
A

Logical Foundations for More Expressive Declarative Temporal Logic
Programming Languages

JOSE GAINTZARAIN and PAQUI LUCIO, University of the Basque Country

In this paper, we present a declarative propositional temporal logic programming language called TeDiLog that is a com-

bination of the temporal and disjunctive paradigms in Logic Programming. TeDiLog is, syntactically, a sublanguage of the

well-known Propositional Linear-time Temporal Logic (PLTL). TeDiLog allows both eventualities and always-formulas to

occur in clause heads and also in clause bodies. To the best of our knowledge, TeDiLog is the first declarative temporal

logic programming language that achieves this high degree of expressiveness. We establish the logical foundations of our

proposal by formally defining operational and logical semantics for TeDiLog and by proving their equivalence. The oper-

ational semantics of TeDiLog relies on a restriction of the invariant-free temporal resolution procedure for PLTL that was

introduced by Gaintzarain et al. in 2013. We define a fixpoint semantics that captures the reverse (bottom-up) operational

mechanism and prove its equivalence with the logical semantics. We also provide illustrative examples and comparison with

other proposals.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming; D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory—Semantics; Syntax; F.4.1 [Mathematical Logic and Formal Languages]: Math-

ematical Logic—Temporal Logic; I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—Logic Programming;

Resolution

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Disjunctive Logic Programming, Invariant-Free Clausal Temporal Resolution, Linear-

time Temporal Logic, Operational and Logical Semantics, Refutation Procedure, Temporal Logic Programming

ACM Reference Format:

Jose Gaintzarain, and Paqui Lucio, 2013. Logical Foundations for More Expressive Declarative Temporal Logic Program-

ming Languages. ACM Trans. Comput. Logic V, N, Article A (January YYYY), 39 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Temporal logic is widely used in the specification, refinement, development and verification of
software and hardware systems. Indeed, temporal logic constitutes the foundation of many formal
methods and techniques whose central purpose is to improve the reliability of computer systems,
in particular to verify their correctness. For a recent and extensive monograph on temporal logic
techniques and tools, we refer to [Fisher 2011]. Temporal Logic Programming (TLP) deals with
the direct execution of temporal logic formulas. Hence TLP provides a single framework in which
dynamic systems can be specified, developed, validated and verified by means of executable spec-
ifications that make possible to prototype, debug and improve systems before their final use. A
different approach for the validation of dynamic systems is model checking [Clarke et al. 1986;
Clarke et al. 2001]. Model checking focuses on the problem of deciding whether a concrete model

This work has been partially supported by Spanish Project TIN2007-66523, and by the University of the Basque Country
under Project LoRea GIU07/35 and grant UFI11/45.
Author’s addresses: J. Gaintzarain, Department of Computer Languages and Systems, University of the Basque Country,
EUITI de Bilbao, Paseo Rafael Moreno Pitxitxi 3, 48013-Bilbao, Spain; P. Lucio, Department of Computer Languages and
Systems, University of the Basque Country, Facultad de Informática, Paseo Manuel de Lardizábal 1, 20018-San Sebastián,
Spain.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 J. Gaintzarain and P. Lucio

(or run) of a system satisfies a logical formula or not. In model checking, temporal logic is used
for specification purposes, whereas the system is often implemented in a different language, hence
verification requires to manage different semantic domains. A lot of work has been carried out in
the field of model checking. This approach is reasonably efficient for finite state systems. The in-
terested reader is referred to [Fisher 2011] (Section 4.4.7 and Chapter 5) for a recent work that
describes model checking techniques. A brief and clarifying discussion about model checking ver-
sus deductive temporal verification can be found in [Dixon et al. 2006].
In TLP, the direct execution of a formula corresponds to building a model for that formula. The idea
of directly executing logic formulas has been thoroughly studied in (classical) Logic Programming
(LP). Given a program Π, the computation of a goal ⊥ ← γ with respect to Π in an LP system is
a search for a refutation proof of Π ∪ {⊥ ← γ}.1 However, this proof search can also be seen as
an attempt to build a model of Π ∪ {γ}. This model is (in general) partially specified, because it
only determines the truth value of the atoms (from Π) that are involved in the refutation proof. We
illustrate this view (of LP) in the next example.

Example 1.1. Let us consider the following (classical) logic program:2

q(0)← >
q(X)← q(Y) ∧X = Y + 1
r(X)← q(Y) ∧X = Y + 2
w(X)← q(Y) ∧X = Y + 3

The computation of the goal ⊥ ← r(Z) gives rise to the infinite sequence of answer substitutions
{Z ← 2}, {Z ← 3}, {Z ← 4}, . . . that partially shows the implicit step by step construction of
the infinite minimal model {q(j), r(j + 2) | j ≥ 0} for the body of the goal (i.e. r(Z)) and the
subprogram that contains the first three program clauses. However, this model does not specify
which instances of w(X) are true.

TLP, in a broad sense, means programming in any language based on temporal logic. In TLP two
different approaches have arisen: the imperative future approach and the declarative approach. In the
imperative future approach a program is a set of rules of the form ϕ→ ◦ψ asserting that whenever
the formula ϕ is true in a state s, the next state s′ satisfies the formula ψ. Using a forward chaining
process, the imperative future approach tries to construct a model of the whole input program. By
contrast, the declarative approach to TLP is based on extending classical resolution for dealing
with temporal connectives. Hence the (implicit) attempt of constructing a model is driven by the
goal. As the above Example 1.1 shows, such model determines only the predicates involved in the
refutational process.

It is well known that one of the features of temporal logic is the ability to express eventualities
and invariants. An eventuality is a formula that asserts that something does eventually hold. For
example, to fulfill the formula ϕU ψ, the formula ψ must eventually be satisfied. Invariants state
that a property will always be true (from some moment onwards). Syntactically, eventualities are
easily detectable but invariants can be expressed in intricate ways by means of loops. Consequently,
we say that invariants can be “hidden”. Since a “hidden” invariant can prevent the fulfillment of
an eventuality, the way in which the issue of eventualities and “hidden” invariants is dealt with
becomes a relevant characteristic of TLP languages. The use of the customary inductive definitions
of the temporal connectives as the only mechanism for detecting the existence of an invariant that
prevents the fulfillment of an eventuality, leads to incompleteness. The reason is that such customary
inductive definitions make possible to indefinitely postpone the fulfillment of an eventuality and,
consequently, they make possible to indefinitely postpone the contradiction between an eventuality
that states that a property ψ will eventually hold and an invariant that states that ψ will never hold.
Therefore, more elaborated mechanisms are needed.

1⊥ stands for the empty head (equivalent to falsehood).
2> stands for the empty body (equivalent to truth).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:3

Next, we briefly review the most significant proposals in the literature for both the imperative
future approach and the declarative approach. More discussion and references about programming
languages with capabilities for reasoning about time can be found e.g. in [Gergatsoulis 2001; Fisher
2011; Orgun 1994; Orgun and Ma 1994].

Imperative future TLP languages. The most significant representatives of this approach are
Tempura [Moszkowski 1986] and MetateM [Barringer et al. 1989]. The language Tempura is based
on a fragment of Interval Temporal Logic with a restricted use of eventualities. The Tempura ap-
proach has been continued ([Cau et al. 1996; Moszkowski 1998]) and extended to Framed Tempura
and Projection Temporal Logic Programming [Duan et al. 2005; 2008; Yang and Duan 2008; Yang
et al. 2010]. However, regarding eventualities, these extensions keep the same limitations as the
original Tempura. The language MetateM develops the methodology outlined in [Gabbay 1987a].
MetateM is based on First-order Linear-time Temporal Logic (FLTL) and formulas are written in
the Separated Normal Form (SNF) presented in [Fisher 1991; 1992]. The propositional fragment
of MetateM is complete, however, since FLTL is incomplete ([Merz 1992; Szalas and Holenderski
1988; Szalas 1995]), the execution of a first-order MetateM program attempts to build a model, but
the success of such construction is not guaranteed (see Example 1.4). In MetateM disjunctions are
seen as choices and one disjunct is selected from each disjunction as part of the process of build-
ing a model. If a choice is later shown to be inappropriate, because it leads to inconsistency, then
backtracking is used to return to the last point where a choice was made. In propositional MetateM
the termination is addressed by explicitly considering the finite model property, which allows to
calculate an upper bound of forward chaining steps. If a model is not obtained bellow this upper
bound, then the attempt is given up and the procedure backtracks. MetateM was extended to Con-
current MetateM in [Fisher 1993]. Among its applications we can mention, e.g., the development of
agent systems ([Fisher 1997; Fisher and Ghidini 2010]). More references on MetateM, Concurrent
MetateM and their applications can be found in [Fisher 2011]. A fragment of Linear-time Temporal
logic is presented as imperative future TLP language in [Merz 1995]. This language, for efficiency,
restricts the use of eventualities (and also disjunctions). The clausal normal form and the idea of
forward chaining construction of models introduced in MetateM are used in [Aguado et al. 2008;
Aguado et al. 2011] to obtain a temporal extension of the Answer Set Programming paradigm (non-
monotonic reasoning).
Finally, we also mention the assembly-like TLP language XYZ/E that was presented in [Tang 1983]
as a vehicle for providing temporal semantics to programs written in conventional imperative pro-
gramming languages. An imperative program is expressed in XYZ/E on the basis of the execution
sequences that it generates along the timeline. A similar approach can be found in Chapter 3 of
[Fisher 2011].

Declarative TLP languages. There are several works on extending classical LP (in particular
Prolog) for reasoning about time. Some proposals are purely based on temporal logic and extensions
of SLD resolution, but the incompleteness of FLTL becomes a delicate issue for using fragments
of FLTL as TLP languages. Also the complexity result is a drawback even for the propositional
fragment (see [Sistla and Clarke 1985]). Additionally, the interaction between the � (“always”) and
the ◦ (“next”) connectives makes possible to encode the so-called induction on time by means of
loops that, in an indirect way, state that a formula is satisfied in every moment in time. The presence
of these loops –“hidden” invariants– makes necessary to consider quite intricate mechanisms for
detecting (un)satisfiable eventualities. Many temporal extensions of LP are not purely founded on
temporal logic due to their extra-logical features for handling eventualities. Next, we summarize
representative published work concerning the variety of proposals in declarative TLP languages
(including some approaches that are not purely based on temporal logic).
The language Tokio [Fujita et al. 1986; Kono 1995; Kono et al. 1985; Nakamura et al. 1989]
extends Prolog by adding temporal reasoning capabilities inspired by both Linear-time Temporal
Logic and Interval Temporal Logic. In Tokio there are restrictions regarding the use of temporal
connectives and, unlike Prolog variables, the so-called temporal variables used in Tokio have state,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 J. Gaintzarain and P. Lucio

what makes possible to express properties like ◦Y = Y + 1 stating that the value of the variable Y
in the next time instant will be its present value plus one. Obviously, this kind of expressions are no
supported by conventional Temporal Logic.
A different temporal extension of Prolog was introduced by Hrycej in [Hrycej 1988; 1993] where
time intervals are considered as conceptual primitives. Hrycej’s language is a non-modal approach
based on first-order logic with capabilities to deal with time intervals. More precisely, the first-order
“reified” logic ([Reichgelt 1987; Shoham 1986]) is considered as the basis for the implementation
of the language.
Metric temporal operators and dense time are considered in [Brzoska 1991; 1993; 1995b; 1995a;
1998; Brzoska and Schäfer 1995] where execution is based on translating temporal logic programs
into Constraint Logic Programming. Temporal Annotated Constraint Logic Programming is
presented in [Frühwirth 1995; 1994; 1996; Raffaetà and Frühwirth 1999].
The Temporal Prolog presented in [Sakuragawa 1986] extends Prolog by introducing linear-time
temporal connectives. Programs are transformed into a normal form that is similar to the Separated
Normal Form used in MetateM. This transformation removes most temporal connectives by
introducing fresh predicates. The transformation of eventualities yields negated atoms. If negated
atoms (i.e., eventualities) are involved in a program, then the Herbrand universe must be finite
and, in this case, computation is performed on the basis of a nondeterministic finite automaton that
corresponds to the program. Two implementation options are devised: first, by translating programs
into Prolog (if the program contains negation, then a pure Prolog program is not obtained) and
second, asserting the facts which are true at each point in time (although this implementation option
is not explained in detail, it resembles, at first sight, the imperative future approach).
A sequent-based proposal for establishing logical foundation for declarative TLP is presented in
[Pliuskevicius 1992]. This approach considers a complete fragment of FLTL where eventualities
are allowed. In order to handle eventualities, the sequent system contains an invariant-based rule.
We finally review the three existing declarative TLP languages that are based on pure extensions
of classical logic programming languages and resolution, which are Chronolog [Wadge 1988;
Orgun 1991; 1995], Templog [Abadi and Manna 1987; 1989; Baudinet 1988; 1989a; 1989b; 1992;
1995] and Gabbay’s Temporal Prolog [Gabbay 1987b]. Chronolog and Templog are the most
studied and the most representative languages in the purely declarative approach. The underlying
logic for the languages Templog and Chronolog is FLTL. In the case of Gabbay’s Temporal
Prolog, the presented system is intended for both branching-time and linear-time temporal logic. In
Chronolog, the connectives first (to refer to the initial state s0) and next (to refer to the next state
with respect to the current one) are the only temporal connectives. Templog’s syntax allows the
always connective (�) to occur in clause heads and the eventually connective (�) in clause bodies.
Additionally, the next time connective ◦ is allowed in the atoms and the connective � can prefix
an entire clause. However, Templog programs are expressible by using ◦ as the unique temporal
connective ([Baudinet 1989b]) and consequently it has the same expressive power as Chronolog.
This restriction is so strong that it allows reducing any temporal program to a (possibly infinite)
classical logic program. Templog and Chronolog have also the same metalogical properties of
existence of minimal model and fixpoint characterization. Gabbay’s Temporal Prolog is a more
expressive language that allows eventualities in clause heads (although it does not allow � in
clause bodies). The resolution-based computation procedure outlined in [Gabbay 1987b] is proved
to be sound, however its completeness has not been addressed. The development of these three
declarative languages was mainly done in the early nineties, in contrast to the imperative future
approach (e.g. Tempura and MetateM) which has been evolving until present days. During the
last two decades, no other clausal sublanguage of linear-time temporal logic has been proposed
as declarative TLP language. Hence, nowadays, Templog, Chronolog and Gabbay’s Temporal
Prolog remain as the most expressive proposals of declarative TLP languages. Later extensions
of Chronolog (e.g. [Orgun et al. 1993; Orgun and Wadge 1994; Rondogiannis et al. 1997; 1998;
Gergatsoulis et al. 2000]) did not add significant temporal expressiveness. In the case of Gabbay’s
Temporal Prolog, although the expressive power was considerably high, it seems that the lack of

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:5

completeness was a handicap for further study and development.

In general, it seems that the troublesome solving (in the resolution sense) of the eventualities
(whose fulfillment can be prevented by “hidden” invariants) has been blocking the steps toward more
expressive resolution-based declarative TLP languages. Indeed, even in the propositional fragment
–i.e. in PLTL– the solving of eventualities is the most intricate part that often requires techniques
such as invariant generation ([Fisher 1991; Fisher et al. 2001]). In this paper, we contribute to the
effort of increasing the temporal expressiveness of declarative TLP languages on the basis of a
new temporal resolution-based mechanism (see [Gaintzarain et al. 2013]) that is complete (in the
propositional setting). The main novelty of this temporal resolution lies in a new approach to handle
eventualities. We introduce a purely declarative propositional TLP language, called TeDiLog, that
allows both � and � in clause heads and bodies. Hence, TeDiLog is strictly more expressive than the
propositional fragments of the above mentioned purely declarative proposals: Templog [Abadi and
Manna 1989; Baudinet 1989b], Chronolog [Wadge 1988; Orgun 1995] and Gabbay’s Temporal Pro-
log [Gabbay 1987b]. Additionally TeDiLog is as expressive as propositional MetateM [Barringer
et al. 1989]. From the operational point of view, MetateM follows the imperative future approach,
i.e. it is not based on resolution. For deciding whether an eventuality is satisfied, the MetateM pro-
cedure performs backtracking whenever the upper bound of the size of the (hypothetical) model is
exceeded. However, the resolution mechanism of TeDiLog directly manages unsatisfiable eventu-
alities. Temporal logic can be seen as an instance of modal logic where the set of possible worlds
represents a collection of moments in time. The earliest proposals on Modal Logic Programming
(MLP) come from the mid and late 1980’s (see e.g. [Balbiani et al. 1988; Fariñas del Cerro 1986]).
The most expressive MLP language is MProlog ([Nguyen 2000; 2003; 2006; 2009]) which is as
expressive as the general modal Horn fragment. More references on MLP can be found in [Ger-
gatsoulis 2001; Orgun 1994; Orgun and Ma 1994; Nguyen 2003; 2009]. The main concern in the
operational semantics of TeDiLog is the problem of eventualities and “hidden” invariants, which
is a specific TLP problem that does not appear in MLP. This makes TeDiLog to be very far from
any MLP proposal. However, results and advances in MLP can help, to some extent, in the achieve-
ment of new results for TLP. In particular, MProlog is based on extending classical resolution to
the modal framework. In [Nguyen 2003], the fixpoint semantics for MProlog is first introduced and
then the SLD-Resolution calculus is defined as the reverse operation of the fixpoint operator. We
have been inspired by this relation between the operational and the fixpoint semantics to define a
fixpoint semantics for TeDiLog.

Along the paper, we compare TeDiLog with its most closely related proposals: Templog,
Chronolog, the linear-time Gabbay’s Temporal Prolog and MetateM. The technical content of this
paper is focused on the propositional language TeDiLog. However, for a better illustration of the
aim of our proposal, we next discuss some first-order program examples. They are written in the
natural extension of TeDiLog with predicates and variables.

Example 1.2. Consider the following program (on Fibonacci numbers):

fib(0)← >
◦fib(1)← >
� (◦2fib(V)← fib(X) ∧ ◦fib(Y) ∧ V = X + Y)

The goal ⊥ ← ◦3fib(Z) yields the answer substitution {Z ← 2}. The goal ⊥ ← � fib(Z) pro-
duces an infinite sequence of answer substitutions {Z ← 0}, {Z ← 1}, {Z ← 1}, {Z ← 2},
. . . , that is, the sequence of Fibonacci numbers. Now, consider the goal ⊥ ← � fib(Z) which is
not expressible in Templog, Chronolog and Gabbay’s Temporal Prolog. The TeDiLog computation
does not finish and does not produce any answer. Note that � fib(j) is not a logical consequence of
the program for any j ≥ 0.
The above program is expressible in MetateM through a simple transformation. The

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 J. Gaintzarain and P. Lucio

MetateM program execution, which does not need a goal, builds the infinite model

{fib(0),◦fib(1),◦2fib(1),◦3fib(2), . . .}.

Example 1.3. The following program encodes the so-called induction on time (for q(a)):

q(a)← >
� (◦q(X)← q(X))

Hence, q(a) is true at every instant along the time. The goal ⊥ ← ◦3q(Z) yields the answer sub-
stitution {Z ← a}. The goal ⊥ ← � q(Z) generates the infinite sequence of answer substitutions
{Z ← a}, {Z ← a}, {Z ← a}, {Z ← a}, The goal ⊥ ← � q(Z) also yields the answer
substitution {Z ← a}. The latter goal is not expressible in Templog, Chronolog and Gabbay’s

Temporal Prolog. The MetateM system builds the infinite model {q(a),◦q(a),◦2q(a), . . .} for the
above program.

Example 1.4. The following program shows that, as expected, the natural first-order extension
of TeDiLog gives rise to an incomplete system:

q(0)← >
� (◦q(X) ← q(X))
� (◦q(X) ← q(Y) ∧X = Y + 1)
� (w(X) ← � q(X))

This fact is due to the interaction between the infinite domain and the connective � in the body
of the last clause. By means of the first three clauses, for every i ≥ 0, q(i) holds in all states
sj such that j ≥ i. As a consequence, w(i) holds in a state sj if i ≥ j. Indeed, the atoms

w(0),◦w(0),◦w(1),◦2w(0),◦2w(1),◦2w(2), . . . are logical consequences of the program. How-
ever, the first-order extension of our resolution method will not yield any answer either for the goal

⊥ ← �w(Z) or for any goal ⊥ ← ◦k
w(Z) where k ≥ 0. The reason is that, by contrast with

the previous Example 1.3, here the goal ⊥ ← � q(V) does not give any answer (due to the infinite
domain), and consequently the last program clause cannot be used to produce w(V).
In order to obtain a MetateM program, the last program clause above is translated into SNF giving
rise to two clauses: � (◦r(X) ← q(X) ∧ ¬w(X)) and � (�¬q(X) ← r(X)), where r is a fresh
predicate symbol. Consequently MetateM attempts to construct a model for the following program3:

q(0)← >
� (◦q(X) ← q(X))
� (◦q(X) ← q(Y) ∧X = Y + 1)
� (◦r(X) ← q(X) ∧ ¬w(X))
� (�¬q(X)← r(X))

Then, the atoms in {q(0),◦q(0),◦q(1),◦2q(0),◦2q(1),◦2q(2), . . .} are successively obtained. In
addition, since there is no clause with head w(Z), we can suppose that ¬w(X) succeeds in a time
instant for any X such that q(X) is true at that time instant. Therefore, the atoms

{◦r(0),◦2r(0),◦2r(1),◦3r(0),◦3r(1),◦3r(2), . . .}

are also generated. According to the last program clause, the system attempts to satisfy �¬q(X),
however at each step the system must delay this task for the next step. Therefore, MetateM (as
TeDiLog) is not able to generate a model for this program.

In the rest of the paper we restrict ourselves to the propositional setting. Hence, the logic that
underlies TeDiLog is the well-known Propositional Linear-time Temporal Logic (PLTL), which

3Actually this program is not in pure SNF yet (see e.g. [Fisher 1992]). Some minor syntactical changes are still needed, but
they are irrelevant for our discussion.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:7

is complete and decidable. We endow TeDiLog with logical and operational semantics and prove
their equivalence. The logical semantics is given by the set of all the (finite) formulas of the form
α1 ∨ . . . ∨ αn that are logical consequences (in PLTL) of the program and where each αj is either
a body or a body prefixed by the connective �. The operational semantics of TeDiLog is based on
the invariant-free resolution method that is presented in detail in [Gaintzarain et al. 2013] and dis-
penses with invariant generation. 4 We cannot expect to have the classical Minimal Model Property
(MMP in short) that assigns to any program a minimal model, which is the intersection of all its
models. The reason for this is twofold. First, the non-conjunctive temporal connective � appearing
in clause heads, and also the non-finitary connective � appearing in clause bodies, both (separately)
prevent from holding the MMP (see [Orgun and Wadge 1992]). For Gabbay’s Temporal Prolog the
MMP does not hold because of the use of the connective � in clause heads. The second reason is
that our resolution mechanism produces (in computation time) disjunctive clauses, so TeDiLog is
located in the disjunctive logic programming (DLP) paradigm, which does not enjoy the MMP even
in the classical (non-temporal) case. In the DLP framework, the semantics of a program consists
of the collection of all its minimal models (see e.g. [Lobo et al. 1992]). Temporal disjunctive logic
programming has previously been addressed in [Gergatsoulis et al. 2000] where Chronolog is ex-
tended with DLP features. The satisfiability of a Templog/Chronolog program can be reduced to the
satisfiability of a classical logic program. As a consequence the minimal model characterization of
Templog and Chronolog (see [Baudinet 1989b; Gergatsoulis et al. 2000; Wadge 1988; Orgun 1995])
is a straightforward adaptation of the classical (disjunctive) case. We define a fixpoint semantics (in-
spired by [Nguyen 2003]) by associating an operator TΠ to any TeDiLog program Π. However, there
is a great difficulty for using TΠ in the customary way for proving the equivalence between the oper-
ational and the fixpoint semantics. Concretely, the context handling mechanism (which is the basis
of our operational semantics) prevents us from obtaining a refutation of Tn

Π(∅) from a refutation of

Tn−1
Π (∅). 5 Indeed, this difficulty is closely related to the problem of syntactical cut elimination for

PLTL, which is an open problem (see [Brünnler and Lange 2008] and [Gaintzarain et al. 2009]).
As a consequence, in this paper, we prove, first, the equivalence between operational and logical
semantics and, second, the equivalence between fixpoint and logical semantics.

Our resolution system requires the expressive power of full temporal logic. That is, the resolution
of a �-goal, necessarily generates subgoals involving the strictly more expressive until connective
U . Hence, we directly formulate our language in terms of the temporal connectives U and its
dual: the release connective R . We present a notion of derivation, called IFT-derivation, of a goal
with respect to a program. IFT-derivations are based on a natural extension of the classical LP rule
for (binary) resolution in two senses: temporal (� in front of clauses) and disjunctive (disjunction
in clause heads). Additionally, resolution application is restricted not only to the standard (linear)
resolution between the current goal and a selected program clause, but also to a controlled kind
of resolution called next-resolution. This next-resolution is performed to infer (from program
clauses) all the (program) clauses that have a ◦ connective in front of every literal. Intuitively,
next-resolution allows to extract all the implicit information about the next state that is crucial to
achieve completeness. We also define a fixpoint semantics that captures the reverse (bottom-up)
of the operational mechanism given by IFT-derivations. We prove the equivalence between the
operational, logical and fixpoint semantics.

Outline of the paper. In Section 2 we provide the basic background on PLTL. In Section 3 we
introduce the syntax of TeDiLog, some preliminary definitions and a sample TeDiLog specification
of a reactive system. In Section 4 we present the system of rules that are the basis for the operational
semantics of TeDiLog. Section 5 is devoted to the operational, logical and fixpoint semantics and
their equivalence. In Subsection 5.1 we present the operational semantics of TeDiLog. Then, in

4The basis of this deduction method is presented in [Gaintzarain et al. 2009], where sound and complete methods of tableaux
and sequents are defined for full PLTL.
5This customary technique can be found in e.g. Lemma 4.6 in [Baudinet 1989b] and Lemma 7.8 in [Nguyen 2003].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 J. Gaintzarain and P. Lucio

Subsection 5.2 we detail some sample derivations. The logical semantics is described in Subsection
5.3. We prove the equivalence between operational and logical semantics in Subsection 5.4.
In Subsection 5.5 we introduce a fixpoint semantics and prove its equivalence with the logical
semantics. In Section 6 we compare in more detail TeDiLog with the most similar proposals in the
literature, though some puntual comparisons have been previously made. Finally, we summarize
our contribution in Section 7.

A very preliminary version of this work was presented at the Spanish Workshop PROLE 2009
(see [Gaintzarain and Lucio 2009]).

2. PRELIMINARIES AND NOTATION

PLTL-formulas are built using propositional variables (p, q, . . .) from a set Prop, the classical con-
nectives, and the temporal connectives ◦ (“next”) and U (“until”). In the sequel, formula means
PLTL-formula. A lowercase Greek letter (ϕ, ψ, χ, γ, . . .) denotes a formula and an uppercase one
(Φ,∆,Γ,Ψ,Ω, . . .) denotes a finite set of formulas. Given a set of formulas Φ = {ϕ1, . . . , ϕn}, ¬Φ
stands for the disjunction of the negation of all the formulas in Φ, i.e., ¬Φ = ¬ϕ1 ∨ . . . ∨ ¬ϕn.
A PLTL-structure M is a pair (SM, VM) where SM is a denumerable sequence of states
s0, s1, s2, . . . and VM : SM → 2Prop is a mapping that specifies which atomic propositions are
true in each state in SM. Formulas are interpreted in the states of PLTL-structures. The formal se-
mantics of formulas is given by the truth of a formula ϕ in a state sj of a PLTL-structureM, which
is denoted by 〈M, sj〉 |= ϕ. This semantics is inductively defined as follows:

— 〈M, sj〉 |= p iff p ∈ VM(sj) for p ∈ Prop
— 〈M, sj〉 |= ¬ϕ iff 〈M, sj〉 6|= ϕ
— 〈M, sj〉 |= ϕ ∧ ψ iff 〈M, sj〉 |= ϕ and 〈M, sj〉 |= ψ
— 〈M, sj〉 |= ϕ ∨ ψ iff 〈M, sj〉 |= ϕ or 〈M, sj〉 |= ψ
— 〈M, sj〉 |= ◦ϕ iff 〈M, sj+1〉 |= ϕ
— 〈M, sj〉 |= ϕU ψ iff there exists k ≥ j such that 〈M, sk〉 |= ψ and 〈M, si〉 |= ϕ holds for every
i ∈ {j, . . . , k− 1}.

The remaining linear-time connectives that appear in this paper, i.e., R (“release”), � (“eventu-
ally”) and � (“always”), can be defined in terms of the connective U . In particular, ϕRψ ≡
¬(¬ϕU ¬ψ), �ϕ ≡ ¬ϕU ϕ, �ϕ ≡ ¬�¬ϕ. Note that �ϕ ≡ ¬ϕRϕ. The extension of the above
formal semantics to the derived connectives yields:

— 〈M, sj〉 |= ϕRψ iff for every k ≥ j it holds either 〈M, sk〉 |= ψ or 〈M, si〉 |= ϕ for some i
such that j ≤ i < k

— 〈M, sj〉 |= �ϕ iff 〈M, sk〉 |= ϕ for some k ≥ j
— 〈M, sj〉 |= �ϕ iff 〈M, sk〉 |= ϕ for every k ≥ j.

For a set of formulas Φ, we say that 〈M, sj〉 |= Φ iff 〈M, sj〉 |= γ for all γ ∈ Φ. We say thatM is
a model of Φ, in symbolsM |= Φ, iff 〈M, s0〉 |= Φ. A satisfiable set of formulas has at least one
model, otherwise it is unsatisfiable. Two sets of formulas Φ and Ψ are equisatisfiable whenever Φ is
satisfiable iff Ψ is satisfiable. A formula χ is a logical consequence of a set of formulas Φ, denoted
as Φ |= χ, iff for every PLTL-structureM and every sj ∈ SM: if 〈M, sj〉 |= Φ then 〈M, sj〉 |= χ.

Note that the satisfaction of ϕU ψ and �ψ requires that ψ must eventually be satisfied, and also
that the eventual satisfaction of ¬ψ is required to satisfy ¬�ψ and ¬(ϕRψ). Consequently

Definition 2.1. An eventuality is a formula of the form ϕU ψ or �ψ or ¬�ψ or ¬(ϕRψ).

Definition 2.2. A formula χ is an invariant if and only if the formula ¬χ ∨ ◦χ is true at every
state of every PLTL-structure.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:9

In order to illustrate that an invariant χ may assert, often in an intricate way, that some formula
ψ is always true, let us consider some examples. The formulas χ1 = �ψ, χ2 = ψ ∧ � (¬ψ ∨ ◦ψ)
and χ3 = ψ ∧ � (¬ψ ∨ ◦ϕ) ∧ � (¬ϕ ∨ ψ) are three invariants. The formula χ1 is the easiest way
of stating that ψ is always true. However χ2 and χ3 also assert that ψ is always true, since �ψ is a
logical consequence of both {χ2} and {χ3}. It is worth noting that loops like the one in χ3 can be
quite complex. Let us consider, for instance, the following three sets of formulas

∆1 = {� (¬ϕ0 ∨ ◦ψ0), . . . ,� (¬ϕn ∨ ◦ψn)}
∆2 = {� (¬ψ0 ∨ ¬γ), . . . ,� (¬ψn ∨ ¬γ)}
∆3 = {� (¬ψ0 ∨ ϕ0 ∨ . . . ∨ ϕn), . . . ,� (¬ψn ∨ ϕ0 ∨ . . . ∨ ϕn)}

The formulas �◦¬γ and � (ϕ0 ∨ . . . ∨ ϕn) are logical consequences of the set

Σ = {ϕ0 ∨ . . .∨ ϕn} ∪∆1 ∪∆2 ∪∆3

Additionally, for the formulaχ =
∧

α∈Σ α, it holds that¬χ∨◦χ is true in every state of every PLTL-
structure. Therefore χ is an invariant that states, in an intricate way, that the eventuality�γ cannot be
true from the next state onwards. Note also that the formula � (¬(ϕ0∨ . . .∨ϕn)∨◦(ϕ0∨ . . .∨ϕn))
is a logical consequence of ∆1 ∪ ∆2 ∪ ∆3. So that, if we restrict ourselves to the set of models
of ∆1 ∪ ∆2 ∪ ∆3, we could say that the formula ϕ0 ∨ . . . ∨ ϕn is an invariant with respect to
such models. Since the set Σ can be formed by an arbitrary number of formulas, the invariant χ
(unlike eventualities) cannot be trivially detected. Additionally, Σ could just be a subset of another
set of formulas. More details about invariants can be found in e.g. [Fisher et al. 2001; Paech 1988;
Pliuskevicius 1991; 1992].

3. THE LANGUAGE TEDILOG

In this section we introduce the syntax of TeDiLog along with an illustrative example of a TeDiLog
specification for a reactive system.

L ::= p | ¬p
T ::= LU p | LR p | �p | � p

A ::= ◦i
p | ◦i

T

H ::= ⊥ | A ∨H
B ::= > | A ∧B
D ::= �

b(A ∨H ← B)
G ::= �

b(⊥ ← B)

where p ∈ Prop, i ≥ 0, ⊥ is the empty disjunction,
> is the empty conjunction and b ∈ {0, 1}.

Fig. 1. TeDiLog’s Syntax

The programming language TeDiLog is a twofold extension of propositional Horn clauses that
incorporates temporal connectives in atoms and disjunctions in clause heads. It is the Temporal
Disjunctive Logic programming language given in Figure 1, where the metavariable A denotes
atom, L stands for (classical) literal, T for temporal atom, H for head, B for body, D for
(disjunctive) program clause, and G for goal clause. Let n be a natural number, we respectively
denote by ◦n

, �
n and �n the sequences of n connectives ◦, � and � . Since � �ψ and ��ψ are

respectively equivalent to �ψ and �ψ, we use only �
n and � n with n = 0 or n = 1. Along the

rest of the paper superscripts b (from bit) range in {0, 1}. These kinds of superscripts are notation,
hence they are not part of the syntax. Due to the superscript b, the metavariable D represents two
kinds of clauses. The expression �

b(H ← B), for b = 0, represents H ← B, which is called a
now-clause, whereas for b = 1, it represents � (H ← B), which is called an always-clause. The
same classification applies to the goal clauses denoted by G. In particular, �

b(⊥ ← >) represents

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 J. Gaintzarain and P. Lucio

the two possible syntactic forms of the empty clause, as now- or always-clause.

Definition 3.1. Given a set of clauses Φ, the set alw(Φ) is formed by all the always-clauses in
Φ, i.e. all the clauses of the form � (H ← B). In addition, the set now(Φ) is Φ \ alw(Φ).

A program is a set of program clauses and a goal is a set of goal clauses.

The set of atoms of a clause C = �
b(A1 ∨ . . . ∨ Am ← A′

1 ∧ . . . ∧ A′
n) is

{A1, . . . , Am, A
′
1, . . . , A

′
n}. We assume that there is neither repetitions nor established order in

the atoms of a head or a body. An atom is said to be ◦-free if it is a temporal atom or a classical
propositional atom. The connective ◦ is distributive over every other connective and, consequently,
◦� (A1 ∨ . . .∨Am ← A′

1 ∧ . . .∧A
′
n) is equivalent to � (◦A1 ∨ . . .∨ ◦Am ← ◦A′

1 ∧ . . .∧ ◦A
′
n).

Given a head, body, program clause or goal clause ψ, we denote by ◦ψ the head, body, program
clause or goal clause that is obtained by adding one ◦ connective to every atom in ψ. For instance,
◦� (p ∨ q ← ◦r) denotes � (◦p ∨ ◦q ← ◦◦r) and ◦� (⊥ ← ◦r) denotes � (⊥ ← ◦◦r). Note that
◦⊥ is written just⊥ and ◦> is written>.

A clause �
b(H ← B) is semantically equivalent to the formula �

b(H ∨ ¬B). Consequently,
not only the temporal atoms of the form � p and LU p that occur in the head H of the clause
behave as eventualities, but also the temporal atoms � p and LR p in the bodyB, which respectively
correspond to (temporal) literals ¬� p and ¬(LR p). Hence, we define the eventuality literals of a
clause, on the basis of the notion of eventuality (see Definition 2.1).

Definition 3.2. Let C be a clause �
b(A1 ∨ . . .∨Am ← A′

1∧ . . .∧A
′
n). Lits(C) denotes the set

{A1, . . . , Am,¬A′
1, . . . ,¬A

′
n} whose elements are called the temporal literals of C . Additionally,

EventLits(C) denotes the set of all the eventuality literals in C , i.e. {N | N ∈ Lits(C) and N is an
eventuality}.
Both notations are extended to a set of clauses Ψ in the obvious manner: Lits(Ψ) =

⋃

C∈Ψ Lits(C)
and EventLits(Ψ) =

⋃

C∈Ψ EventLits(C).

Note that eventuality literals from clauses have one of the following four forms: � p, LU p, ¬�p
and ¬(LR p), where p is a propositional variable and L a classical literal.

TeDiLog is syntactically a sublanguage of PLTL, but every PLTL-formula can be translated into
TeDiLog by using, in general, new propositional variables. The translation yields an equisatisfiable
set of (program and goal) clauses. For example, the PLTL-formula �¬p ← q can be translated
into TeDiLog as the goal clause ⊥ ← q ∧ � p but also as the set formed by the program clause
� r ← q and the goal clause � (⊥ ← r∧ p) where r is a fresh propositional variable. For the PLTL-
formula � (x ∨ y) ← z we obtain the program clauses �w ← z and � (x ∨ y ← w) where w is
a fresh propositional variable. A detailed translation method is presented in [Gaintzarain et al. 2013].

To finish this section, let us illustrate (with an example) how TeDiLog can be used to specify
reactive systems and to verify properties that are satisfied by these systems. We also use the next
example to compare the expressiveness of TeDiLog with the more closely related proposals in the
literature.

Example 3.3. Let us consider a system where a device (dv) and a system manager (sm) interact
with each other. When the device dv needs to execute a process, it sends a request req dv to the
system manager sm to get permission and goes into waiting-state until the system manager sm
sends the acknowledgement signal ack sm giving permission to execute the process.

� (waiting dv U ack sm← req dv) (1)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:11

Whenever dv asks for permission, the system manager sm will eventually give permission by send-
ing the acknowledgement signal ack sm in a later state.

� (◦� ack sm← req dv) (2)

Once the system manager produces the signal ack sm (giving permission), the device dv goes into
working-state until it communicates the end of the process by means of the eop dv signal.

� (working dv U eop dv← ack sm) (3)

Whenever the device generates the eop dv signal, then it will not be in working-state until it receives
the ack sm signal giving permission to execute another process.

� (¬working dv U ack sm← eop dv) (4)

From time to time, the system manager generates a control signal ctr sm

� (� ctr sm← >) (5)

The interaction generated after the control signal ctr sm corresponds to the fact that the system
manager has to regularly control whether the device is correctly connected to the system. This signal
ctr sm is always eventually followed by the signal conn sm which is received by the device.

� (� conn sm← ctr sm) (6)

After receiving the signal conn sm, the device dv answers by sending the signal conn dv to the
system manager.

� (◦� conn dv ← conn sm) (7)

The device dv is considered to be in communicating-state (com dv) while the arising of the conn dv
signal (now or in a future moment) is guaranteed.

� (com dv ← � conn dv) (8)

We would like to remark that the clauses (2) and (5)-(7) cannot be expressed neither in Chronolog
nor in Templog because of the eventualities in their heads. However, all of them are syntactically
correct in Gabbay’s Temporal Prolog. As for the clauses (1), (3) and (4), they contain the U
connective which is not allowed in the above mentioned three declarative TLP languages.

Now, we can check whether the system specified by the TeDiLog clauses (1)-(8) verifies some
properties such as fairness, liveness, safety, mutual exclusion, etc. This is made by writing the
intended property as a TeDiLog goal and then checking if that goal can be inferred from the pro-
gram. For example we would be interested in checking whether the device dv will always keep in
communicating-state. The corresponding goal would be {⊥ ← � com dv}. Actually, the refuta-
tional mechanism of TeDiLog checks the unsatisfiability of the eventuality �¬com dv with respect
to the specification.
None of the just above mentioned three languages (Chronolog, Templog and Gabbay’s Temporal
Prolog) allows always-atoms in clause bodies, hence the previous goal is not expressible in any of
these declarative TLP languages.
The program clauses (1)-(8) can be expressed in propositional MetateM, although some translation
into SNF is needed. For the resulting specification, the MetateM execution system builds a model
step by step in the imperative future style. The process will stop when a loop that gives rise to an
ultimately periodic model for the program is detected. If we add to the specification the SNF clauses
that correspond to the goal ⊥← � com dv, then MetateM finitely detects the unsatisfiability of the
extended specification.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 J. Gaintzarain and P. Lucio

(Res)
�

b(A ∨H ← B) �
b′(H ′ ← A ∧B′)

�
b×b′(H ∨H ′ ← B ∧B′)

b, b′ ∈ {0, 1}

Fig. 2. The Resolution Rule

(U H+) �
b((p1 U p2) ∨H ← B)
7−→ {� b(p2 ∨ p1 ∨H ← B), �

b(p2 ∨ ◦(p1 U p2) ∨H ← B)}

Fig. 3. The Context-Free Rule (U H+)

(U H−) �
b((¬p1 U p2) ∨H ← B)
7−→ {� b(p2 ∨H ← p1 ∧B), �

b(p2 ∨ ◦(¬p1 U p2) ∨H ← B)}

(U B+) �
b(H ← (p1 U p2) ∧B)
7−→ {� b(H ← p2 ∧B), �

b(H ← p1 ∧ ◦(p1 U p2) ∧B)}

(U B−) �
b(H ← (¬p1 U p2) ∧B)
7−→ {� b(H ← p2 ∧B), �

b(p1 ∨H ← ◦(¬p1 U p2) ∧B)}

Fig. 4. The Context-Free Rules (U H−), (U B+) and (U B−)

4. THE RULE SYSTEM

In this section, we introduce the rule system that constitutes the basis of the operational semantics
of TeDiLog. Our system includes a Resolution Rule, a collection of Temporal Rules for decom-
posing temporal atoms, and two auxiliary rules respectively for jumping to the next state and for
subsumption. We explain these four kinds of rules in the following four subsections.

4.1. The Resolution Rule

The TeDiLog’s resolution rule (Res) is a natural generalization of the classical rule for binary
resolution. It is depicted in Figure 2 in the usual format of premises and resolvent separated by an
horizontal line. The rule (Res) applies to two temporal clauses such that one of the atoms in the
head of one clause is in the body of the other clause. The premises can be headed or not by an always
connective. By means of the product b × b′ in the superscript of the resolvent, the resolvent is an
always-clause if and only if both premises are always-clauses. Note that the resolvent is in general a
program clause, but in particular when the premises respectively are a single-headed program clause
and a goal clause, the resolvent is a goal clause.

4.2. The Temporal Rules

The temporal rules serve to transform the set of clauses according to the inductive definitions of
temporal atoms. We write them as transformation rules Φ 7→ Ψ where Φ and Ψ are sets of clauses,
respectivelly called the antecedent and the consequent. Temporal rules are grouped into two classes.
On the one hand, the context-free rules are based on the usual inductive definitions of the temporal
connectives. The antecedent and consequent of any context-free rule are logically equivalent. On
the other hand, the context-dependent rules come up from a more complex inductive definition of
the connective U , and their antecedent and consequent are equisatisfiable.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:13

(RH+) �
b((p1R p2) ∨H ← B)
7−→ {� b(p2 ∨H ← B), �

b(p1 ∨ ◦(p1R p2) ∨H ← B)}

(RH−) �
b((¬p1R p2) ∨H ← B)
7−→ {� b(p2 ∨H ← B), �

b(◦(¬p1R p2) ∨H ← p1 ∧B)}

(RB+) �
b(H ← (p1R p2) ∧B)
7−→ {� b(H ← p2 ∧ p1 ∧B), �

b(H ← p2 ∧ ◦(p1R p2) ∧B)}

(RB−) �
b(H ← (¬p1R p2) ∧B)
7−→ {� b(p1 ∨H ← p2 ∧B), �

b(H ← p2 ∧ ◦(¬p1R p2) ∧B)}

Fig. 5. The Context-Free Rules (RH+), (RH−), (RB+) and (RB−)

def(a, L, ∅) = {� (⊥ ← a)}
def(a, p,∆) = {� (p← a)} ∪ {� (H ← B ∧ a) | H ← B ∈ ¬∆} if ∆ 6= ∅
def(a,¬p,∆) = {� (⊥ ← p ∧ a)} ∪ {� (H ← B ∧ a) | H ← B ∈ ¬∆} if ∆ 6= ∅

Fig. 6. The set of clauses def(a,L,∆)

(U C+) Ω ∪ {� bi((p1 U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p2 ∨ p1 ∨Hi← Bi, p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a, p1, now(Ω))
∪ {� bi(◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

where def(a, p1, now(Ω)) is defined in Figure 6.

Fig. 7. The Context-Dependent Rule (U C+)

4.2.1. Context-Free Rules. In the context-free rules, the antecedent Φ is a singleton and we write
directly its unique clause. The context-free rule (U H+) –depicted in Figure 3– deals with an atom
of the form p1 U p2 that appears in the head of a clause. This rule replaces a clause of the form
�

b((p1 U p2) ∨ H ← B) with a logically equivalent set of (two) clauses according to the well-
known inductive definition p1 U p2 ≡ p2 ∨ (p1 ∧ ◦(p1 U p2)), from which the distribution law
guarantees the equivalence

p1 U p2 ≡ (p2 ∨ p1) ∧ (p2 ∨ ◦(p1 U p2)) (9)

which justifies that the antecedent (p1 U p2)∨H ← B of the rule (U H+) is logically equivalent to
the conjunction of the two clauses in its consequent: p2∨p1∨H ← B and p2∨◦(p1 U p2)∨H ← B.
Our system also includes (see Figure 4) the rules (U H−), (U B+) and (U B−) for the respective
occurrences of ¬p1 U p2 in the clause head and p1 U p2 and ¬p1 U p2 in the clause body. The rules
(U H−), (U B+) and (U B−) are respectively obtained by using the inductive definition LU p ≡
p ∨ (L ∧ ◦(LU p)) for ¬p1 U p2 in the clause head, and p1 U p2 and ¬p1 U p2 in the clause body.
Additionally, the rules (RH+), (RH−), (RB+) and (RB−) in Figure 5 are obtained from the
inductive definitionLR p ≡ p∧ (L∨◦(LR p)) by considering the same four kinds of occurrences
of the release connective R in a clause.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 J. Gaintzarain and P. Lucio

4.2.2. Context-Dependent Rules. The context-dependent rules are based on an inductive defini-
tion of U that takes into account, not only the clauses where the temporal atom occurs, but also the
remaining now-clauses in the antecedent of the rule. The rule (U C+) in Figure 7 is the context-
dependent rule that deals with atoms of the form p1 U p2 in clause heads. The antecedent of (U C+)
must be interpreted as a partition of the whole set of clauses (on which we are applying temporal
resolution) into two sets. The second set {� bi((p1 U p2)∨Hi← Bi) | 1 ≤ i ≤ n} in the antecedent
is a non-empty set of clauses that contain the same temporal atom p1 U p2 in the head. The first set,
Ω, is formed by all the remaining clauses and it is called the context. The crucial idea behind the
context-dependent rule (U C+) (and, hence, behind the resolution mechanism of TeDiLog) is based
on the following equisatisfiability result that relates two eventualities.

PROPOSITION 4.1. Let ∆ be a set of formulas, ∆1 = ∆ ∪ {p2 ∨ p1 ∨ β, p2 ∨ ◦(p1 U p2) ∨ β}
and ∆2 = ∆ ∪ {p2 ∨ p1 ∨ β, p2 ∨ ◦((p1 ∧ ¬∆)U p2) ∨ β}. Then ∆1 and ∆2 are equisatisfiable.

PROOF. Suppose that ∆1 has a modelM. If 〈M, s0〉 |= ∆∪ {p2} or 〈M, s0〉 |= ∆∪{β}, then
M is also a model of ∆2. Otherwise, 〈M, s0〉 |= {p1,◦(p1 U p2)} and p2 should be satisfied in
some state sj with j ≥ 1 and p1 is true in all the states sh such that 0 ≤ h < j. Let k be the greatest
index in {0, . . . , j−1} such that 〈M, sk〉 |= ∆ and ∆ is not satisfied in the states sk+1, . . . , sj−1 of
M. Then, we can construct a modelM′ of ∆ by simply deleting the states s0 , . . . , sk−1 inM. As a
consequence of the choice of k, the PLTL-structureM′ is also a model of {p1,◦((p1∧¬∆)U p2)}.
Hence,M′ |= ∆2. Conversely, any model of ∆2 is a model of ∆1.

Now, we will transform the antecedent of (U C+) into its consequent, while preserving equisat-
isfiability (indeed, logical equivalence is preserved at most steps).
The first transformation step is based on the equivalence �ψ ≡ ψ∧�◦ψ. Consequently, each clause
�

bi((p1 U p2) ∨Hi ← Bi) such that bi = 1 is split (while clauses with bi = 0 remain unchanged).
So that, the set in the antecedent of (U C+):

Ψ0 = Ω ∪ {� bi((p1 U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n}

is equivalent to

Ψ1 = Ω ∪ {(p1 U p2) ∨Hi ← Bi | 1 ≤ i ≤ n}
∪ {� bi(◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1, 1 ≤ i ≤ n}

Then, by the classical inductive definition of U (see previous (9)), Ψ1 is equivalent to

Ψ2 = Ω ∪ {p2 ∨ p1 ∨Hi ← Bi, | 1 ≤ i ≤ n}
∪ {p2 ∨ ◦(p1 U p2) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ {� bi(◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1, 1 ≤ i ≤ n}

Let Υ be the last set in the description of Ψ2, that is

Υ = {� bi(◦(p1 U p2) ∨ ◦Hi← ◦Bi) | bi = 1, 1 ≤ i ≤ n},

we replace the above underlined set (inside Ψ2) with the following set

{p2 ∨ ◦((p1 ∧ ¬(Ω ∪Υ))U p2) ∨Hi ← Bi | 1 ≤ i ≤ n} (10)

Hence, we obtain

Ψ3 = Ω ∪ {p2 ∨ p1 ∨Hi← Bi, | 1 ≤ i ≤ n}
∪ {p2 ∨ ◦((p1 ∧ ¬(Ω ∪Υ))U p2) ∨Hi ← Bi | 1 ≤ i ≤ n}
∪ {� bi(◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1, 1 ≤ i ≤ n}

By Proposition 4.1, the sets Ψ2 and Ψ3 are equisatisfiable. Additionally, any set of the form

{�χ1,�χ2, . . . ,�χm,◦((ϕ ∧ (γ ∨ ¬�χ1 ∨ ¬�χ2 ∨ . . . ∨ ¬�χm))U ψ)}

is equivalent to the set

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:15

{�χ1,�χ2, . . . ,�χm,◦((ϕ ∧ γ)U ψ)}

because if the formulas χ1, χ2, . . . , χm are true from now forever, then the truth of the formula

◦((ϕ ∧ (γ ∨ ¬�χ1 ∨ ¬�χ2 ∨ . . . ∨ ¬�χm))U ψ)

does not depend on the truth of the disjunction¬�χ1∨¬�χ2 ∨ . . .∨¬�χm which should be false.
Consequently, it is not necessary to consider the clauses that belong to alw(Ω) ∪Υ (see Definition
3.1) in the subset of Ψ3 considered in (10) because only clauses in now(Ω) are needed. Therefore,
we replace the subformula ¬(Ω ∪ Υ) with ¬now(Ω) in Ψ3 and we obtain the following (logically
equivalent) set

Ψ4 = Ω ∪ {p2 ∨ p1 ∨Hi ← Bi, | 1 ≤ i ≤ n}
∪ {p2 ∨ ◦((p1 ∧ ¬now(Ω))U p2) ∨Hi ← Bi | 1 ≤ i ≤ n}
∪ {� bi(◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1, 1 ≤ i ≤ n}

Now, since the above formula ◦((p1 ∧ ¬now(Ω))U p2) is not (in general) an atom, we should
transform Ψ4 into clausal form. For that, we substitute the subformula p1 ∧ ¬now(Ω) by the fresh
variable a and we add the clauses that define the meaning of a. This gives the following set Ψ5

where def(a, p1, now(Ω)) is the result of transforming the formula � ((p1 ∧ ¬now(Ω)) ← a) to a
set of clauses (whose definition is given in Figure 6):

Ψ5 = Ω ∪ {p2 ∨ p1 ∨Hi ← Bi, | 1 ≤ i ≤ n}
∪ {p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n}
∪ def(a, p1, now(Ω))
∪ {� bi(◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1, 1 ≤ i ≤ n}

Finally, let us check that the sets Ψ4 and Ψ5 are equisatisfiable. On the one hand, since a does not
appear in Ψ4, a modelM′ of Ψ5 can be built from a modelM of Ψ4 by just defining VM′ (s′j) as

VM(sj)∪{a} if p1∧¬now(Ω) is true in the state sj ofM and by defining VM′(s′j) as VM(sj)\{a}
if p1 ∧ ¬now(Ω) is false in the state sj ofM. On the other hand, since every model of Ψ5 satisfies
the formula � ((p1 ∧ ¬now(Ω)) ← a), we can ensure that p1 ∧ ¬now(Ω) is true in any state s
of a model of Ψ5 whenever a is true in s. Consequently, ◦((p1 ∧ ¬now(Ω))U p2) is true in any
state s of a model of Ψ5 whenever ◦(aU p2) is true in s. Therefore, every model of Ψ5 is also a
model of Ψ4. As can be seen in the above reasoning, the clauses that correspond to the formula
� ((p1 ∧ ¬now(Ω))→ a) are not needed for equisatisfiability.
To summarize, the initial set Ψ0 –which is the antecedent of the rule (U C+)– and the last set Ψ5

–which is the consequent of the rule (U C+)– are equisatisfiable. Our system also includes a similar
context-dependent rule (U C−) for ¬p1 U p2 in the head, which is depicted in Figure 8.
The context-dependent rules (RC+) and (RC−) in Figure 8 are due to the fact that a release atom
appearing in the body of a clause C is an eventuality literal of C (see Definition 3.2). The rules
for R are explained by its duality with U . Additionally, by using the definitions �ϕ ≡ ¬ϕU ϕ
and �ϕ ≡ ¬ϕRϕ, the context-free rules (�H+), (�B+), (�H+) and (�B+) and the context-
dependent rules (�C+) and (�C+) are derived. These derived rules are depicted in Figure 10.

4.3. The Rule for Jumping to the Next State

The unnext rule in Figure 11 applies to a pair formed by a program and a goal, giving a new
pair of program and goal. The expression unnext(Ψ) stands for the set of all clauses that should
be satisfied at the next state of a state that satisfies the set of clauses Ψ. Note that the definition
of the function unnext implicitly uses the equivalence �ϕ ≡ ϕ ∧ �◦ϕ and also that the unnext
target of a program (resp. goal) is also a program (resp. goal). It is worth remembering that > and
⊥ respectively represent the empty body and the empty head, and it holds that every atom in >
and ⊥ is of the form ◦A. For example, unnext({� (◦r ← >),� (q ← >)}) is the set {� (◦r ←
>),� (q ← >), r← >}.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 J. Gaintzarain and P. Lucio

(U C−) Ω ∪ {� bi((¬p1 U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p2 ∨Hi ← p1 ∧Bi, p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a,¬p1, now(Ω))
∪ {� bi(◦(¬p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(RC+) Ω ∪ {� bi(Hi ← (p1R p2) ∧Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {Hi← p2 ∧ p1 ∧Bi, Hi ← p2 ∧ ◦(¬aR p2) ∧Bi | 1 ≤ i ≤ n}

∪ def(a,¬p1, now(Ω))
∪ {� bi(◦Hi ← ◦(p1R p2) ∧ ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(RC−) Ω ∪ {� bi(Hi ← (¬p1R p2) ∧Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p1 ∨Hi ← p2 ∧Bi, Hi ← p2 ∧ ◦(¬aR p2) ∧Bi | 1 ≤ i ≤ n}

∪ def(a, p1, now(Ω))
∪ {� bi(◦Hi ← ◦(¬p1R p2) ∧ ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1, a ∈ Prop is fresh and def is in Figure 6.

Fig. 8. The Context-Dependent Rules (U C−), (RC+) and (RC−)

def(a, now(Ω)) =

{

{� (⊥ ← a)} if now(Ω) = ∅
{� (H ← B ∧ a) | H ← B ∈ ¬now(Ω)} otherwise

Fig. 9. The set of clauses def(a,now(Ω))

(�H+) �
b(�p ∨H ← B) 7−→ {� b(p ∨ ◦� p ∨H ← B)}

(�B+) �
b(H ← � p ∧B) 7−→ {� b(H ← p ∧B), �

b(H ← ◦� p ∧B)}

(�H+) �
b(� p ∨H ← B) 7−→ {� b(p ∨H ← B), �

b(◦� p ∨H ← B)}

(�B+) �
b(H ← � p ∧B) 7−→ {� b(H ← p ∧ ◦� p ∧B)}

(�C+) Ω ∪ {� bi(�p ∨Hi ← Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p ∨ ◦(aU p) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a, now(Ω))
∪ {� bi(◦�p ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(�C+) Ω ∪ {� bi(Hi ← �p ∧Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {Hi ← p ∧ ◦(¬aR p) ∧Bi | 1 ≤ i ≤ n}

∪ def(a, now(Ω))
∪ {� bi(◦Hi← ◦� p ∧ ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1, a ∈ Prop is fresh and def(a, now(Ω)) is in Figure 9

Fig. 10. Derived Rules for � and �

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:17

(Unx) (Π,Γ) 7−→ (unnext(Π), unnext(Γ))

where unnext(Ψ) = alw(Ψ) ∪ {H ← B | �
b(◦H ← ◦B) ∈ Ψ}

Fig. 11. The Rule (Unx)

(Sbm) {� b(H ← B),�
b(H ′ ← B′)}7−→{� b(H ′ ← B′)}

where H ′ ⊆ H and B′ ⊆ B.

Fig. 12. The Rule (Sbm)

4.4. The Subsumption Rule

The rule (Sbm) is formulated in Figure 12. Regarding the clauses in the antecedent, it is said that
the clause �

b(H ← B) is subsumed by the clause �
b(H ′ ← B′).

Our resolution mechanism requires the subsumption rule (Sbm) for completeness (see Lemma 41
in [Gaintzarain et al. 2013]).

5. TEDILOG SEMANTICS

In this section we summarize our results on TeDiLog semantics. The first subsection is devoted to
the operational semantics that is formalized by means of the notion of IFT-derivation in Definition
5.8. The second subsection shows three sample derivations. In the third subsection we define the
logical semantics. In the fourth subsection we prove the equivalence between the operational and
the logical semantics. Finally, in the last subsection we define the fixpoint semantics and we prove
the equivalence between the logical and the fixpoint semantics.

5.1. Operational Semantics

In this subsection we define the operational semantics of TeDiLog. Since TeDiLog’s language is a
syntactically simpler variant of the clausal language in [Gaintzarain et al. 2013], TeDiLog’s opera-
tional semantics is based on a restriction of the TRS-resolution procedure, i.e. the complete resolu-
tion method for PLTL that was introduced in [Gaintzarain et al. 2013].

For TeDiLog completeness, it is not needed to exhaustively apply the rule (Res) for producing
all possible resolvents. Indeed, the use of the rule (Res) can be limited as follows.

Definition 5.1. An application of the rule (Res) is a TeDiLog-resolution whenever at least one
of the input clauses is of the form �

b(◦H ← B). In particular, it is called a goal-resolution if H
is empty (i.e. it is a goal clause). Otherwise, it is called a next-resolution because both inputs are
program clauses and at least one of them is of the form �

b(◦H ← B).

In the rest of this section, we define the temporal resolution procedure underlying TeDiLog, that
we call IFT-resolution (for Invariant-Free Temporal resolution). Every step of an IFT-derivation
consists in applying one of the rules presented in Section 4, with the above restriction for the rule
(Res) and also a restricted use of the context-dependent rules. We first introduce the notion of local
derivation and show that our restricted resolution works to achieve completeness of local derivation.

Definition 5.2. Let Π and Γ respectively be a program and a goal, a local derivation is a finite
sequence (Π0,Γ0) 7→ (Π1,Γ1) 7→ . . . 7→ (Πn,Γn) such that (Π0,Γ0) = (Π,Γ) and for all j ∈
{1, . . . , n} the pair (Πj ,Γj) is obtained from (Πj−1,Γj−1) by exactly one of the following

(a) the application of a temporal rule
(b) the application of the subsumption rule

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 J. Gaintzarain and P. Lucio

(c) a goal-resolution (to a clause in Πj−1 and a clause in Γj−1) whose resolvent is neither in Πj−1∪
Γj−1 nor subsumed by a clause in Πj−1 ∪ Γj−1

(d) a next-resolution to two clauses in Πj−1 whose resolvent is neither in Πj−1 nor subsumed by a
clause in Πj−1.

Definition 5.3. A local derivation (Π0,Γ0) 7→ . . . 7→ (Πn,Γn) is called a local refutation if
�

b(⊥ ← >) ∈ Γn. Given a program Π and a goal Γ, the pair (Π,Γ) is locally inconsistent iff there
exists a local refutation for (Π,Γ). Otherwise it is locally consistent.

Goal-resolution and next-resolution are two particular forms of the well-known set-of-support
restriction of resolution6 (see e.g. Section 2.6 in [Schöning 1989] and [Dixon and Fisher 1998]). In
particular, they can be seen as N-restrictions of resolution. The completeness of these N-restrictions,
along with the completeness of TRS-resolution (cf. [Gaintzarain et al. 2013]), ensure the complete-
ness result for local derivations we are going to prove next.

PROPOSITION 5.4. Let ∆ be a set of clauses that does not contain temporal atoms (i.e. clauses
are exclusively formed by atoms in Prop and atoms of the form ◦A). If ∆ is locally inconsistent
with respect to TRS-resolution, then IFT-resolution produces a local refutation by using only goal-
resolution.

PROOF. In local derivations, TeDiLog clauses can be seen as classical propositional clauses (This
is a direct consequence of Proposition 25 in [Gaintzarain et al. 2013]). So that, by completeness of
the N-restriction of resolution in classical propositional logic (see e.g. Section 2.6 in [Schöning
1989]) goal-resolution is enough to obtain a local refutation whenever there exists a local refuta-
tion.

PROPOSITION 5.5. Let ∆ be a set of clauses that does not contain temporal atoms (i.e. clauses
are exclusively formed by atoms in Prop and atoms of the form ◦A). If ∆ is locally consistent
with respect to TRS-resolution, then every clause of the form �

b(◦H ← ◦B) that is produced by
TRS-resolution (from ∆) is also produced by IFT-resolution (that is, using only next-resolution and
goal-resolution).

PROOF. First, using goal-resolution we can generate all the minimal clauses of the form
�

b(H ← B), where H and B may contain propositional atoms. This is a direct consequence of
the completeness of N-restriction of resolution (see e.g. [Schöning 1989]), along with the fact that
temporal clauses (in local derivations) can be seen as classical propositional clauses (by Proposition
25 in [Gaintzarain et al. 2013]). Then, using next-resolution we can obtain all the clauses of the
form �

b(◦H ← ◦B), by completeness of N-restriction of resolution and considering that a clause
is negative whenever the head does not contain propositional atoms (in particular a clause of the
form �

b(◦H ← ◦B) is negative).

In order to formulate the local completeness result, we first define the notion of locally closed.

Definition 5.6. We say that a pair (Π,Γ) is locally closed if and only if it satisfies the following
three conditions:

(a) The clauses in Π ∪ Γ are exclusively formed by atoms in Prop and atoms of the form ◦A.
(b) The subsumption rule (Sbm) cannot be applied to (Π,Γ).
(c) Every clause that can be obtained by applying TeDiLog-resolution (that is, goal- or next-

resolution) is already in (Π,Γ) or it is subsumed by some clause in (Π,Γ).

THEOREM 5.7. For any pair (Π0,Γ0), there exists a local derivation (Π0,Γ0) 7→ . . . 7→
(Πn,Γn) such that either �

b(⊥ ← >) ∈ Γn or (Πn,Γn) is locally closed.

PROOF. By Propositions 5.4 and 5.5.

6Also known as set-of-support strategy for resolution.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:19

Note that the above Theorem 5.7 shows that IFT-resolution (which is a restriction of the (general)
temporal resolution method in ([Gaintzarain et al. 2013])) is complete for local derivation from
TeDiLog clauses. In Example 5.10, we illustrate why next-resolution is necessary for completeness.

Finally, we define the notion of IFT-derivation which is based on the notion of local derivation
along with a strategy to apply the context-based temporal rules to one selected eventuality. In the
sequel, we denote by (Π∗,Γ∗) the last pair of a local derivation starting by (Π,Γ) and such that
either �

b(⊥ ← >) ∈ Γ∗ or (Π∗,Γ∗) is locally closed.

Definition 5.8. Let Π and Γ respectively be a program and a goal, an IFT-derivation for Π and
Γ, denoted by D(Π,Γ), consists of a (possibly infinite) sequence

(S0, sel0, sel
∗
0) Z⇒ (S1, sel1, sel

∗
1) Z⇒ (S2, sel2, sel

∗
2) Z⇒ . . .

where, for all j ≥ 0, Sj is a local derivation (Πj,Γj) 7→ . . . 7→ (Π∗
j ,Γ

∗
j)

7 and selj ⊆
EventLits(Πj ∪ Γj), such that

(a) (Π0,Γ0) = (Π,Γ),
(b) if EventLits(Π0 ∪ Γ0) = ∅ then sel0 = ∅, and otherwise sel0 contains exactly one eventuality

that is fairly selected from EventLits(Π0 ∪ Γ0), and
(c) for all j ≥ 0 the following four conditions hold:

(c1) Πj+1 = unnext(Π∗
j) and Γj+1 = unnext(Γ∗

j).

(c2) If selj = ∅ then no context-dependent rule is applied in the local derivation Sj .
(c3) If selj 6= ∅ then the corresponding context-dependent rule is applied to Πj ∪ Γj and to the

eventuality designated by selj . Additionally, sel∗j is the singleton formed by the new even-
tuality literal that appears in the consequent of the applied context-dependent rule (which
involves a fresh variable). Besides, no other context-dependent rule is applied along Sj .

(c4) If sel∗j ∩ EventLits(Πj+1 ∪ Γj+1) = ∅ then selj+1 is fairly selected from (Πj+1,Γj+1)

else selj+1 takes the value of sel∗j .

An IFT-derivation which contains a local refutation is called an IFT-refutation.

By the above condition (c3), for example, if selj = {p1 U p2} and Πj∪Γj contains a (non-empty)

set of clauses of the form {� bi((p1 U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n}, then the context-dependent
rule (U C+) in Figure 7 is applied to Πj ∪ Γj and sel∗j = {aU p2}. Similarly for the rules (U C−),
(RC+), (RC−), and the derived context-dependent rules (see Figures 8 and 10).

The fairness in the selection means that for every literal T such that T ∈ EventLits(Πi ∪ Γi) for
some i ≥ 0, either selj = {T} for some j ≥ i or T 6∈ EventLits(Πk ∪ Γk) for some k > i.

5.2. Examples

In this subsection we present three detailed examples that illustrate the IFT-resolution procedure.
In Example 5.9 we simply show how IFT-resolution deals with eventualities. The Example 5.10
illustrates the need of next-resolution (Definition 5.1). Finally, one could think that the selection of
an eventuality that cannot be satisfied requires to backtrack for the re-selection of a new eventuality.
However, IFT-resolution works without backtracking, as Example 5.11 shows. The three sample
derivations are showed in the respective figures, where we indicate which rule is applied and we
underline the clauses designated by the rule application, except for the rule (Unx).

Example 5.9. We consider the program Π = {q U r ← >} and the goal Γ = {� (⊥ ← r)}.
The goal clause is equivalent to the formula �¬r and Π ∪ Γ is unsatisfiable. In Figure 13 we show
an IFT-refutation for (Π,Γ). First, Π0

0 and Γ0
0 are respectively initialized as Π and Γ. Since q U r is

the only eventuality literal in a clause that belongs to Π∪Γ, it is selected. Therefore sel0 = {q U r}.

7Note that we use two different symbols (7→ and Z⇒) to highlight the difference between applying the rule (Unx) and any
other rule.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 J. Gaintzarain and P. Lucio

Π0
0 = {qU r ← >} Γ0

0 = {� (⊥← r)} (U C+) sel0 = {q U r}

Π1
0 = {r ∨ q ← >,

r ∨ ◦(aU r)← >}
Γ1

0 = {� (⊥← r),
� (⊥ ← a)}

(Res) sel∗0 = {aU r}

Π2
0 = {r ∨ q ← >,

r ∨ ◦(aU r)← >,
q ← >}

Γ2
0 = {� (⊥← r),

� (⊥ ← a)}
(Sbm)

Π3
0 = {r ∨ ◦(aU r)← >,

q ← >}
Γ3

0 = {� (⊥← r),
� (⊥ ← a)}

(Res)

Π4
0 = {r ∨ ◦(aU r)← >,

q ← >,
◦(aU r)← >}

Γ4
0 = {� (⊥← r),

� (⊥ ← a)}
(Sbm)

Π5
0 = {q ← >,
◦(aU r)← >}

Γ5
0 = {� (⊥← r),

� (⊥ ← a)}
(Unx)

Π0
1 = {aU r ← >} Γ0

1 = {� (⊥← r),
� (⊥ ← a)}

(U C+) sel1 = {aU r}

Π1
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >}
Γ1

1 = {� (⊥← r),
� (⊥ ← a),
� (⊥ ← b)}

(Res) sel∗1 = {bU r}

Π2
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >,
a← >}

Γ2
1 = {� (⊥← r),

� (⊥ ← a),
� (⊥ ← b)}

(Res)

Π3
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >,
a← >}

Γ3
1 = {� (⊥← r),

� (⊥ ← a),
� (⊥ ← b),
⊥ ← >}

Fig. 13. IFT-Refutation for Π = {qU r ← >} and Γ = {� (⊥← r)}

We apply the rule (U C+) to Π0
0 ∪ Γ0

0 with selected literal q U r and empty context. Hence, we
obtain the new program clauses r ∨ q ← > and r ∨ ◦(aU r)← > and the goal clause � (⊥ ← a),
where a is a fresh variable. Since the context is empty (its negation is⊥), the goal clause � (⊥ ← a)
gives meaning to a. The new atom aU r is the new selected literal, i.e, sel∗0 = {aU r}. Then the
resolution rule and the subsumption rule are applied twice, obtaining Π5

0 and Γ5
0. Since a refutation

cannot be obtained in this state, the application of the rule (Unx) serves to jump to the next state,
generating Π0

1 and Γ0
1. Since the atom aU r appears as eventuality literal in a clause that belongs to

Π0
1 ∪ Γ0

1, it is kept as selected literal, i.e., sel1 = {aU r}. Now the context-dependent rule (U C+)
is applied to the set Π0

1 ∪Γ0
1 with selected literal aU r and empty context. Then, we obtain two new

program clauses, r ∨ a ← > and r ∨ ◦(bU r) ← >, and the goal clause � (⊥ ← b), where b is a
fresh variable. Now sel∗1 = {bU r}. Two additional applications of the rule (Res) yield the empty
clause ⊥← >.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:21

Π0
0 = {q ← >,

� (◦q ← q)}
Γ0

0 = {⊥ ← � q} (�C+) sel0 = {¬� q}

Π1
0 = {q ← >,

� (◦q ← q)}
Γ1

0 = {⊥ ← q ∧ ◦(¬aR q),
� (⊥ ← q ∧ a)}

(Res) sel∗0 = {¬(¬aR q)}

Π2
0 = {q ← >,

� (◦q ← q)}
Γ2

0 = {⊥ ← q ∧ ◦(¬aR q),
� (⊥ ← q ∧ a),
⊥ ← ◦(¬aR q)}

(Sbm)

Π3
0 = {q ← >,

� (◦q ← q)}
Γ3

0 = {� (⊥ ← q ∧ a),
⊥ ← ◦(¬aR q)}

(Res)

Π4
0 = {q ← >,

� (◦q ← q)}
Γ4

0 = {� (⊥ ← q ∧ a),
⊥ ← ◦(¬aR q),
⊥ ← a}

(Res)

Π5
0 = {q ← >,

� (◦q ← q),
◦q ← >}

Γ5
0 = {� (⊥ ← q ∧ a),
⊥ ← ◦(¬aR q),
⊥ ← a}

(Unx)

Π0
1 = {� (◦q ← q),

q ← >}
Γ0

1 = {� (⊥ ← q ∧ a),
⊥ ← ¬aR q}

(RC−) sel1 = {¬(¬aR q)}

Π1
1 = {� (◦q ← q),

q ← >,
a← q,
� (a← b)}

Γ1
1 = {� (⊥ ← q ∧ a),
⊥ ← q ∧ ◦(¬bR q),
� (⊥ ← q ∧ b)}

(Res) sel∗1 = {¬(¬bR q)}

Π2
1 = {� (◦q ← q),

q ← >,
a← q,
� (a← b)}

Γ2
1 = {� (⊥ ← q ∧ a),
⊥ ← q ∧ ◦(¬bR q),
� (⊥ ← q ∧ b),
⊥ ← a}

(Res)

Π3
1 = {� (◦q ← q),

q ← >,
a← q,
� (a← b)}

Γ3
1 = {� (⊥ ← q ∧ a),
⊥ ← q ∧ ◦(¬bR q),
� (⊥ ← q ∧ b),
⊥ ← a,
⊥ ← q}

(Res)

Π4
1 = {� (◦q ← q),

q ← >,
a← q,
� (a← b)}

Γ4
1 = {� (⊥ ← q ∧ a),
⊥ ← q ∧ ◦(¬bR q),
� (⊥ ← q ∧ b),
⊥ ← a,
⊥ ← q,
⊥ ← >}

Fig. 14. IFT-refutation for Π = {q← >,� (◦q ← q)} and Γ = {⊥ ← � q}

In the next example we illustrate why next-resolution (Definition 5.1) is necessary for complete-
ness.

Example 5.10. Let us consider the program Π = {q ← >,� (◦q ← q)} and the goal Γ =
{⊥ ← � q}. The set of clauses Π∪Γ is unsatisfiable. The IFT-refutation for (Π,Γ) is shown in Figure
14. The goal clause ⊥ ← � q contains the only eventuality literal, ¬� q, in (Π,Γ). Hence sel0 =

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 J. Gaintzarain and P. Lucio

{¬� q} and the application of the rule (�C+) with context {q ← >} generates the goal clauses
⊥ ← q ∧ ◦(¬aR q) and � (⊥ ← q ∧ a), where a is a new propositional variable. Additionally,
we have that sel∗0 = {¬(¬aR q)}. By applying the resolution rule to the program clause q ← >
and the goal clause ⊥ ← q ∧ ◦(¬aR q), the goal clause ⊥ ← ◦(¬aR q) is obtained as resolvent.
Then, by (Sbm), the goal clause ⊥ ← q ∧ ◦(¬aR q) is subsumed by⊥ ← ◦(¬aR q). The second
application of (Res), this time with the program clause q ← > and the goal clause � (⊥ ← q∧a) as
premises, yields the goal clause ⊥ ← a. Then the rule (Res) is applied to the two program clauses
q ← > and � (◦q ← q) and the program clause ◦q ← > is obtained as resolvent before jumping to
the next state by applying the rule (Unx) to (Π5

0,Γ
5
0).

Remark. Note that (Π5
0,Γ

5
0) is obtained by next-resolution from (Π4

0,Γ
4
0). Let us explain

that this step is essential. In (Π4
0,Γ

4
0) goal-resolution is not applicable. If instead of

applying next-resolution to the clauses q ← > and � (◦q ← q) in Π4
0, we applied the

rule (Unx) to the pair (Π4
0,Γ

4
0), then we would obtain the program Π′ = {� (◦q ← q)}

and the goal Γ′ = {⊥ ← ¬aR q,� (⊥ ← a)}. Since Π′∪Γ′ is satisfiable, the refutation
of Π ∪ Γ would never be found.

By applying the rule (Unx) to (Π5
0,Γ

5
0), we obtain the pair (Π0

1,Γ
0
1). Then, we apply the context-

dependent rule (RC−) with respect to the selected eventuality literal ¬(¬aR q) and the clause
q ← > as context. The pair (Π1

1,Γ
1
1) is obtained by replacing the goal clause ⊥ ← ¬aR q in

Γ0
1 with the program clauses a ← q and � (a ← b) and the goal clauses ⊥ ← q ∧ ◦(¬bR q)

and � (⊥ ← q ∧ b), where b is a fresh propositional variable. The value of sel∗1 is {¬(¬bR q)}.
In (Π1

1,Γ
1
1) the resolution rule is applied with the program clause q ← > and the goal clause

� (⊥ ← q∧a) as premises, obtaining the goal clause⊥← a as resolvent. In (Π2
1,Γ

2
1) the resolution

between the program clause a← q and the goal clause⊥ ← a yields the goal clause⊥← q. Finally,
since Π3

1 contains the program clause q ← > and Γ3
1 contains the goal clause ⊥ ← q, the empty

clause is obtained by applying the resolution rule (Res) to these two clauses.

One could think that if there are more than one eventuality literal that can be (fairly) selected
to apply the corresponding context-dependent rule, then it could be that not all of the eventualities
were right choices (e.g. because the program prevents the satisfaction of some of them). This view
leads to the idea that wrong choices will have to be repaired by backtracking to the choice point
and changing the selection. Moreover, sometimes one eventuality ϕ must be necessarily fulfilled
before another eventuality ψ. In those cases, one could think that selecting ψ before selecting ϕ
could end up requiring backtracking. In the next example we illustrate that IFT-resolution does not
need backtracking (independently of the selection strategy).

Example 5.11. We consider the program Π = {� q ← >,� r← >} and the goal Γ = {� (⊥ ←
q∧� r)}. It is easy to see that Π∪Γ is satisfiable. There are two eventualities, � q and � r, that must
be fulfilled, but the goal clause states that once the eventuality � q is fulfilled, the eventuality � r
cannot be fulfilled. However, if we first select � q, it does not mean that � q is fulfilled before � r is
fulfilled. Actually, since � r must be fulfilled before � q, that is what happens. The corresponding
infinite IFT-derivation is shown in detail in Figures 15, 16 and 17 (it is split due to space reasons).

After the first selection, sel0 = {� q}. Then the application of the rule (�C+) with context
{� r ← >} generates the program clause q ∨ ◦(aU q) ← > and the goal clause � (⊥ ← a ∧ � r)
where a is a fresh propositional variable. Additionally the value of sel∗0 is set to {aU q}. Then,
several rule applications yield the locally closed pair (Π12

0 ,Γ
12
0) (Definition 5.6). Next, by rule

(Unx), the pair (Π0
1,Γ

0
1) is generated. Since the atom aU q belongs to EventLits(Π0

1 ∪ Γ0
1), it

remains as the selected literal and, consequently, the rule (U C+) is applied to (Π0
1 ∪ Γ0

1) with
aU q as selected literal (i.e., sel1 = {aU q}) and with empty context, obtaining the pair (Π1

1,Γ
1
1)

and setting sel∗1 to {bU q}, where b is a fresh propositional variable. Then the locally closed pair
(Π7

1,Γ
7
1) is obtained from (Π1

1,Γ
1
1) by means of several applications of the rule (Res) and the

rule (Sbm). The pair (Π0
2,Γ

0
2) is obtained from (Π7

1,Γ
7
1) by using the rule (Unx). Since the

set EventLits(Π0
2 ∪ Γ0

2) is empty, the value of sel2 as well as the value of sel∗2 is the empty

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:23

Π0
0 = {� q ← >,� r← >} Γ0

0 = {� (⊥ ← q ∧ � r)} (�C+) sel0 = {� q}

Π1
0 = {� r ← >,

q ∨ ◦(aU q)← >}
Γ1

0 = {� (⊥ ← q ∧ � r),
� (⊥ ← a ∧ � r)}

(�H+) sel∗0 = {aU q}

Π2
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ2

0 = {� (⊥ ← q ∧ � r),
� (⊥ ← a ∧ � r)}

(�B+)

Π3
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ3

0 = {� (⊥ ← a ∧ � r),
� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r)}

(�B+)

Π4
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ4

0 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r)}

(Res)

Π5
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r← q}

Γ5
0 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r)}

(Res)

Π6
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r← q}

Γ6
0 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
⊥ ← q}

(Res)

Π7
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r← q,
r← a}

Γ7
0 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
⊥ ← q}

(Res)

Π8
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r← q,
r← a}

Γ8
0 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
⊥ ← q,
⊥ ← a}

(Res)

Π9
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r← q,
r← a,
◦(aU q)← >}

Γ9
0 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
⊥ ← q,

⊥ ← a}

(Sbm)

Fig. 15. IFT-derivation for Π = {� q ← >,� r ← >} and Γ = {� (⊥ ← q ∧ � r)} (Part 1 of 3)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 J. Gaintzarain and P. Lucio

Π10
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r ← >,
r← a,
◦(aU q)← >}

Γ10
0 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
⊥ ← q,
⊥ ← a}

(Sbm)

Π11
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r ← >,
◦(aU q)← >}

Γ11
0 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
⊥ ← q,
⊥ ← a}

(Sbm)

Π12
0 = {r ∨ ◦� r← >,

◦(aU q)← >}
Γ12

0 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
⊥ ← q,
⊥ ← a}

(Unx)

Π0
1 = {aU q ← >} Γ0

1 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r)}

(U C+) sel1 = {aU q}

Π1
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >}
Γ1

1 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b)}

(Res) sel∗1 = {bU q}

Π2
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
a← r}

Γ2
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b)}

(Res)

Π3
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
a← r}

Γ3
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),
⊥← r}

(Res)

Π4
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
a← r,
a← ◦� r}

Γ4
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),
⊥← r}

(Res)

Fig. 16. IFT-derivation for Π = {� q ← >,� r ← >} and Γ = {� (⊥ ← q ∧ � r)} (Part 2 of 3)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:25

Π5
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
a← r,
a← ◦� r}

Γ5
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),
⊥ ← r,
⊥ ← ◦� r}

(Sbm)

Π6
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
a← ◦� r}

Γ6
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),
⊥ ← r,
⊥ ← ◦� r}

(Sbm)

Π7
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >}
Γ7

1 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),
⊥ ← r,
⊥ ← ◦� r}

(Unx)

Π0
2 = ∅ Γ0

2 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),
⊥ ← � r}

(�B+) sel2 = ∅

Π1
2 = ∅ Γ1

2 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),
⊥ ← r,
⊥ ← ◦� r}

(Unx) sel∗2 = ∅

...
...

Π0
2 = Π0

j ,Γ
0
2 = Γ0

j ,Π
1
2 = Π1

j ,Γ
1
2 = Γ1

j and

selj = sel∗j = ∅ for every j ≥ 3

Fig. 17. IFT-derivation for Π = {� q ← >,� r ← >} and Γ = {� (⊥ ← q ∧ � r)} (Part 3 of 3)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 J. Gaintzarain and P. Lucio

set. Therefore no context-dependent rule is applied to (Π0
2,Γ

0
2) and we get the locally closed

pair (Π1
2,Γ

1
2) by applying the context-free rule (�B+). From that point onwards the derivation

is a repetition where Π0
j = Π0

2, Γ0
j = Γ0

2, Π1
2 = Π1

j , Γ1
2 = Γ1

j and selj = sel∗j = ∅ for

every j ≥ 3. From the pairs (Π12
0 ,Γ

12
0), (Π7

1,Γ
7
1), (Π

1
2,Γ

1
2), (Π

1
3,Γ

1
3), . . . we can deduce that

the literals that are forced by this infinite derivation at states s0, s1, s2, s3, . . . are, respectively,
{¬q, r,¬a}, {q,¬r,¬b}, {¬r,¬b}, {¬r,¬b}, Hence, a modelM can be built from this infinite
derivation by making VM(s0) = {r}, VM(s1) = {q} and VM(sj) = ∅ for every j ≥ 2.

In Example 5.11 one can see that the strategy for selecting eventualities does not compromise the
completeness of IFT-resolution. However it can affect efficiency. In particular, if we had selected the
eventuality � r instead of the eventuality � q, the derivation would have been considerably longer.

5.3. Logical Semantics

In this subsection we define the logical characterization of the declarative meaning of TeDiLog
programs.

In classical LP (see e.g. [Lloyd 1984]), and also in some extensions like Templog ([Baudinet
1989b]) and Chronolog ([Wadge 1988; Orgun et al. 1993; Orgun 1995]), the declarative meaning of
a program is formalized in three equivalent ways:

(1) Logically, as the set of bodies that are logical consequences of the program.
(2) Model-theoretically, by means of the minimal model of the program.
(3) By fixpoint characterization, based on the immediate consequence operator.

These three formalizations are equivalent in the sense that, on one hand, the bodies that are
logical consequences of the program are just the bodies that are satisfied by the minimal model
of the program and, on the other hand, the minimal model of the program is the fixpoint of the
immediate consequence operator.

In DLP ([Lobo et al. 1992]), and existing temporal extensions of DLP ([Gergatsoulis et al. 2000]),
where a goal is of the form {⊥ ← B1, . . . ,⊥← Bn}, the logical characterization of the declarative
meaning of a program is provided by the set of formulas of the formB1 ∨ . . .∨Bn (i.e. disjunctions
of bodies) that are logical consequences of the program. The model-theoretic characterization is
provided by means of all the minimal models (in general there is no only one minimal model). The
fixpoint characterization can also be extended to the disjunctive paradigm –as shown in [Lobo et al.
1992; Gergatsoulis et al. 2000]– yielding the set of disjunctions of atoms that are true in all the
minimal models.

In TeDiLog a goal Γ = {� b1(⊥ ← B1), . . . ,�
bn(⊥ ← Bn)} is understood as the conjunction

of the goal clauses in Γ. Since a goal clause �
b(⊥ ← B) represents the formula ¬� bB, the set Γ

is logically equivalent to the formula ¬� b1B1 ∧ . . .∧ ¬� bnBn or equivalently to ¬(� b1B1 ∨ . . .∨
� bnBn).

Definition 5.12. The declarative semantics of a program Π is logically characterized as the set
of all the formulas of the form � b1B1 ∨ . . . ∨ � bnBn that are logical consequences of Π.

5.4. Equivalence between operational and logical semantics

In this subsection we address the soundness and completeness of IFT-resolution with respect to the
logical semantics of TeDiLog.

Soundness is a consequence of the fact that each rule preserves satisfiability (indeed, some of
them preserve logical equivalence).

THEOREM 5.13. If there exists an IFT-refutation from Π with top-goal Γ, then Π ∪ Γ is unsat-
isfiable.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:27

PROOF. If �
b(⊥ ← >) ∈ Γ′ for some (Π′,Γ′) in an IFT-derivation from (Π,Γ), then Π′ ∪ Γ′ is

unsatisfiable. Therefore, since the rule (Unx) preserves satisfiability and the initial set and the target
set of every application of the remaining rules are equisatisfiable, Π ∪ Γ is also unsatisfiable.

For more details about the proof of the above theorem see Section 6 in [Gaintzarain et al. 2013].
TeDiLog’s completeness means that whenever a set of clauses Π ∪ Γ is unsatisfiable, the IFT-

resolution gives a refutation for (Π,Γ).

PROPOSITION 5.14. If Π ∪ Γ is unsatisfiable then IFT-resolution produces a refutation.

PROOF. Since the resolution system TRS is complete, the systematic algorithm SR for TRS-
resolution ([Gaintzarain et al. 2013]) produces a refutation for Π ∪ Γ. By Propositions 5.4 and
5.5, goal- and next-resolution are enough to obtain all the clauses of the form �

b(◦H ← ◦B).
Additionally, the clauses obtained by TRS-resolution steps that are not goal- or next-resolution, do
not belong to the context in the further applications of the context-dependent rules. Consequently,
any refutation produced by the systematic algorithm SR can be transformed into an IFT-refutation
by removing, on one hand, the applications of the rule (Res) that are not goal- or next-resolutions
and, on the other hand, the applications of the rule (Sbm) that involve clauses generated by the
applications of the rule (Res) that are not goal- or next-resolutions.

5.5. Fixpoint semantics

In this subsection we provide a fixpoint semantics for TeDiLog. The operational semantics of
TeDiLog is based on the set of support strategy and N-resolution (see Subsection 5.1), whereas
the fixpoint semantics introduced in this subsection is based on the set of support strategy and P-
resolution. Indeed, the fixpoint semantics is a bottom-up approach that is obtained as the reverse of
the resolution procedure underlying the operational semantics, which is a top-down approach.

Definition 5.15. An application of the rule (Res) to two program clauses is called a reverse
TeDiLog-resolution whenever at least one of the input clauses is of the form �

b(H ← ◦B). In
particular, it is called a reverse goal-resolution if B is empty. Otherwise, it is called a reverse next-
resolution.

It is easy to see that the above applications of (Res) are reverse of the applications in Definition
5.1.

In the rest of this subsection, we define the notion of reverse IFT-derivation. For that, we first
introduce local reverse derivations and prove some useful properties of them.

Definition 5.16. A local reverse derivation for a program Π is a finite sequence Π0, 7→ Π1 7→
. . . 7→ Πn such that Π0 = Π and for all j ∈ {1, . . . , n} the set Πj is obtained from Πj−1 either

(a) by the application of a context-free temporal rule, or
(b) by a reverse TeDiLog-resolution to two clauses in Πj−1 whose resolvent is not in Πj−1.

PROPOSITION 5.17. A local reverse derivation for a program never contains a goal clause.

PROOF. It is obvious that context-free temporal rules do not produce goal clauses from pro-
gram clauses. Additionally, reverse TeDiLog-resolution cannot generate a goal clause from program
clauses because two non-empty heads produce a non-empty head.

In order to formulate a completeness result for local reverse derivations, we first define the notion
of reversely closed program.

Definition 5.18. We say that a program Π is reversely closed if and only if it satisfies the fol-
lowing two conditions:

(a) The clauses in Π are exclusively formed by atoms in Prop and atoms of the form ◦A.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 J. Gaintzarain and P. Lucio

Π0 = {� (◦p← p), p← >, z ∨ ◦(r U q)← ◦5� p, (¬s)R v ← ◦� q}
...

Π∗
0 = {� (◦p← p), p← >, z ∨ ◦(r U q)← ◦5� p, v ← ◦� q, ◦((¬s)R v) ← s ∧ ◦� q,
◦p← >}

Π1 = {� (◦p← p), p← >}
...
Π∗

1 = {� (◦p← p), p← >,◦p← >}

Fig. 18. Reverse IFT-derivation for Π = {� (◦p← p), p← >, z ∨ ◦(r U q)← ◦5� p, (¬s)R v ← ◦� q}

(b) Every clause that can be obtained by applying reverse TeDiLog-resolution (that is, reverse goal-
or reverse next-resolution) is already in Π.

It is worth noting that the subsumption rule is not involved in the previous definition.

As well as goal- and next-resolution, their reverse versions are also particular forms of the set-of-
support restriction of resolution. Indeed, they can be seen as P-restrictions of resolution.

PROPOSITION 5.19. For any program Π0, there exists a local reverse derivation Π0 7→ . . . 7→
Πn such that Πn is reversely closed.

PROOF. By Proposition 5.17, the empty clause cannot be generated. Hence, it suffices to prove
that reverse IFT-resolution allows us to produce all the clauses of the form �

b(H ← >) and
�

b(◦H ← ◦B) that can be generated from Π0 by using the context-free temporal rules and the
rule (Res) (without any restriction). First, we can obtain, by reverse goal-resolution, the minimal
clauses of the form �

b(H ← B), where H and B may contain propositional atoms. This is a direct
consequence of the completeness of P-restriction of resolution (see e.g. Section 2.6 in [Schöning
1989]), along with the fact that temporal clauses (in local reverse derivations) can be seen as classi-
cal propositional clauses (see Definition 24 and Proposition 25 in [Gaintzarain et al. 2013]). Second,
using reverse next-resolution we can obtain all the clauses of the form �

b(◦H ← ◦B). Here we
use the completeness of P-restriction of resolution, by considering that a clause is positive whenever
the body does not contain propositional atoms (in particular a clause of the form �

b(◦H ← ◦B) is
positive).

Finally, we define the notion of reverse IFT-derivation which is based on the notion of local
reverse derivation along with a condition to stop when a particular kind of cycle is detected. In the
sequel, we denote by Π∗ the last set of a local reverse derivation starting by Π and such that Π∗ is
reversely closed.

Definition 5.20. Let Π be a program, a reverse IFT-derivation for Π consists of a finite sequence

S0 Z⇒ S1 Z⇒ . . . Z⇒ Sj Z⇒ . . . Z⇒ Sk

where, for all i ∈ {0, . . . , k}, Si is a local reverse derivation Πi 7→ . . . 7→ Π∗
i such that

(a) Π0 = Π,
(b) for all i ∈ {0, . . . , k− 1}, Πi+1 = unnext(Π∗

i)
(c) unnext(Π∗

k) = Πj for some j ∈ {0, . . . , k}.

Example 5.21. Let Π be the program

{� (◦p← p), p← >, z ∨ ◦(r U q)← ◦5� p, (¬s)R v ← ◦� q}

In Figure 18 we depict the first and last program of each local reverse derivation in the reverse
IFT-derivation for Π. Note that unnext(Π∗

1) = Π1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:29

PROPOSITION 5.22. For any program Π, there exists a reverse IFT-derivation for Π.

PROOF. On one hand, Proposition 5.19 ensures the existence of the successive local reverse
derivations S0, S1, etc. On the other hand, the existence of a cycle is ensured because the set of
different clauses that can be produced is finite. In particular, the number of different clauses is
bounded by 2n where n is linear on the number of atoms (including sub-atoms) that occur in Π.

In order to define a fixpoint semantics for any program Π, we are going to introduce an operator
TΠ based on the notion of reverse IFT-derivation for Π. Since the logical semantics of TeDiLog
relies on formulas of the form � (B1 ∨ . . .∨Bn)∨Bn+1 ∨ . . .∨Bm, the operator TΠ will allow us
to obtain their conjunctive normal forms. These are formulas of the form � (H1 ∧ . . . ∧Hn) ∨H ,
which in particular could be H and � (H1 ∧ . . . ∧Hn). Next, we consequently define the temporal
disjunctive Herbrand base for a program.

Definition 5.23. Let Π be a program. The temporal Herbrand base THBΠ is the set of all the
atoms whose propositional sub-atoms appear in Π. The temporal disjunctive Herbrand base TDHBΠ

is the set of all the formulas of the form H , � (H1 ∧ . . . ∧Hn) ∨H and � (H1 ∧ . . . ∧Hn) where
n ≥ 1 and H1, . . . , Hn, H are non-empty heads whose atoms belong to THBΠ.

The operator TΠ is based on the following notion of basic logical consequences of a head H ,
denoted by basic(H), that are obtained by direct substitutionsof atoms. For that, we use the auxiliary
notion of basic logical consequence of an atom A, denoted by basic(A).

Definition 5.24. Let A ∈ THBΠ, basic(A) is defined as follows:

(1) basic(◦g
� p) = {◦g

p,◦g+1
� p} ∪ {◦g(LR p) | ◦g(LR p) ∈ THBΠ}

(2) basic(◦g
p) = {◦g(LU p) | ◦g(LU p) ∈ THBΠ}

(3) basic(◦g� p) = {◦g−1� p | g − 1 ≥ 0} ∪ {◦g
p ∨ ◦g+1� p}

(4) basic(◦g
(LU p)) = {◦g� p,◦g

(p ∨ L),◦g
(p ∨ ◦(LU p))}

(5) basic(◦g(LR p)) = {◦g
p,◦g(L ∨ ◦(LR p))}

where, in (4) and (5), if L is a negative literal of the form ¬q then ◦g
(p ∨ L) is the program clause

◦g
(p← q) and ◦g

(L ∨ ◦(LR p)) is the program clause ◦g
(◦(¬qR p)← q).

Let H ∈ TDHBΠ, basic(H) is the smallest set such that H ∈ basic(H) and, if a head A′ ∨H ′

belongs to basic(H) then H ′′ ∨H ′ ∈ basic(H) for every H ′′ ∈ basic(A′).
Let Λ be a set of heads, basic(Λ) =

⋃

H∈Λ basic(H).

It is worth noting that the above definition explicitly mentions heads, because basic(H) can
also contain program clauses with non-empty bodies (which are not heads). Indeed, for the sake
of simplicity, in the rest of this subsection we consider sets containing program clauses and
heads. However, the program clause H ← > and the head H are syntactically distinct (although
semantically equivalent).

Next, we introduce an operator τΠ that uses basic for producing heads that are logical conse-
quences of a collection of heads and program clauses.

Definition 5.25. Let Π be a program and Σ a set of heads and program clauses, the operator τΠ
is defined as follows

τΠ(Σ) = basic({ H ∨H1 ∨ . . . ∨Hn | �
b(H ← A1 ∧ . . . ∧An) ∈ Σ,
{A1 ∨H1, . . . , An ∨Hn} ⊆ Σ ∩ TDHBΠ})

Besides the operator τΠ, the following operator σΠ is also used to define the operator TΠ. The
operator σΠ is applied to cyclic sequences of the form Σ0, . . . ,Σj, . . . ,Σk where each Σi is a set
that contains heads and program clauses.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 J. Gaintzarain and P. Lucio

Definition 5.26. Let Π be a program. We define σΠ(Σ0, . . . ,Σj, . . . ,Σk) to be the sequence
Σ′

0, . . . ,Σ
′
j, . . . ,Σ

′
k such that each Σ′

i is the least superset of Σi that satisfies the following condi-
tions:

(1) If p ∈ Σ′
i for every i ∈ {j, . . . , k} then ◦� p ∈ Σ′

j

(2) If {H ∨ ◦g�p,H ∨ ◦g
� q} ⊆ Σ′

i then H ∨ ◦g
(q U p) ∈ Σ′

i

(3) If ◦g
ψ ∈ Σ′

i and i ≥ 1 then ◦g+1
ψ ∈ Σ′

i−1

(4) If ◦g
ψ ∈ Σ′

j then ◦g+1
ψ ∈ Σ′

k

(5) If ◦g
ψ ∈ Σ′

i, g ≥ 1 and i ≤ k − 1 then (◦g−1
ψ)∗ ⊆ Σ′

i+1
8

(6) If ◦g
ψ ∈ Σ′

k, g ≥ 1 then (◦g−1
ψ)∗ ⊆ Σ′

j

(7) If ◦g
ψ ∈ Σ′

i, g ≥ 1 and i ∈ {j, . . . , k} then ◦g+(k−j)+1
ψ ∈ Σ′

i.

Definition 5.27. Let Σ be a set of heads and program clauses, fold(Σ) denotes the smallest
superset of Σ that satisfies the following conditions:

(1) If {H ∨ ◦g
q ∨ ◦g

p,H ∨ ◦g
q ∨ ◦g+1

(pU q)} ⊆ Σ then H ∨ ◦g
(pU q) ∈ fold(Σ)

(2) If {H ← B ∧ ◦g
q, H ← B ∧ ◦g

p ∧ ◦g+1
(pU q)} ⊆ Σ then H ← B ∧ ◦g

(pU q) ∈ fold(Σ)

(3) If {H ∨ ◦g
q, H ∨ ◦g

p ∨ ◦g+1
(pR q)} ⊆ Σ then H ∨ ◦g

(pR q) ∈ fold(Σ)

(4) If {H ← B∧◦g
q∧◦g

p,H ← B∧◦g
q∧◦g+1(pR q)} ⊆ Σ thenH ← B∧◦g(pR q) ∈ fold(Σ)

(5) If H ∨ ◦g
p ∨ ◦g+1� p ∈ Σ then H ∨ ◦g� p ∈ fold(Σ)

(6) If {H ← B ∧ ◦g
p,H ← B ∧ ◦g+1� p} ⊆ Σ thenH ← B ∧ ◦g� p ∈ fold(Σ)

(7) If H ← B ∧ ◦g
p ∧ ◦g+1

� p ∈ Σ then H ← B ∧ ◦g
� p ∈ fold(Σ)

(8) If {H ∨ ◦g
p,H ∨ ◦g+1

� p} ⊆ Σ then H ∨ ◦g
� p ∈ fold(Σ)

It is worth noting that fold is a generalization of the reverse process of the temporal decomposition
carried out by the context-free temporal rules. As a consequence, fold(Σ) is logically equivalent to
Σ.

Definition 5.28. Let Π be a program, the operator

TΠ(Σ0, . . . ,Σj, . . . ,Σk) = σΠ(τΠ(fold(Σ0)), . . . , τΠ(fold(Σj)), . . . , τΠ(fold(Σk)))

The first iteration TΠ ↑ 0 gives any reverse IFT-derivation for Π Π∗
0, . . . ,Π

∗
j , . . . ,Π

∗
k. Then,

TΠ ↑ n = TΠ(TΠ ↑ (n− 1)) for n ≥ 1.

Example 5.29. In the case of the reverse IFT-derivation in Figure 18, TΠ ↑ 0 would be the
sequence Π∗

0 ,Π
∗
1. Then TΠ ↑ 1 would extend both Π∗

0 and Π∗
1 by means of τΠ and the head p and

its logical consequences produced by basic(p) would be introduced. Then, the operator σΠ would
extend Π∗

1 with ◦� p and an infinite number of heads and clauses. Also Π∗
0 would be extended with

an infinite number of heads and clauses. TΠ ↑ 2 would contain the head z ∨ ◦(rU q) and its logical
consequence z ∨ ◦� q. Since also the clause (¬s)R v ← ◦� q is available because of the operator
fold, TΠ ↑ 3 would include the head z ∨ (¬s)R v. TΠ ↑ 3 would be the least fixpoint.

Next we show that the operator TΠ is monotonic and continuous and consequently it has the least
fixpoint.

LEMMA 5.30. The operator TΠ is monotonic and continuous for any program Π.

PROOF. The monotonicity of TΠ is based on the monotonicity of the operators τΠ, σΠ and
fold. Regarding the monotonicity of τΠ, the only non-trivial cases are the ones that introduce heads

8In (5) and (6), when g > 1, (◦g−1
ψ)∗ = {◦g−1

ψ}. However, for g = 1, (◦g−1
ψ)∗ is the local closure of ψ (see

Definition 5.6) which in general is a set of clauses that contain clauses with non-empty body even when ψ is a head or a
clause with empty body.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:31

of the forms ◦g
(¬pU q) ∨ H and ◦g

(¬pR q) ∨ H because they contain occurrences of negative
literals. However these kinds of heads are not introduced by using negative or absent information
(see Definitions 5.24 and 5.25). Hence, if Σ ⊆ Σ′ then τΠ(Σ) ⊆ τΠ(Σ′) for any pair of sets Σ
and Σ′. The operators σΠ and fold are trivially monotone. Therefore TΠ is monotone. Now, in order
to show that TΠ is continuous, it suffices to show that TΠ is compact. The operator τΠ is compact
because –by using Definition 5.25– we can ensure that for every set Σ and every ψ ∈ τΠ(Σ), there
exists a finite Σ′ ⊆ Σ such that ψ ∈ τΠ(Σ′). On the other hand, regarding the compactness of the
operator σΠ, given a sequence Σ0, . . . ,Σj, . . . ,Σk, the crucial point is the introduction of an atom

of the form ◦� p in the set Σ′
j when p ∈ Σi for every i ∈ {j, . . . , k}, that is, when ◦i+`

p is a
logical consequence of the program for every ` ≥ j. Let us consider the finite sequence made up
of finite sets S = Σ′

0, . . . ,Σ
′
j, . . . ,Σ

′
k where Σ′

i = ∅ for every i ∈ {0, . . . , j − 1} and Σ′
i = {p}

for every i ∈ {j, . . . , k}. If σΠ(S) = Σ′′
0 , . . . ,Σ

′′
j , . . . ,Σ

′′
k , then, by Definition 5.26(1), ◦� p ∈ Σ′′

j .
Consequently, we can ensure that σΠ is compact. The operator fold is trivially compact. Hence the
operator TΠ is compact and also continuous.

As a consequence of the well-known fixpoint theorem by Knaster and Tarski ([Knaster 1928;
Tarski 1955]), we can provide the next result.

COROLLARY 5.31. The least fixpoint TΠ ↑ ω =
⋃ω

n=0 TΠ ↑ n for any program Π.

The least fixpoint TΠ ↑ ω = Σ0, . . . ,Σj, . . . ,Σk represents an infinite ultimately periodic struc-
ture of states Σ0, . . . ,Σj−1, 〈Σj, . . . ,Σk〉ω that asserts which heads and clauses are true at each
state. By construction of TΠ ↑ ω, in particular by items (2), (3) and (6) in Definition 5.26, all such
information is actually in Σ0. Consequently, instead of dealing with TΠ ↑ ω as a cyclic sequence,
from now on we consider that TΠ ↑ ω is just the set Σ0. Next we show that for every program Π,
there exists a model for this set TΠ ↑ ω.

LEMMA 5.32. For any program Π, there exists a model of TΠ ↑ ω.

PROOF. Since every atom in TΠ ↑ ω can be satisfied by using only positive propositional literals,

we consider the PLTL-structureM = (SM, VM) such that si = {ψ ∈ TDHBΠ | ◦
i
ψ ∈ TΠ ↑ ω}

and V (si) = {ψ ∈ Prop | ◦i
ψ ∈ THBΠ} for every i ≥ 0.M is trivially a model of TΠ ↑ ω.

COROLLARY 5.33. Any program Π has a model.

Finally, we are going to prove that TΠ ↑ ω is formed by all the heads that are needed to obtain
(by a kind of closure, below called expansion) all the formulas in the temporal disjunctive Herbrand
base that are logical consequences of Π. Next we define the expansion of TΠ ↑ ω which generalizes
the usual disjunctive expansion in DLP (see e.g [Lobo et al. 1992; Gergatsoulis et al. 2000]).

Definition 5.34. Let Π be a program and TΠ ↑ ω its least fixpoint. The expansion of TΠ ↑ ω,
denoted by exp(TΠ ↑ ω), is the smallest superset of TΠ ↑ ω that satisfies the following conditions:

(1) If ψ ∈ TDHBΠ ∩ exp(TΠ ↑ ω) and H is a head in TDHBΠ, then ψ ∨H ∈ exp(TΠ ↑ ω)
(2) If H is a head in exp(TΠ ↑ ω) and ψ ∈ TDHBΠ ∩ TΠ ↑ ω, then ψ ∨H ∈ exp(TΠ ↑ ω)

(3) If ◦i
H1, . . . ,◦

i
Hn, with n ≥ 1 and i ≥ 0, are heads that belong to exp(TΠ ↑ ω), then

� (H1 ∨ . . .∨Hn) ∈ exp(TΠ ↑ ω).

We now proof that exp(TΠ ↑ ω) exactly contains the formulas in TDHBΠ that are logical conse-
quences of Π.

THEOREM 5.35. Let Π be a program and ψ ∈ TDHBΠ. If ψ ∈ exp(TΠ ↑ ω) then ψ is a logical
consequence of Π.

PROOF. On one hand, if ψ ∈ TΠ ↑ ω, then ψ ∈ TΠ ↑ n for some n ≥ 0. Next we show,
by induction on n, that ψ is a logical consequence of Π. Since TΠ ↑ 0 ∩ TDHBΠ is empty, the
case ψ ∈ TΠ ↑ 0 is trivial. Now let us consider the case ψ ∈ TΠ ↑ n for n ≥ 1. By Definitions

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 J. Gaintzarain and P. Lucio

5.25, 5.26, 5.27 and 5.28, ψ is obtained by using a finite set of heads in TΠ ↑ (n − 1) –that, by
induction hypothesis, are logical consequences of Π– and the applications of the operators fold, τΠ
and σΠ. By the semantics of the temporal connectives, fold introduces formulas that are logically
equivalent to some formula in the input set. The operator τΠ and σΠ produce formulas that are
logical consequences of some set of formulas that is a subset of the input set. Therefore, by tran-
sitivity of the logical consequence relation, ψ is a logical consequence of Π. On the other hand, if
ψ ∈ exp(TΠ ↑ ω) but ψ 6∈ TΠ ↑ ω, then, by the semantics of the temporal connectives and the
classical disjunction, ψ is a logical consequence of some finite subset of TΠ ↑ ω.

THEOREM 5.36. Let Π be a program and ψ ∈ TDHBΠ. If ψ is a logical consequence of Π then
ψ ∈ exp(TΠ ↑ ω).

PROOF. If ψ 6∈ exp(TΠ ↑ ω), then, by Definitions 5.28 and 5.34 and by considering that the
atoms can only have a finite number of syntactical forms (see Definition 5.24), the generation of ψ
requires an infinite set, but this contradicts the compactness result obtained in Lemma 5.30.

6. RELATED WORK

In Section 1, we have already surveyed the main features of the works that are more close to our
proposal. In this section we add more details.

6.1. Templog [Abadi and Manna 1987; 1989; Baudinet 1989b]

The only temporal connectives allowed in the TLP language Templog introduced in [Abadi and

Manna 1987; 1989; Baudinet 1989b] are �, � and ◦. An atom is of the form ◦i
A where A is a

classical atom. A bodyB is recursively defined as a conjunctionB1∧. . .∧Bn with n ≥ 0 and where
each Bi is a classical atom A, a formula of the form ◦B′ , i.e., a body preceded by the connective
◦, or a formula of the form �B′, i.e., a body preceded bay the connective �. Program clauses are

of the form �
b((�

b′◦i
A) ← B), with b, b′ ∈ {0, 1}, and goal clauses are of the form ⊥ ← B.

Templog does not deal with eventualities because the connective � appears only in clause bodies.
As can be appreciated in the recursive definition of bodies, the nesting of connectives in Templog
clauses is not as restricted as in TeDiLog. Therefore, the structure of clauses is considerably more
complex in Templog than in TeDiLog. For example, we do not allow the connective � to prefix a
conjunction of atoms. Since this normal form of Templog clauses is not well suited for resolution,
the notion of canonical body is additionally considered in Templog. A canonical body is a body in
which occurrences of the connectives ∧ and � cannot appear in the scope of the connective ◦ and

every atom of the form ◦i
A is in the scope of the least possible numbers of �. The equivalences

◦(ϕ ∧ ψ) ≡ ◦ϕ ∧ ◦ψ, ◦�ψ ≡ �◦ψ and � (��ϕ ∧ �ψ) ≡ � (�ϕ ∧ ψ) are used to obtain the
canonical form of bodies. However, although the bodies of the premises are in canonical form, the
resolvent obtained by a resolution application may yield a clause whose body is not in canonical
form, hence a transformation to obtain the canonical form may be required after each resolution
application. In TeDiLog, translation into clausal normal form is required only when the context-
dependent rules are applied. Such translation obtains a set of clauses that defines the meaning of the
fresh variable relating it to the negation of the context. The resolution procedure TSLD ([Baudinet
1989b]) consists of eight rules obtained by considering all the possible cases in which temporal
atoms of a program clause and a goal clause can be resolved. For instance, we depict here one of
the rules

� (◦j
A← B0) ⊥← B1 ∧ � (B2 ∧ ◦

i
A ∧B3) ∧B4

⊥ ← B1 ∧ � (◦j−i
B2 ∧B0 ∧ ◦

j−i
B3) ∧B4

where j ≥ i

This resolution rule states that a program clause of the form � (◦j
A ← B0) is resolved with

a goal clause of the form ⊥ ← B1 ∧ � (B2 ∧ ◦
i
A ∧ B3) ∧ B4 and the resolvent ⊥ ← B1 ∧

� (◦j−i
B2 ∧ B0 ∧ ◦

j−i
B3) ∧ B4 is obtained, whenever j ≥ i. Note that A is a classical atom.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:33

The Templog resolution procedure does not follow the state by state forward reasoning approach
and, consequently, it does not use any rule similar to our rule (Unx). As already mentioned in
Section 1, the satisfiability of a Templog program can be reduced to the satisfiability of a (possibly
infinite) classical logic program. This is easily made by considering, for instance, that a clause of

the form ◦i
A ← �B can be expressed by means of the infinite set of clauses {◦i

A ← ◦j
B |

j ≥ 0} and, in the same way, a clause of the form (�◦i
A) ← B can be expressed by means of

the infinite set of clauses {(◦j+i
A) ← B | j ≥ 0}. This approach is possible neither when the

connectives � and U appear in the head of a clause nor when the connectives � and R appear
in the body. For instance, note that a clause of the form �A ← B should be replaced with a

unique clause ◦k
A← B but the value of such k is unknown. As a consequence, the minimal model

characterization of Templog (see [Baudinet 1989b]) is a straightforward adaptation of the classical
case. Unlike Templog, TeDiLog does not have the classical Minimal Model Property (MMP in
short). The presence of the connectives � and U in clause heads and � and R in clause bodies
(see [Orgun and Wadge 1992]) as well as the use of disjunction in clause heads (see e.g. [Lobo
et al. 1992]) prevent from having such property. The compensation for the loss of the MMP is that
TeDiLog is much more expressive than the propositional fragment of Templog.

In order to study Templog’s expressiveness, Baudinet considers in [Baudinet 1989b; 1995] the
propositional fragment TL1 where the connective � is not allowed at all and � is not allowed in

clause heads. Consequently, TL1 program clauses are of the form �
b(◦i

A0 ← ◦
j1A1∧. . .∧◦

jnAn)

where b ∈ {0, 1} and n ≥ 0 and goal clauses are of the form ⊥ ← ◦j1A1 ∧ . . . ∧ ◦
jnAn where

n ≥ 0. Baudinet shows that the expressiveness of TL1 and propositional Templog is the same. On

one hand, Templog clauses of the form �◦i
p ← B can be expressed without using the connective

� by introducing a fresh propositional variable. So that, the above program clause can be expressed

by means of the program clauses {q ← B,� (◦i
p ← q),� (◦q ← q)} where q is fresh. On the

other hand, each element of the form �◦i
p in a body of a clause, can be substituted by a fresh

propositional symbol q and then the clauses that define the meaning of q would be added: {� (q ←

◦i
p),� (q ← ◦q)}. Moreover, Baudinet shows that, for instance, it is possible to define, in TL1,

a predicate that holds exactly when pU q holds, whereas the connective U is not expressible in
temporal logic with only ◦, � and � (see [Kamp 1968]). So that, there are predicates that can be
defined by using TL1 but are inexpressible in temporal logic. Baudinet also shows that, for instance,
the connective � is not expressible in Templog, in the sense that it is not possible to prove � q or
to write a Templog program defining a predicate that would hold exactly when � q holds. This last
result proves that TeDiLog is more expressive than (propositional) Templog, because in TeDiLog
� q can be proved, as has been shown in Example 5.10 (Figure 14).

6.2. Chronolog [Wadge 1988; Orgun 1991; 1995; Gergatsoulis et al. 2000]

In Chronolog ([Wadge 1988; Orgun 1991; 1995]) the only temporal operators are the unary con-
nectives first and next. The connective first serves to refer to the initial state s0. Therefore the
connective � is not needed to differentiate between always- and now-clauses. The TeDiLog now-
clauses p← ◦q, � p← ◦q and p← ◦� q∧r can be expressed in Chronolog as first p← first next q,
p← first next q and first p← next q ∧ first r, respectively. The TeDiLog always-clause � (p← ◦q)
can be expressed in Chronolog as p ← next q. Note that in the Chronolog clauses above, there
is a hidden temporal information not made explicit by means of temporal connectives. Regarding
always-clauses of the form � (� p ← ◦q) and � (s ← � r), the translations pointed out to obtain
TL1 clauses in the previous subsection must be considered for �p and � r. Consequently, intricate
sets of Chronolog clauses are needed for expressing interesting properties. In TeDiLog, the explicit
use of temporal connectives, together with the fact that such connectives are more expressive, fa-
cilitates readability and understanding of program and goal clauses. In [Baudinet 1995], Baudinet
shows –by means of TL1– that Templog and Chronolog have the same expressive power. Hence
Chronolog can be considered as a syntactical variant of Templog. In fact, Templog and Chronolog

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 J. Gaintzarain and P. Lucio

also coincide in the metalogical properties of minimal model existence and fixpoint characterization.
The resolution procedure TiSLD that defines the operational semantics of Chronolog, applies the
resolution rule to rigid instances of program clauses and goal clauses, which are formed by atoms of
the form first nextn p with n ≥ 0. In [Orgun 1995], the inclusion of the temporal connectives � and
� is discussed. However, by taking into account the results presented in [Orgun and Wadge 1992],
and in order to keep the metalogical properties of Chronolog, only the use of � in clause bodies and
� in clause heads is proposed. This extension would yield a language that would be (syntactically)
very similar to Templog. However, the expressive power would remain unchanged. The disjunc-
tive extension presented in [Gergatsoulis et al. 2000] combines Chronolog with the Disjunctive LP
paradigm. Therefore, only the temporal connectives first and next are used and the results obtained
in the Disjunctive Logic Programming paradigm are extended to Disjunctive Chronolog in the same
way that the results obtained in classical Logic Programming are extended to Chronolog.

6.3. Temporal Prolog [Gabbay 1987b]

Gabbay’s Temporal Prolog allows eventuality literals in clause heads but not in clause bodies. In
particular, � is allowed in clause heads but � is not allowed in clause bodies. A program clause is
either a now-clause H ← B or an always clause � (H ← B). The head H is either a classical atom
A or a formula of the form ◦�C where C is a conjunction of now-clauses. The bodyB is a classical
atom A, a conjunction of bodies or a formula of the form ◦�B′ where B′ is a body. A goal clause is
of the form⊥ ← B whereB is a body. Additionally, a connective to express “sometime in the past”
is also used. So that, the clausal form of Gabbay’s Temporal Prolog is more complex than ours. In
particular, the nesting of connectives is not so restricted as in TeDiLog. Although eventuality literals
are allowed in clause heads, the way of dealing with them is very different from our method. For
instance, given a goal of the form⊥ ← ◦� p the resolution procedure tries to find a program clause
whose head is either p or ◦� p. If such clause is found, a forward jump is produced. The resolution
procedure of TeDiLog is based on a state by state forward reasoning and eventualities are dealt with
by means of the context-dependent rules which do not allow to indefinitely postpone the fulfillment
of such eventualities. As mentioned above, unlike in TeDiLog, the connective � is not allowed in
clause bodies, hence TeDiLog is more expressive. For Gabbay’s Temporal Prolog the MMP does
not hold because of the use of eventualities in clauses heads. Additionally, the completeness proof
of the resolution procedure is not provided. The IFT-resolution procedure for TeDiLog is complete.

6.4. MetateM [Barringer et al. 1989]

MetateM programs are sets of clauses in the Separated Normal Form (SNF), where clauses are of
the form ϕ → ψ such that ϕ is a conjunction of propositional literals and ψ is either of the form
�χ –where χ is a propositional literal– or a disjunction of propositional literals prefixed by the
connective ◦. Every PLTL formula can be translated into SNF by introducing, in general, fresh
variables. Although the connective U is not expressible by using � and ◦ in PLTL ([Kamp 1968]),
SNF eliminates the occurrences of U by taking into account that the formulas p ↔ ψ1 U ψ2 and
p↔ (ψ2 ∨ (ψ1 ∧◦p))∧ �ψ2 are equivalent.9 Consequently, a formula and the corresponding SNF
formula are equisatisfiable but, in general, they are not logically equivalent. MetateM is as expres-
sive as TeDiLog and complete for full PLTL. However, MetateM is based on the imperative future
approach and is not based on resolution. Regarding execution, at each step the MetateM execution
procedure must build the next state by choosing to make true one proposition from theψ part of each
clause for which the ϕ part is true in the current state. In this way, a sequence of states is produced
with the aim of building a model for the program. Choices that lead to inconsistency must be re-
paired by means of backtracking, which serves to choose another disjunct from the corresponding ψ
part. Additionally, the finite-model property is used to calculate an upper bound of forward chaining
steps and, in this way, to detect model construction processes where the fulfillment of an eventuality

is being indefinitely delayed. Such upper bound, in the worst case, is 25|Π| where |Π| is the size

9↔ is the classical connective for logical equivalence, i.e., χ1 ↔ χ2 ≡ (χ1 → χ2) ∧ (χ1 ← χ2).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:35

of the initial program Π (see [Barringer et al. 1989] and Subsection 6.2.4 in [Fisher 2011]). The
IFT-resolution procedure underlying TeDiLog does need neither backtracking nor the calculation of
upper bounds to stop derivations. As in TeDiLog, the execution mechanism of MetateM must make
sure that the satisfaction of an eventuality is not continually postponed. For a clause ϕ → ◦� p, it
is possible to make true p or to make true � p in the next state. If there are two clauses of the form
ϕ → ◦� p and ϕ′ → ◦�¬p such that ϕ and ϕ′ are satisfied in every state, it is necessary to satisfy
p and ¬p in an interleaved way. Therefore, fairness is required when deciding which eventuality to
satisfy. This is handled by keeping an ordered list of eventualities (see Subsection 6.2.7 in [Fisher
2011]).

6.5. Clausal Temporal Resolution for PLTL [Fisher 1991]

The clausal temporal resolution method introduced in [Fisher 1991] (see also [Fisher et al. 2001])
is complete for full PLTL. Our clausal normal form is different from the Separated Normal Form
used in that method but the crucial difference of our approach with respect to that method is that
TeDiLog’s resolution mechanism is powerful enough to deal with eventualities without requiring
invariant generation.

7. CONCLUDING REMARKS

TeDiLog is a very expressive resolution-based propositional TLP language with a purely declarative
nature and mathematically defined semantics. In particular, the language TeDiLog is strictly more
expressive than the propositional fragments of the main declarative TLP languages in the literature
([Abadi and Manna 1987; Wadge 1988; Gabbay 1987b; Gergatsoulis et al. 2000]). The most sig-
nificant imperative TLP language MetateM ([Barringer et al. 1989]) is as expressive as TeDiLog.
However, MetateM is a very different approach that is not based on resolution and uses backtrack-
ing.

TeDiLog’s resolution mechanism is powerful enough to deal with eventualities and dispenses
with invariant generation. The latter is a crucial difference of our method with respect to the clausal
resolution method introduced in [Fisher 1991] (see also [Fisher et al. 2001]) which needs to generate
invariant formulas for solving eventualities.

We see TeDiLog as the propositional kernel of a new generation of TLP languages based on the
so-called invariant-free temporal resolution. In this sense we hope that TeDiLog could influence the
design of future TLP languages to incorporate more expressive temporal features and new resolution
procedures for temporal reasoning.

The implementation of TeDiLog remains as future work. At the moment we are adapting a pre-
vious prototype that implements the TRS-resolution method for general clauses (cf. [Gaintzarain
et al. 2013]) to the more restricted IFT-resolution for TeDiLog programs and goals. However, much
experimentation is needed for optimization and improvement.

The worst case complexity for TeDiLog (regarding the generation of a refutation proof) is doubly
exponential (see [Gaintzarain et al. 2013]) but it has been shown (see e.g. [Goranko et al. 2010;
Hustadt and Schmidt 2002]) that in some cases the average performance of a doubly exponential
algorithm can be better than the average performance of an exponential one. The reason is that, in
the former the cases with high complexity rarely occur, while in the latter the cases with exponential
complexity occur very often. The results obtained in the analysis carried out in [Hustadt and Schmidt
1999] give hints about improvements to be considered for a practical implementation. On the other
hand, the possibility of searching for tractable fragments must be considered, as it is done in [Dixon
et al. 2006; Dixon et al. 2000].

It is well known (see [Baudinet 1989a; 1989b; 1992; 1995]) that, although logic programs are
formulas of a given logic, a logic programming language may be in some respects more expressive
than its underlying logic. Intuitively, a logic formula characterizes just the collection of its models
whereas a logic program characterizes the collection of facts that can be inferred from it. The notion
of deduction intervenes and adds the ability to express properties that are not expressible in the
underlying logic. In this sense it would be interesting to compare the expressiveness of TeDiLog to

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Gaintzarain and P. Lucio

other formalisms such as PLTL, automata-theoretic formalisms, quantified PLTL (i.e. QPTL), µTL,
etc.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their comments that were very helpful for shaping the

manuscript.

REFERENCES

Martı́n Abadi and Zohar Manna. 1987. Temporal Logic Programming. In Proceedings of the International Symposium on
Logic Programming. IEEE Computer Society Press, 4–16.

Martı́n Abadi and Zohar Manna. 1989. Temporal logic programming. Journal of Symbolic Computation 8, 3 (September
1989), 277–295.

Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, and Concepción Vidal. 2008. Strongly Equivalent Temporal Logic Pro-
grams. In Proceedings of the 11th European Conference on Logics in Artificial Intelligence (JELIA). LNCS, Vol. 5293.
Springer, 8–20.

Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, and Concepción Vidal. 2011. Loop formulas for splitable temporal logic
programs. In Proceedings of the 11th International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR). LNCS, Vol. 6645. Springer, 80–92.

Philippe Balbiani, Luis Fariñas del Cerro, and Andreas Herzig. 1988. Declarative Semantics for Modal Logic Programs.
In Proceedings of the International Conference on Fifth Generation Computer Systems 1988 (FGCS). OHMSHA Ltd.
Tokyo and Springer-Verlag, 507–514.

Howard Barringer, Michael Fisher, Dov M. Gabbay, Graham Gough, and Richard Owens. 1989. METATEM: A Framework
for Programming in Temporal Logic. In Proceedings of the REX (Research and Education in Concurrent Systems)
Workshop on Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness. LNCS, Vol. 430. Springer,
94–129.

Marianne Baudinet. 1988. On the Semantics of Temporal Logic Programming. Technical Report CS-TR-88-1203. Depart-
ment of Computer Science, Stanford University, California, USA.
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/88/1203/CS-TR-88-1203.pdf.

Marianne Baudinet. 1989a. Logic Programming Semantics: Techniques and Applications. Ph.D. Dissertation. Department of
Computer Science, Stanford University, California, USA.

Marianne Baudinet. 1989b. Temporal Logic Programming is Complete and Expressive. In Proceedings of the 16th Annual
ACM Symposium on Principles of Programming Languages (POPL). ACM Press, 267–280.

Marianne Baudinet. 1992. A Simple Proof of the Completeness of Temporal Logic Programming. In Intensional Logics for
Programming. Oxford University Press, 51–83.

Marianne Baudinet. 1995. On the Expressiveness of Temporal Logic Programming. Information and Computation 117, 2
(1995), 157–180.

Kai Brünnler and Martin Lange. 2008. Cut-Free Sequent Systems for Temporal Logic. Journal of Logic and Algebraic
Programming 76, 2 (July-August 2008), 216–225.

Christoph Brzoska. 1991. Temporal Logic Programming and its Relation to Constraint Logic Programming. In Proceedings
of the International Symposium on Logic Programming (ISLP). MIT Press, 661–677.

Christoph Brzoska. 1993. Temporal Logic Programming with Bounded Universal Modality Goals. In Proceedings of the
10th International Conference on Logic Programming (ICLP). MIT Press, 239–256.

Christoph Brzoska. 1995a. Temporal Logic Programming in Dense Time. In Proceedings of the International Logic Pro-
gramming Symposium (ILPS). MIT Press, 303–317.

Christoph Brzoska. 1995b. Temporal Logic Programming with Metric and Past Operators. In Proceedings of the IJCAI’93
Workshop on Executable Modal and Temporal Logics. LNCS, Vol. 897. Springer, 21–39.

Christoph Brzoska. 1998. Programming in Metric Temporal Logic. Theoretical Computer Science 202, 1-2 (July 1998),
55–125.

Christoph Brzoska and Karl Schäfer. 1995. Temporal Logic Programming Applied to Image Sequence Evaluation. In Logic
Programming: Formal Methods and Practical Applications. Elsevier Science B.V./North-Holland, 381–395.

Antonio Cau, Hussein Zedan, Nick Coleman, and Ben C. Moszkowski. 1996. Using ITL and Tempura for Large-Scale
Specification and Simulation. In Proceedings of the 4th Euromicro Workshop on Parallel and Distributed Processing

(PDP). IEEE Computer Society Press, 493–500.

Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. 1986. Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems 8, 2 (April 1986),
244–263.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:37

Edmund M. Clarke, Orna Grumberg, and Doron Peled. 2001. Model checking. MIT Press.

Clare Dixon and Michael Fisher. 1998. The Set of Support Strategy in Temporal Resolution. In Proceedings of the 5th
International Workshop on Temporal Representation and Reasoning (TIME). IEEE Computer Society Press, 113–120.

Clare Dixon, Michael Fisher, and Boris Konev. 2006. Is There a Future for Deductive Temporal Verification?. In Proceedings
of the 13th International Symposium on Temporal Representation and Reasoning (TIME). IEEE Computer Society
Press, 11–18.

Clare Dixon, Michael Fisher, and Mark Reynolds. 2000. Execution and proof in a Horn-clause temporal logic. In Advances

in Temporal Logic. Kluwer Academic Publishers, 413–433.

Zhenhua Duan, Xiaoxiao Yang, and Maciej Koutny. 2005. Semantics of Framed Temporal Logic Programs. In Proceedings

of the 21st International Conference on Logic Programming (ICLP). LNCS, Vol. 3668. Springer, 356–370.

Zhenhua Duan, Xiaoxiao Yang, and Maciej Koutny. 2008. Framed temporal logic programming. Science of Computer Pro-

gramming 70, 1 (January 2008), 31–61.

Luis Fariñas del Cerro. 1986. MOLOG: A System that Extends PROLOG with modal logic. New Generation Computing 4
(1986), 35–50.

Michael Fisher. 1991. A Resolution Method for Temporal Logic. In Proceedings of the 12th International Joint Conference

on Artificial Intelligence (IJCAI). Morgan Kaufmann, 99–104.

Michael Fisher. 1992. A Normal Form for First-Order Temporal Formulae. In Proceedings of the 11th International Confer-

ence on Automated Deduction (CADE). LNCS, Vol. 607. Springer, 370–384.

Michael Fisher. 1993. Concurrent MetateM – A Language for Modeling Reactive Systems. In Proceedings of the Conference

on Parallel Architectures and Languages, Europe (PARLE). LNCS, Vol. 694. Springer, 185–196.

Michael Fisher. 1997. Implementing BDI-like Systems by Direct Execution. In Proceedings of the 15th International Joint

Conference on Artificial Intelligence (IJCAI), Vol. 1. Morgan Kaufmann, 316–321.

Michael Fisher. 2011. An Introduction to Practical Formal Methods Using Temporal Logic. John Wiley & Sons, Ltd.

Michael Fisher, Clare Dixon, and Martin Peim. 2001. Clausal temporal resolution. ACM Transactions on Computational
Logic 2, 1 (January 2001), 12–56.

Michael Fisher and Chiara Ghidini. 2010. Executable specifications of resource-bounded agents. Autonomous Agents and

Multi-Agent Systems 21, 3 (November 2010), 368–396.

Thom W. Frühwirth. 1994. Annotated Constraint Logic Programming Applied to Temporal Reasoning. In Proceedings of

the 6th International Symposium on Programming Language Implementation and Logic Programming (PLILP). LNCS,
Vol. 844. Springer, 230–243.

Thom W. Frühwirth. 1995. Temporal Logic and Annotated Constraint Logic Programming. In Proceedings of the IJCAI’93
Workshop on Executable Modal and Temporal Logics. LNCS, Vol. 897. Springer, 58–68.

Thom W. Frühwirth. 1996. Temporal Annotated Constraint Logic Programming. Journal of Symbolic Computation 22, 5/6
(November/December 1996), 555–583.

Masahiro Fujita, Shinji Kono, Hidehiko Tanaka, and Tohru Moto-Oka. 1986. Tokio: Logic Programming Language Based
on Temporal Logic and its Compilation to Prolog. In Proceedings of the 3rd International Conference on Logic Pro-
gramming (ICLP). LNCS, Vol. 225. Springer, 695–709.

Dov M. Gabbay. 1987a. The Declarative Past and Imperative Future: Executable Temporal Logic for Interactive Systems. In
Proceedings of the Colloquium on Temporal Logic in Specification. LNCS, Vol. 398. Springer, 409–448.

Dov M. Gabbay. 1987b. Modal And Temporal Logic Programming. In Temporal Logics And Their Application. Academic
Press, 197–237.

Jose Gaintzarain, Montserrat Hermo, Paqui Lucio, Marisa Navarro, and Fernando Orejas. 2009. Dual Systems of Tableaux
and Sequents for PLTL. The Journal of Logic and Algebraic Programming 78, 8 (November 2009), 701–722.

Jose Gaintzarain, Montserrat Hermo, Paqui Lucio, Marisa Navarro, and Fernando Orejas. 2013. Invariant-Free Clausal Tem-
poral Resolution. Journal of Automated Reasoning 50, 1 (January 2013), 1–49.

Jose Gaintzarain and Paqui Lucio. 2009. A New Approach to Temporal Logic Programming. In Proceedings of the 9th
Spanish Conference on Programming and Languages (PROLE). 341–350.
http://www.sistedes.es/ficheros/actas-conferencias/PROLE/2009.pdf.

Manolis Gergatsoulis. 2001. Temporal and Modal Logic Programming Languages. In Encyclopedia of Microcomputers,
Vol. 27. CRC Press, 393–408.

Manolis Gergatsoulis, Panos Rondogiannis, and Themis Panayiotopoulos. 2000. Temporal Disjunctive Logic Programming.
New Generation Computing 19, 1 (December 2000), 87–102.

Valentin Goranko, Angelo Kyrilov, and Dmitry Shkatov. 2010. Tableau Tool for Testing Satisfiability in LTL: Implementa-
tion and Experimental Analysis. In Proceedings of the 6th Workshop on Methods for Modalities. Electronic Notes in
Theoretical Computer Science, Vol. 262. Elsevier, 113–125.

Tomas Hrycej. 1988. Temporal Prolog. In Proceedings of the 8th European Conference on Artificial Intelligence (ECAI).
Pitmann Publishing, 296–301.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 J. Gaintzarain and P. Lucio

Tomas Hrycej. 1993. A Temporal Extension of Prolog. Journal of Logic Programming 15, 1 & 2 (January 1993), 113–145.

Ullrich Hustadt and Renate A. Schmidt. 1999. An empirical analysis of modal theorem provers. Journal of Applied Non-
Classical Logics 9, 4 (1999), 479–522.

Ullrich Hustadt and Renate A. Schmidt. 2002. Scientific Benchmarking with Temporal Logic Decision Procedures. In Pro-
ceedingsof the 8th International Conference on Principles and Knowledge Representation and Reasoning (KR). Morgan
Kaufmann, 533–544.

Johan Anthony Willem Kamp. 1968. Tense Logic and the Theory of Linear Order. Ph.D. Dissertation. Department of Com-
puter Science, University of California at Los Angeles, California, USA.

Bronislaw Knaster. 1928. Un théorèm sur les fonctions d’ensembles. Annales de la Société Polonaise de Mathematique 6
(1928), 133–134.

Shinji Kono. 1995. A Combination of Clausal and Non Clausal Temporal Logic Programs. In Proceedings of the IJCAI’93

Workshop on Executable Modal and Temporal Logics. LNCS, Vol. 897. Springer, 40–57.

Shinji Kono, T. Aoyagi, Masahiro Fujita, and Hidehiko Tanaka. 1985. Implementation of Temporal Logic Programming
Language Tokio. In Proceedings of the 4th Conference on Logic Programming (LP). LNCS, Vol. 221. Springer, 138–
147.

John W. Lloyd. 1984. Foundations of Logic Programming, 1st Edition. Springer.

Jorge Lobo, Jack Minker, and Arcot Rajasekar. 1992. Foundations of disjunctive logic programming. MIT Press.

Stephan Merz. 1992. Decidability and incompleteness results for first-order temporal logics of linear time. Journal of Applied
Non-Classical Logics 2, 2 (1992), 139–156.

Stephan Merz. 1995. Efficiently Executable Temporal Logic Programs. In Proceedings of the IJCAI’93 Workshop on Exe-
cutable Modal and Temporal Logics. LNCS, Vol. 897. Springer, 69–85.

Ben C. Moszkowski. 1986. Executing temporal logic programs. Cambridge University Press.

Ben C. Moszkowski.1998. Compositional Reasoning Using Interval Temporal Logic and Tempura. In Compositionality: The
Significant Difference. International Symposium, COMPOS’97. Revised Lectures. LNCS, Vol. 1536. Springer, 439–464.

Hiroshi Nakamura, Masaya Nakai, Shinji Kono, Masahiro Fujita, and Hidehiko Tanaka. 1989. Logic Design Assistance
Using Temporal Logic Based Language Tokio. In Proceedings of the 8th Conference on Logic Programming (LP).
LNCS, Vol. 485. Springer, 174–183.

Linh Anh Nguyen. 2000. Constructing the least models for positive modal logic programs. Fundamenta Informaticae 42, 1
(March 2000), 29–60.

Linh Anh Nguyen. 2003. A fixpoint semantics and an SLD-resolution calculus for modal logic programs. Fundamenta

Informaticae 55, 1 (2003), 63–100.

Linh Anh Nguyen. 2006. Multimodal logic programming. Theoretical Computer Science 360, 1-3 (August 2006), 247–288.

Linh Anh Nguyen. 2009. Modal logic programming revisited. Journal of Applied Non-Classical Logics 19, 2 (2009), 167–
181.

Mehmet A. Orgun. 1991. Intensional Logic Programming. Ph.D. Dissertation. Department of Computer Science, University
of Victoria, British Columbia, Canada.

Mehmet A. Orgun. 1994. Temporal and Modal Logic Programming: An Annotated Bibliography. SIGART Bulletin 5, 3 (July
1994), 52–59.

Mehmet A. Orgun. 1995. Foundations of linear-time logic programming. International Journal of Computer Mathematics
58, 3-4 (1995), 199–219.

Mehmet A. Orgun and Wanli Ma. 1994. An Overview of Temporal and Modal Logic Programming. In Proceedings of the
1st International Conference on Temporal Logic (ICTL). LNCS, Vol. 827. Springer, 445–479.

Mehmet A. Orgun and William W. Wadge. 1992. Towards a Unified Theory of Intensional Logic Programming. Journal of
Logic Programming 13, 4 (August 1992), 413–440.

Mehmet A. Orgun and William W. Wadge. 1994. Extending Temporal Logic Programming with Choice Predicates Non-
Determinism. Journal of Logic and Computation 4, 6 (December 1994), 877–903.

Mehmet A. Orgun, William W. Wadge, and Weichang Du. 1993. Chronolog (Z): Linear-Time Logic Programming. In Pro-
ceedings of the 5th International Conference on Computing and Information (ICCI). IEEE Computer Society Press,
545–549.

Barbara Paech. 1988. Gentzen-Systems for Propositional Temporal Logics. In Proceedingsof the 2nd Workshop on Computer

Science Logic (CSL). LNCS, Vol. 385. Springer, 240–253.

Regimantas Pliuskevicius. 1991. Investigation of Finitary Calculus for a Discrete Linear Time Logic by means of Infinitary
Calculus. In Baltic Computer Science, selected papers. LNCS, Vol. 502. Springer, 504–528.

Regimantas Pliuskevicius. 1992. Logical Foundation for Logic Programming Based on First Order Linear Temporal Logic.
In Proceedings of the First (1990) and Second (1991) Russian Conference on Logic Programming (RCLP). LNCS, Vol.
592. Springer, 391–406.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Logical Foundations for More Expressive Declarative Temporal Logic Progr. Languages A:39

Alessandra Raffaetà and Thom W. Frühwirth. 1999. Two semantics for temporal annotated constraint logic programming. In
Proceedingsof the 12th International Symposium on Languages for Intensional Programming (ISLIP). World Scientific
Press, 126–140.

Han Reichgelt. 1987. Semantics for reified temporal logic. In Advances in Artificial Intelligence. John Wiley & Sons, Ltd.,
49–61.

Panos Rondogiannis, Manolis Gergatsoulis, and Themis Panayiotopoulos. 1997. Cactus: A Branching-Time Logic Program-
ming Language. In Proceedings of the 1st International Joint Conference on Qualitative and Quantitative Practical
Reasoning (ECSQARU-FAPR). LNCS, Vol. 1244. Springer, 511–524.

Panos Rondogiannis, Manolis Gergatsoulis, and Themis Panayiotopoulos. 1998. Branching-Time Logic Programming: The
Language Cactus and its Applications. Computer Languages 24, 3 (1998), 155–178.

Takashi Sakuragawa. 1986. Temporal Prolog. Technical Report. Kyoto University.
http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/99379/1/0586-16.pdf.

Uwe Schöning. 1989. Logic for Computer Scientists. Birkhäuser.

Yoav Shoham. 1986. Reified Temporal Logics: Semantical and Ontological Considerations. In Proceedings of the 7th Euro-
pean Conference on Artificial Intelligence (ECAI). North-Holland, 183–190.

A. Prasad Sistla and Edmund M. Clarke. 1985. The Complexity of Propositional Linear Temporal Logics. J. ACM 32, 3 (July
1985), 733–749.

Andrzej Szalas. 1995. Temporal Logic of Programs: A Standard Approach. In Time and Logic. A Computational Approach.
UCL Press Ltd., 1–50.

Andrzej Szalas and Leszek Holenderski. 1988. Incompleteness of First-Order Temporal Logic with Until. Theoretical Com-
puter Science 57 (1988), 317–325.

Chih-Sung Tang. 1983. Toward a Unified Logical Basis for Programming Languages. In Proceedings of the 9th World
Computer Congress on Information Processing (IFIP–International Federation for Information Processing). North-
Holland/IFIP, 425–429.

Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its application. Pacific J. Math. 5 (1955), 285–309.

William W. Wadge. 1988. Tense logic programming: a respectable alternative. In Proceedingsof the International Symposium
on Lucid and Intensional Programming. 26–32.

Xiaoxiao Yang and Zhenhua Duan. 2008. Operational Semantics of Framed Tempura. The Journal of Logic and Algebraic
Programming 78, 1 (November 2008), 22–51.

Xiaoxiao Yang, Zhenhua Duan, and Qian Ma. 2010. Axiomatic semantics of projection temporal logic programs. Mathemat-
ical Structures in Computer Science 20, 5 (October 2010), 865–914.

Received January 2012; revised Month 2012; accepted Month 2012

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

