∀v(z2 6= g(v))) ∧
¬∃∗z(x · y1 = z ∧ z1 6= g(z3) ∧ ∀v(z2 6= g(v))) ∧
¬∃∗z(x · y1 = z ∧ ∀∗v(z2 6= f(v1, v2))) ∧
¬∃∗z(x · y1 = z ∧ z1 6= g(z3)))

Then, each negated answer ¬∃∗z(. . .) produces a disjunction of answers for
x · y1. By distributing, we obtain a disjunction of conjunctions of answers and,
by performing conjunctions, only one conjunction yields a (different from False)
answer for x · y1:

¬∃y1(∃∗z(x3 = z1 ∧ x1 = g(z1) ∧ x2 = f(z2, z3) ∧ y1 = z4))

Finally, ∃y1 and y1 = z4 can be eliminated and the negation of the resulting
answer for x gives:

∃∗z(x1 = z1 ∧ x2 = z2 ∧ x3 = z3 ∧ ∀∗v(z2 6= f(v1, v2))) ∨
∃∗z(x1 = g(z1) ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ z4 6= z1) ∨
∃∗z(x1 = z1 ∧ x2 = f(z2, z3) ∧ x3 = z4 ∧ ∀v(z1 6= g(v)))

7 Conclusions and Related Work

We have introduced a new notion of quasi-solved form, called answer, which en-
ables classical quantifier elimination be more efficiently performed for equational
constraint solving. Actually, answers allow us to represent sets of solutions in a
more compact way and, at the same time, to check answer satisfiability is not
very expensive in time. We avoid to yield a huge number of junk formulas by
applying a non-hard satisfiability test. Hence, we achieve a trade-off between
time and space efficiency. We have presented two additional operations on an-
swers - negation and conjunction - that can be efficiently performed. On the
basis of these two operations and the satisfiability test, we have defined a de-
terministic syntactic method for solving general equational constraints. We have
implemented a prototype of this constraint solver in Sictus Prolog v.3.x that is
available in ˜http://www.sc.ehu.es/jiwlucap/equality constraints.html. At the
same URL, you can also find a CHR version of the answer satisfiability test. To
the best of our knowledge, there is not other available implementation of general
equational constraint solving.

Regarding to existing equational solved form notions allowing some kind of
(restricted) universal quantification, we are aware of the so-called substitutions
with exceptions (cf. [2]) and also of the notion introduced in [4,20]. Like our
answers, substitutions with exceptions are always satisfiable in the case of infinite
signature, but a satisfiability test is needed in the case of finite signature. The
main difference between answers and substitutions with exceptions is twofold.
First, we allow to mix both kind of variables (universal and existential) in the
disequations right-hand terms. Second, we restrict the scope of each universal
quantifier to one collapsing disequation, instead of a conjunction of disequations.
The latter work ([4, 20]) is centered in the case of infinite signatures. Its main goal
is the efficient decidability of equational formulas with a long prefix of quantifiers.
Due to that, the solved form notion is not focused on user-friendliness. Actually,
it allows unrestricted nesting of negation and quantification.

References

1. J. Álvez, P. Lucio, F. Orejas, E. Pasarella, and E. Pino. Constructive negation by
bottom-up computation of literal answers. In Applied Computing 2004, Proceedings
of the 2004 ACM Symposium on Applied Computing, volume 2, pages 1468–1475,
2004.

2. W. L. Buntine and H.-J. Bürckert. On solving equations and disequations. Journal
of the ACM, 41(4):591–629, 1994.

3. A. Colmerauer. Equations and inequations on finite and infinite trees. In 2nd
International Conference on Fifth Generation Computer Systems, pages 85–99,
1984.

4. A. Colmerauer and T.-B.-H. Dao. Expresiveness of full first order constraints in
the algebra of finite and infinite trees. In 6th Int. Conf. of Principles and Practice
of Constraint Programming CP’2000, volume 1894 of LNCS, pages 172–186, 2000.

5. H. Common. Disunification: A survey. In J.L. Lassez and G. Plotkin, editors,
Essays in Honour of Alan Robinson, 1991.

6. H. Comon. Unification et disunification: Théories et applications. Technical report,
PhD thesis, Université de l’Institut Polytechnique de Grenoble, 1988.

7. H. Comon and M. Fernández. Negation elimination in equational formulae. In
Mathematical Foundations of Computer Science. Springer Verlag, 1992.

8. H. Comon and P. Lescanne. Equational problems and disunification. Journal of
Symbolic Computation, 7:371–425, 1989.

9. Hubert Comon, Mehmet Dincbas, Jean-Pierre Jouannaud, and Claude Kirchner.
A methodological view of constraint solving. Constraints, 4(4):337–361, 1999.

10. W. Hodges. Model theory. In Encyclopedia of Mathematics and its Applications,
volume 42. Cambridge University Press, 1993.

11. J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-
based survey of unification. In G. D. Plotkin J.-L. Lassez, editor, Computational
Logic - Essays in Honor of Alan Robinson, pages 257–321. The MIT Press, 1991.

12. K. Kunen. Negation in logic programming. Journal of Logic Programming, 4:289–
308, 1987.

13. J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In J. Minker,
editor, Foundations of deductive databases and logic programming, pages 587–625,
Los Altos, CA, 1988. Morgan Kaufmann.

14. J.-L. Lassez and K. Marriot. Explicit representation of terms dened by counter
examples. Journal of Automated Reasoning, 3(13):301–318, 1983.

15. M. J. Maher. Complete axiomatizations of the algebras of finite, rational and
infinite trees. In Proc. of the 3rd IEEE Symp. on Logic in Computer Science,
pages 348–357, 1988.

16. A. I. Malcev. Axiomatizable classes of locally free algebras. In B. F. Wells, ed-
itor, The Metamathematics of Algebraic Systems (Collected Papers: 1936-1967),
volume 66, chapter 23, pages 262–281. North-Holland, 1971.

17. P. Nickolas. The representation of anwers to logical queries. In Proceedings of the
11th Australian Computer Science Conference, pages 246–255, 1988.

18. J.C. Shepherdson. Language and equality theory in logic programming. Technical
Report No. PM-91-02, University of Bristol, 1991.

19. M. Tajine. Negation elimination from syntactic equational formula. In C Kirchner,
editor, Proceedings of the 5th International Conference on Rewriting Techniques
and Applications, volume 690 of Lecture Notes in Computer Science, pages 316–
327, Montreal, Canada, 1993. Springer-Verlag.

20. Dao Thi-Bich-Hanh. Rsolution de contraintes du premier ordre dans la thorie
des arbres finis ou infinis. In Neuvieme Journes Francophones de Programmation
Logique et Programmation par Contraintes JFPLC’2000, Marseille 2000, pages
225–240. Hermes Science Publications, 2000.

21. S. Vorobyov. Theory of finite trees revisited: Aplication of model-theoretic algebra.
Technical Report CRIN-94-R-135, Centre de Recherche en Informatique de Nancy,
October 1997.

