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Abstract. The semantic constructions and results for definite programs do not
extend when dealing with negation. The main problem is related to a well-known
problem in the area of algebraic specification: if we fix a constraint domain as
a given model, its free extension by means of a set of Horn clauses defining a
set of new predicates is semicomputable. However, if the language of the exten-
sion is richer than Horn clauses its free extension (if it exists) is not necessarily
semicomputable. In this paper we present a framework that allows us to deal with
these problems in a novel way. This framework is based on two main ideas: a
reformulation of the notion of constraint domain and a functorial presentation
of our semantics. In particular, the semantics of a logic progpamdefined in
terms of thredunctors (OPp,ALGp, LOGp) that apply to constraint domains
and provide the operational, the least fixpoint and the logical semantiPs of
respectively. To be more concrete, the idea is that the applicatianPgfto a
specific constraint solver, provides the operational semantiestioat uses this
solver; the application ofl L G to a specific domain, provides the least fixpoint

of P over this domain; and, the application 60, to a theory of constraints,
provides the logic theory associateddn this context, we prove that these three
functors are in some sense equivalent.

1 Introduction

Constraint logic programming was introduced in ([9]) as a powerful and conceptually
simple extension of logic programming. Following that seminal paper, the semantics
of definite (constraint) logic programs has been studied in detail (see, e.g. [10], [11]).
However, the constructions and results for definite programs do not extend when deal-
ing with negation. The main problem is related to a well-known problem in the area of
algebraic specification: if we fix a constraint domain as a given model, its free extension
by means of a set of Horn clauses defining a set of new predicates is semicomputable.
However, if the language of the extension is richer than Horn clauses its free extension
(if it exists) is not necessarily semicomputable ([8]). Now, when working without nega-
tion we are in the former case, but when working with negation we are in the latter case.
In particular, this implies that the results about the soundness and completeness of the



operational semantics with respect to the logical and algebraic semantics of a definite
constraint logic program do not extend to the case of programs with negation, except
when we impose some restrictions to these programs.

The only approach that we know that has dealt with this problem is ([19]). In that
paper, Stuckey presents one of the first operational semantics which is proven com-
plete for programs that include (constructive) negation. Although we use a different
operational semantics, that paper has had an important influence in our work on nega-
tion. The results in ([19]) were very important when applied to the case of standard
(non-constrained) logic programs because they provided some good insights about con-
structive negation. However, the general version (i.e., logic programs over an arbitrary
constraint domain) is not so interesting (in our opinion). The reason is that the com-
pleteness results are obtained only for programs aderissibleconstraints. We think
that this restriction on the constraints that can be used in a program is not properly
justified.

In our opinion, the problem when dealing with negation is not on the class of con-
straints considered, but rather, in the notion of constraint domain used. In particular,
we argue that the notion of constraint domain used in the context of definite programs
is not adequate when dealing with negation. Instead, we propose and justify a small
reformulation of the notion of constraint domain. To be precise, we propose that a do-
main should be defined in terms of a class of elementarily equivalent models and not in
terms of a single model. With this variation we are able to show the equivalence of the
logical, operational, and fixpoint semantics of programs with negation without needing
to restrict the class of constraints.

The logical semantics that we have used is the standard Clark-Kunen 3-valued com-
pletion of programs (see, e.g. [19]). The fixpoint semantics that we are using is a vari-
ation of other well-known fixpoint semantics used to deal with negation ([5, 19, 6, 15]).
Finally, the operational semantics that we are using is an extension of a semantics called
BCN that we have defined in previous work ([16]) for the case of programs without con-
straints. The main reason for using this semantics and not Stuckey’s semantics is that
our semantics, is in our opinion, simpler. This implies having simpler proofs for our
results. In particular, we do not claim that our semantics is better than Stuckey’s (nor
that it is worse). A proper comparison of these two semantics and of others like [5, 6]
would need experimental work. We have a prototype implementation of BCN ([1]), but
we do not know if the other approaches have been implemented. Anyhow, the pragmatic
virtues of the various operational approaches to constructive negation are not a relevant
issue in this paper.

In addition, our semantics is functorial. We consider that a constraint logic program
is a program that is parameterized by the given constraint domain. Then, we think that
the semantics of a program should be some kind of mapping. However, we also think
that working in a categorical setting provides some additional advantages that are shown
in the paper.

The paper is organized as follows. In the following section we give a short intro-
duction to the semantics of (definite) constraint logic programs. In Section three, we
discuss the inadequacy of the standard notion of constraint domain when dealing with
negation and propose a new one. In Section four we study the semantics of programs



when defined over a given arbitrary constraint domain. Then, in the following section
we define several categories for defining the various semantic domains involved and
define the functorial semantics of logic programs. Finally, in Section 6 we prove the
equivalence of the logical, fixpoint and operational semantics.

Due to lack of space, the paper includes no proofs. However, the detailed proofs
can be found at our web page:€p://www.lsi.upc.edu/ orejas/)in the extended
version of the paper.

2 Preliminaries

2.1 Basic Notions and Notation

A signatureX consists of a pair of se{$ Sz, PS) of function and predicates symbols,
respectively, with some associated arfiy{X) denotes the set of difst-orderZ-terms
over variables fronX, andTs denotes the set of all ground terms. A literal is either an
atomp(ty,...,tn) (namely a positive literal) or a negated atem(t, ...,t,) (hamely a
negative literal). The sdtorms is formed by allfirst-order Z-formulaswritten (from
atoms) using connectives A, V, —, «> and quantifiery/, 3. We denote byfreg($) the
set of all free variables occurring i ¢(X) specifies thafree(¢p) C X. Sent is the set
of all ¢ € Forms such thatfree(¢) = 0, calledZ-sentences. Bp">Z (resp.¢™>?) we
denote the formulax; ... VX, (¢) (resp.3xq ... Ixa(§)), wherex; ... X, are the variables
in free() \ z In particular, the universal (resp. existential) closure, thétis? (resp.
$>9) is denoted by (resp.¢”).

To define the semantics of normal logic programs and their completion, it becomes
necessary to use a concretgee-valuedextension of the classical two-valued inter-
pretation of logical symbols. The connectivesA,V and quantifiersY(, 3) are inter-
preted as in Kleene’s logic ([12]). However; is interpreted as the identity of truth-
values (hences is two-valued) Moreover, to maké < U logically equivalent to
(6 — W) A (U — @), Przymusinski’s interpretation ([17]) of is required. It is also
two-valued and gives the valueexactly in the following three cases:— £, t — u
andu — f. Equality is two-valued also. Following [3], it is easy to see that the above
detailed three-valued logic satisfies (as classical first-order logic does) all of the basic
metalogical propertiesn particular completeness and compactness.

A three-valuedz-structure, 4, consists of a universe of valués and an interpre-
tation of every function symbol by a total function (of adequate arity), and of every
predicate symbol by a total function on the set of the three boolean vidugs } (i.e.,

a partial relation). Hence, terms cannot be undefined, but atoms can be interpreted as
u. Classical (two-valued) first-ordérstructures can be seen as a special case of three-
valued ones, where every predicate symbol is interpreted by a total relsléeiz. de-

notes the set of all three-valu@astructures. A>-structureq € Mods is a model of (or
satisfies) a set of sentencésif, and only if, 4(¢) = t for any sentence € ®. This

is also denoted bya |= ®. We will denote by4 |=; ® that 4 satisfies the sentence
o(d), resulting from the valuatioo : free(®) — 4 of the formula®. Given a setb

of Z-sentenceMods (®) is the subclass dflods formed by the models ap. Logical
consequenc® = ¢ means that? = ¢ holds for all.4 € Mods(®). We say that two



3-structuresq and‘B areelementarily equivalentienotedq ~ B if 4(¢) = B(¢) for
every first-ordez-sentence. We denote bEQ( ) the set of all-structures that are
elementarily equivalent tdl.

A Z-theoryis a set ofz-sentences closed under logical consequence. A theory can
be presentedemanticallyor axiomatically A semantic presentation is a claSof -
structures. Then, the theory semantically presented lg/the set of alk-sentences
which are satisfied by

Th(C)={¢ €Sent| forall 2¢ C 4(¢p) =t}

An axiomaticpresentation is a decidable set of axiofksC Seng. Then, the theory
axiomatically presented b4xis the set of all logical consequencesfof

Th(AX) = {¢ € Sent | Ax= ¢}

A Z-theoryT is said to becompleteif, and only if, & € 7 or —=¢ € T holds for every
>-sentence.

Example 1 Given a signatur&, the free-equality theor§f £4(Z) is complete and can
be presented by the following axioms:

(1) x(x=x)

2)Vxvy(x=y < f(X)=f(y)) foreach fe FS

() YXvy(x=y — (p(X) < p(y))) foreach pc P (in part. =)

(4) VRvy—(f(X) =9g(y)) foreach pair fgec FS such that f£ g

(5) Vx—~(x=t) foreach te Ts(X) and xe X such that > var(t) and x£t.

(6) VX(Vers, I9(x = f(v))) if Zis finite.  m

2.2 Constraint Domains

A constraint logic program can be seen as a program where some function and predicate
symbols have a predefined meaning on a given domain, called the constraint domain.
To be more precise, a constraint domain determines the interpretation of the given pre-
defined symbols. In particular, according to the standard approach for defining the class
of CLP(X) programs ([10], [11]), a constraint domalhconsists of five parts:

X = (Z)O Ly, AXx, @x7SO|VX)

whereXy = (FSx,PSy) is the constraint signature, i.e., the set of symbols that are
considered to be predefinedy is the constraint language, i.e., the clasE gfformulas

that can be used in progran®y is the domain of computation, i.e., a model defining

the semantics of the symbols Ky ; Axy is an axiomatization of the domain, i.e., a
decidable set oEx-sentences such thdly |= Axx; and, finally,solvy is a constraint
solver, i.e., an oracle that answers queries about constraints and that is used for defining
the operational semantics of programs. In general, constraint solvers are expected to
solve constraints, i.e., given a constrainbne would expect that the solver will provide

the values that satisfy the constraint or that it returns an equivalent constragivéau

form. However, in our case, we just need the solver to answer (un)satisfiability queries.



We consider that, given a constramtsolvy(c) may returnF, meaning that is not
satisfiable or it may answer meaning that is valid in the constraint domain, i.e., that
—cis unsatifiable. The solver may also answeneaning that either the solver does not
know the right answer or that the constraint is neither valid nor unsatifiable.

In addition, a constraint domaiki must satisfy:

— T,F,t1 =tz € Lx (hence the equality symbet belongs toPSy) and Ly is closed
under variable renaming, existential quantification and conjunction. Moreover, the
equality symbok= is interpreted as the equality b, andAxy includes the equal-
ity axioms for=.

— The solver does not take variable names into account, that is, for all renamings
solvy(c) = solvx(p(c))

— Axy, Dx andsolvy agree in the sense that:

1. Dy is a model ofAxy.
2. Forallce LxNnSeng,: solvy(c) =T = Axy [=C.
3. Forallce LxNSeng,: solvy(C) =F = Axy = —C.

Moreover,solvy must be well-behaved, i.e., for any constraimtandc,:

1. solvy(c1) = solvx(cz) if = c1 < Co.
I free(cy)

2. If solvy(c1) =Fandj=cy G, thensolvy(c2) =F.
In what follows, a constraint domaili = (Zx, Lx,Axx, Dx,solvy) will be called
a(Zx, Lx)-constraint domain.

2.3 Constraint Logic Programs

A constraint logic program over @, Lx )-constraint domaitX can be seen as a gen-
eralization of a definite logic program. In particular, a constraint logic program consists
of rulesp: — q,...,gn, Where eacly; is either an atom or a constraintity. and where
atoms have the form(ty, . ..,t,) whereq is a user-defined predicate and...,t, are
terms ovelZx. A constraint logic program rule

p(ty,...,th) : — q1,..-,0n

can be written, equivalently, in flat form

p(xlv"wxn) : _qlv"‘vqul:tlwuxl‘l:tn

whereXs, ..., X, are fresh new variables. In what follows we will assume that constraint
logic programs consist only of flat rules. We will also assume that the rules are written
as follows:

p:—di,...,0n0CL, ..., Cm
where theq, ..., q, are atoms and they, ..., cy, are constraints. Moreover we will also

assume that all clauses defining the same predipat@ve exactly the same head
p(Xl,...,me



The semantics of &y, Lx)-logic programP can be also seen as a generalization
of the semantics of a (hon-constrained) logic program. In particular, in [10, 11], the
meaning ofP is given in terms of the usual three kinds of semantics.

Theoperational semanticis defined in terms of finite or infinite derivations

S S G

where the state§ in these derivations are tupl€3oC;, whereG; is a goal (i.e., a
sequence of atoms) alis a sequence of constraints (actually a constraint, since con-
straints are closed under conjunction). In particular, from a SateGoC we can de-

rive the stateS8 = G'oC' if there is an atonp(ty, ...,ty) in G, and a rulep(Xy, ..., %) :

— GouCo, WhereXy, ..., X, are fresh new variables not occurring @uC, such that

G =< Gy, (G\p(ty,...,tn)) > andC’' =< C,Cy, X1 = t1,... Xy =t > is satisfiable.
Then, given a derivatioly; ~ S ~ ... ~ §,, with §, = G,oC,, we say thaC, is

an answer to the que§; = G1oC; if Gy is the empty goal.

Thelogical semantic®f P is defined as the theory presentedmy Axy.

Finally its algebraic semanticsV (P, X), is defined as the least model®Extend-
ing Dy, in the sense that this model agrees wik in the corresponding universe of
values and in the interpretation of the symbol&jn It may be noted thaf-structures
extendingDy can be seen as subsetBafse:(Dy ), whereBase(Dy) is the set of all
atoms of the formp(a,...,0n), wherep is a user-defined predicate and ..., a,, are
values inDy.

As in the standard case, the algebraic semantid® cdn be defined as the least
fixpoint of the immediate consequence operdidr: 2825®(Px) _, 2Base(Dx) defined
as follows:

T5(1) = {o(p) | o: free(p) — Dy is a valuation(p:—anc) € P, | 5 @aandDy =¢ C}
In [11] it is proved that the above three semantics are equivalent in the sense that:

— The operational semantics is sound with respect to the logical semantics. That is, if
a goal G has answer c then
PUAXx Ec— G

— The operational semantics is also sound with respect to the algebraic semantics.
That is, if a goal G has answer c then

M(PX)Ec— G
— The operational semantics is complete with respect to the logical semantics. That
is, if
PUAXx Fc— G
thenG has answers;,...,C, such that
Axy Ec—ciVv...Ve,
— The operational semantics is complete with respect to the algebraic semantics. That
is, if
M(P.X) o G
whereo : free(G) — Dy is a valuation, thei® has an answersuch that

@X ):o'c



2.4 A functorial semantics for constraint logic programs

The semantic definitions sketched in the previous subsection are, in our opinion, not
fully satisfactory. On one hand, a constraint logic program can be seen as a logic pro-
gram parameterized by the constraint domain. Then, we think that its semantics should
also be parameterized by the domain. This is not explicit in the semantics sketched
above. On the other hand, we think that the formulation of some of the previous equiva-
lence results could be found to be, in some sense, not fully satisfactory. Let us consider,
for instance, the last result, i.e., the completeness of the operational semantics with re-
spect to the algebraic semantics. In our opinion, a fully satisfactory result would have
said something like:

if M(P, X) =6 G whereo : free(G) — Dy is a valuation, then G has an answer c such
that solv(c) #F

However this property will not hold unless the constraint sobawy is also com-
plete with respect to the computation domain. A similar situation would occur with the
result stating the completeness of the operational semantics with respect to the logical
semantics. In that case we would need thatghley is complete with respect to the
domain theory.

In our opinion, each of the three semantics (logical, algebraic and operational se-
mantics) of a constraint logic program should be some kind of mapping. Moreover, we
can envision that the parameters of the logical definitions would be constraint theo-
ries. Similarly, the parameters for algebraic definitions would be computation domains.
Finally, the parameters for the operational definitions would be constraint solvers.

In this context, proving the soundness and completeness of one semantics with re-
spect to another one would mean comparing the corresponding mappings. In particular,
a given semantics would be sound and complete with respect to another one if the two
semantic mappings are in some sense equivalent. Or, in more detail, if the two map-
pings when applied to the same (or equivalent) argument return an equivalent result.
On the other hand, we believe that these mappings are better studied if the given do-
mains and codomains are not just sets or classes but categories, which means taking
care of their underlying structure. As a consequence, these mappings would be defined
as functors and not just as plain set-theoretic functions, which means that they must be
structure-preserving mappings.

In Section 5 the above ideas are fully developed for the case of constraint normal
logic programs. Then, the case of constraint logic programs can be seen as a particular
case.

3 Domain constraints for constraint normal logic programs

In this section, we provide a notion of constraint domain for constraint normal logic
programming. The idea, as discussed in the introduction, is that this notion, together
with a proper adaptation of the semantic constructions used for (unconstrained) nor-
mal logic programs, will provide an adequate semantic definition for constraint normal



logic programs. In particular, the idea is that the logical semantics of a program should
be given in terms of the (3-valued) Clark-Kunen completion of the program, the op-
erational semantics in terms of some form of constructive negation [19, 5, 6], and the
algebraic semantics in terms of some form of fixpoint construction (as, for example, in
[19, 6, 15)).

The main problem is that a straightforward extension (as it may be just the inclu-
sion of negated atoms in the constraint languages) of the notion of constraint domain
introduced in Subsection 2.2 will not work, as the following example shows.

Example 2 Let P be the CLPY() program:

9(z): —oz=0
g(v) : — g(x)ov=x+1

and assume that its logical semantics is given by its completion:
Vz(q(z) < (z=0V IX(q(X) AVv=x+1))).

This means, obviously, thatm should hold for every n. Actually, the model defined
by the algebraic semantics seen in Subsection 2.2 would setigfy).
Now consider that P is extended by the following definitions:

= —a(x)
S:—r

whose completion is:
(r = 3x(=q(x))) A (s ).

Now, the operational semantics, and also théteration of the Fitting’s operator
[7], would correspond to a three-valued structure extendiggwhere both r and s are
undefined and where, as befor¢ngholds for every n. Unfortunately, such a structure
would not be a model of the completion of the program since this structure satisfies
Vzq(z) but it does not satisfy eithefrors. ®

The problem with the example above is that, if the algebraic semantics is defined by
means of thev-iteration of an immediate consequence operator, then, in many cases, the
resulting structure would not be a model of the completion of the program. Otherwise,
if we define the algebraic semantics in terms of some least (with respect to some order
relation) model of the completion extendirg, then, in many cases, the operational
semantics would not be complete with respect to that model. Actually, in some cases
this model could be non (semi-)computable ([2], [8]).

The situation could be considered similar to what happens in the case of (non-
constrained) normal logic programs, where the least fixpoint of Fitting’s operator may
not agree with the operational semantics of a given program. However, the situation is
worse in the current case. On one hand, in the non-constrained case one may define
other immediate consequence operators (e.g. [6, 15]) whose least fixpoint is equivalent
to the operational semantics of a given program and provides a model of the 3-valued
completion of the program. Unfortunately these operators would not be adequate in the



constrained case. For instance, in the example above they would build models which
are not extensions of’. On the other hand, if when defining the logical semantics of

a program we restrict our attention to the structures extengin@e., if we consider

that the class of models of a progrd®ris the class of all 3-valued structures satisfy-
ing ComgP) and extending\() then we cannot expect the operational semantics to be
complete with respect to the logical consequences of this class of models.

In our opinion, the problem is related to the following observation. Let us sup-
pose, in the example above, that the computation domain would have been any other
algebra which is elementarily equivalent to the algebra of the natural numbers, instead
of A( itself. Then, no difference should have been noticed, since both algebras satisfy
exactly the same constraints, i.e., we may consider that two structures that are elemen-
tarily equivalent should be considered indistinguishable as domains of computation for
a given constraint domain. As a consequence, we may consider that the semantics of
a program over two indistinguishable constraint domains should also be indistinguish-
able. However, ifX = (Z, £,Ax, D, solv) andx’ = (Z, £, Ax,D’, solv) are two constraint
domains such thdd andD’ are elementarily equivalent afds a(Z, £)-program, then
M(P,X) andM (P, X") are not necessarily elementarily equivalent. In particular if we
consider the prograr® of Example 2 and we consider as constraint domain a non-
standard model of the natural numbe¢s, then we would have thall (P, ) |= vVzq(2)
butM(P,A") £ Vz(z).

In this sense, we think that this problem is caused by considering that the domain of
computationDy, of a constraint domain is a single structure. In the case of programs
without negation this apparently works fine and it seems quite reasonable from an intu-
itive point of view. For instance, if we are writing programs over the natural numbers,
it seems reasonable to think that the computation domain is the algebra of natural num-
bers. However, when dealing with negation, we think that the computation domain of
a constraint domain should be defined in terms of the class of all the structures which
are elementarily equivalent to a given one. To be precise, we reformulate the notion of
constraint domain as follows:

Definition 3 A constraint domair is a 5-tuple:

X = (Z_X',L_X7AX_X, Domx,SO|Vx)

whereXx = (FSx,PSy) is the constraint signaturefx is the constraint language,
Domy = EQ(Dy) is the domain of computation, i.e., the class of of2aftstructures
which are elementarily equivalent to a given structdg, Axy is a decidable set of
> x-sentences such thdly = Axy, and soly is a constraint solver, such that:

— T,F,t1 =t2 € Ly (hence the equality symbelbelongs to Pg) and Ly is closed un-
der variable renaming, existential quantification, conjunction and negation. More-
over, the equality symbet is interpreted as the equality in Dgpand Ax, includes
the equality axioms fot.
— The solver does not take variable names into account, that is, for all variable re-
namingsp, solvy(c) = solvyx(p(c))
— Axyx,Domy and soly agree in the sense that:
1. Dy is a model of Ax.



2. Forallce LxNSent: solvx(c) =T = Axy = C.
3. Forallce LxNSent: solvy(c) =F = Axy = —C.

In addition, we assume that sglis well-behaved, i.e., that for any constraints c
and ¢:

1. soly(c1) =solvx(cp) if Ec1 < Co.

2. If solvy(c1) =Fandf= ¢ — cg\f’ee“ﬁ then soly (c) = F.

As before, a constraint domai= (Zx, Lx,Axx,Domy,solvy) is called dZx, Lx)-
constraint domain.

4 Semantic constructions for constraint normal logic programs

Analogously to constraint logic programs, given a signature (P$,FSs), normal
constraint logi&-programs over a constraint domain= (Zx, Lx, Axx, Domy, solvy),
can be seen as a generalization of a normal logic programs.Spr@gram now con-
sists of clauses of the form

a:.—/1,....4moCy,...,Cn

wherea and the;, i € {1,...,m}, are a flat atom and flat literals, respectively, whose
predicate symbols belong R \ PSy and thecj, j € {1,...,n} belong toLy. For this
class of programs, we also assume that all clauses defining the same prpdieste
exactly the same hegu(Xy,...,Xm).

4.1 Logical semantics

The standard logical meaning ofaprogramP is its (generalized) Clark’s completion
Compy(P) = Axy UP*, whereP* includes a sentence

v2(q(2) « ((Gl N Cl)a\z\/ LV (Gk/\ Ck)ﬂ\z))

for eachg € PS \ PSy, and where{(q(2) : — Gioc),...,(q(2) : — Gkock)} is the set
3 of all the clauses i with head predicatg. In what follows, this set will be denoted
by De f(q). Intuitively, in this semantics we are considering tbatf-(q) is acomplete
definitionof the predicate). A weaker logical meaning for the prografnis obtained
by defining its semantics @ UPY, whereP”, is the set including a sentence

vZ(q(2) — ((G1AC)™>2V... V(G A ) ™))

for eachq € PS \ PSy, and where, as abovBefr(q) = {(q(2) : — Gioc),...,(A(2) :
— GkDCk)}.

3 If there are no clauses Pwith head predicatg, i.e., the set is empty, then the above sentence
is simplified tovz(q(z) < F



4.2 TheBCN operational semantics

In this section we generalize tH&CN operational semantics introduced in [16] and
refined in [1] in such a way that it can be used for any constraint domain BUN
operational semantics is based on two operators originally introduced by Shepherdson
[18] to characterize Clark-Kunen’s semantics in terms of satisfaction of (equality) con-
straints. Such operators exploit the definition of literals in the completion of programs
and associate a constraint formula to each query. As a consequence, the answers are
computed, on one hand, by a symbolic manipulation process that obtains the associated
constraint(s) of the given query and, on the other hand, by a constraint checking pro-
cess that deals with such constraint(s). In particular, the original version ([16]) of the
BCN operational semantics works with programs restricted to the constraint domain of
terms with equality. In that casBCN uses the equality theory £.4, defined by Clark

[4] (or any equation solver) as a solver. Here, we generalize this semantics to arbitrary
constraint domains.

Definition 4 For any program P, the operatorqf‘l’and FkP associate a constraint to
each query, as follows:

Let Deb(q)={q(2): — fioci | 1 <i<m}
TW@@)=F  Ti(a@) = VLY (@ AT@)
FPa@)=F  F5.(a2) = AR VY (-6 VRP(®))

Forallk € N:
(=T RO(T) =
Te (-a(2) = R (a(2) R (ﬁQ(Z)) Te (a(2))

TeNZ1 ) = N1 TEW)  REOAZ1) = VI RE(4)
For any ce Ly, for any ke N
TP(c)=c  FP(c)=-c

Definition 5 Let P be a program and solva constraint solver. A BCP, solvy)-
derivation steps obtained by applying the following derivation rule:

(R) £1,/>0d is BCN(P, solvy)-derivedfrom /1, £(X), 20c if there exists k> 0 such that
d =T (¢(x)) Ac and solw (d) #F.

Definition 6 Let P be a program and sojva constraint solver.

1. A BCNP,solvy)-derivationfrom the query L is a succession of B@Nsolvy)-
derivation steps of the form

!/
L M'>(F’.solv)() e W(Flsolvx) L

Then, I_V”»(RSO.VX)L’ means that the query is BCN(P, solvy)-derived from the query
L in n BCN(P, solvy)-derivation steps.



2. Afinite BCNP, solvy)-derivation L@(RSD.WL’ is asuccessfuBCN(P, solvy)-derivation
if L’ = oc.
In this case, €\ is the corresponding BC®, solvy )-computed answer

3. A query L= foc is a BCNP, solvy)-failed queryif solvx((c — FP(¢))") = 1 for
some k> 0 such that soly(FF(7)") # F.

A selection ruleis a function selecting a literal in a query and, wheneselvxis
well-behaved BCN(P,solvy) is independent of the selection rule used. To prove this
assertion we follow the strategy used in [14, 11], so we first prove the next lemma.

Lemma 7 (Switching Lemma) Let P be a program and Solvx be a well-behaved solver.
Let L be a query{s,/, be literals in L and let Lv= ¢, L1 ~*@rsay,) L' be a non-failed
derivation in which?; has been selected in L arfd in L1. Then there is a derivation

L ~= psony) L2~ psany) L” in Which/z has been selected in L aidin Lo, and L and L

are identical up to reordering of their constraint component.

Theorem 8 (Independence of the selection rule).et P be a program and sova well-
behaved solver. Let L be a query and suppose that there exists a successfBIRDMN )-
derivation from L with computed answer c. Then, using any selection rule R there exists
another successful BQR, solvy )-derivation from L of the same length with an answer
which is a reordering of c.

Next, we establish the basis for relating B@N(P, solvy ) operational semantics to
the logical semantics of a particular class of constraint logic programs. The proposition
below provides the basis for proving soundness and completeness of the semantics.

Proposition 9 Let X = (FSx,PSy UPS be an extension of a given signature of con-
straintsZy = (FSy,PSy) by a set of predicates PS, and let P b&-@rogram. Then,
for eachX x-theory of constraints Ay, each conjunction of-literals ¢ and each k in
IN:

P*UTh(Axy) = (TF(0) — )7

4.3 Fixpoint semantics

According to what is argued in Section 3, we consider the dorflaoms /=, <) for
computing immediate consequences defined as followdDbat be the class of three-
valuedZ-interpretations which are extensions of model®Bamy. Then, as itis done in

[19] to extend [13] to the general constraint case, we consider the Fitting’s ordering on
Doy interpreted in the following sense: For all partial interpretatigh$ € Doy,

for eachZ x-constraintc(X) and eacte-literal /(X):

A<Biff A(c—0)") =t = B((c—0)")=t

It is quite easy to see th@bomy, <) is a preorder. Therefore, we consider the equiv-
alence relatior= induced by= (4 = B if, and only if, 2 < B and B < 4), and the
induced partial order

[4],[B] € Doms/=: [4] <X |B] iff A<B



to build a cpo(Domy /=, <) with a bottom clas$.Ls] such that for eact? € [ L5] we
have that4((c — ¢)¥) # t for all Zy-constraintc(x) and allZ-literal £(X). That is, the
set of goals of the fornic — ¢)" satisfied by the models in_s] is empty.

Proposition 10 (Doms /=, <) is a cpo with respect tex, and, the equivalence class
[Ls] is its bottom element.

Remark 11

1. The relation= builds classes of models which are indistinguishable with respect to
satisfaction of goal formulas.

2. Moreover, it is easy to see that all the models ia-@lass are elementarily equiv-
alent in its restrictions t& y.

Definition 12 (Immediate consequence operatdﬂ‘PDOmX) Let P be a&-program, then
the immediate consequence operaféaromx : Doms /= — Domy /= is defined for each
[4] € Do /=, as

7o ([4]) = [@p" ()]
whereDy is the distinguished domain model in the class QoA is any model i 4],

and [d)?x(ﬂl)] is the=-class of models such that for eakly-constraint ¢xX) and each
Z-atom [X),

(i) d)?x(ﬂl)((c — p)¥) =t if, and only if, there are (renamed versions of) clauses

{p(X): =4}, ..., 0,00 |1 <i <m} C Defp(p) and Dx-satisfiable constraintéc) | 1 <
iI<mAL1<j< ni} such that
. A((J— ) =t |
e Dx((c— Vlgigmﬂyi(/\lgjgni Clj /\di))v) =t
(i) CD?X (4)((c — —p)¥) = t if, and only if, for each (renamed version) clause in
{p(x) :—4,,....6hod |1 <i < m} = Defp(p(x)) there is a JC {1,...n;} and
Dy -satisfiable constraint$cij |1<i<mA je J} suchthat
o A((] -6 =t |
o Dx((€— Arciem Wi (Vjey €, vV dh))Y) = £
where, for each € {1,...,m}, y, are the free variables if/! ,...,éini,di} not inx.
Remark 13

1. In the definition of the operatdb?x, we could choose any other model in Dpm
instead ofDy, since all of them are elementarily equivalent, and the domain is just
used for constraint satisfaction checking. Similafycould be any other model in
[4] since it is used for checking satisfaction of sentences of the(form/)".

2. Moreover, models in &-class[db,?x(ﬂl)] are elementarily equivalent in its restric-
tions toXx. In fact, [m?x(ﬂ)ﬂzx = Domy since, all classes in Dograre (conser-
vative) predicative extensions of Dgrand, the operato@PDomX does not compute

new consequences frofy. However, neithef4] nor ‘TPDomx ([4]) = [@?X(ﬂl)]
are elementarily equivalence classes in general.



In what follows we will prove thatZ:°™ is continuous in the cpBony /. As a
consequence, it has an effectively computable least fixpoint:

(7 °™) = T °™ Tw=|_|[®g Tn]

However, it is important to notice that, as we will show in example 14,
L[5 1] # [©" 1o

In fact, the operatom,?x can be considered a variant of the Stuckey’s immediate

consequence operator in [19], so, it inherits its drawbacks. On one Qmé)ﬁds mono-
tonic but not continuous. On the other hand, it will have different behavior depending
on the constraint domain iBomy that may be predicatively extended. As argued in
Section 3, the key to solve these problems is to use the whole Btasg as domain

of computation instead of a single model. In fact, the key technical point is using its
predicative extensiomomy, in defining the target and the sour&mms /=, of ’IPDomX,

as the following example aims to illustrate.

Example 14 Consider the CNLPA()-program from example 2:

g(z): —oz=0
g(v): —g(X)opv=x+1
r:—-q(x)

First, let us look at the behaviour of the operatbr
- d),i\éToowould be the model extendifig where r is undefined and all the sentences
{z=n—4a(2)'In>0}

are true, so, the sententi.q(z) will be evaluated as true imf:,\CT(o. This is not a
fixpoint since we can iterate once more, to obtain a different m@@éi{ (w+1)
where—r is true.

— In contrast, if we consider any non-standard mo@élelementarily equivalent to
A, the sentenc&z.q(z) will be evaluated as undefined m,%vfm, S0, N0 more
consequences will be obtained if we iterate once more.

Now we can compare with the behaviourDf

Similar to the first case‘IPEQ(mTw is the class of=-equivalent models extending
EQ(A(), where r is undefined and all the sentences

{(z=n—4q(2)"In>0}

are true. But now, this is a fixpoint in contrast to what happens with any other operator
working over just one standard model. In particular, it is not difficult to see that the



sentencerz.q(z) is never satisfied (by models) ﬂmQCTk] for any k. This is because

we are considering also non standard models (as the predicative extension of the above
M) at each iteration. Therefore, as a consequence of the definitiph wfe have that
Vz.q(2) is not satisfied in

T * 1= | @ 1K

That is,—r is not a consequence that can be added (or satisfied) if the iteration forward
proceeds.

Theorem 15 ‘IPDomX is continuous in the cpDoms /=, <), so it has a least fixpoint
%Domx T(*)-

Finally, as a consequence of the continuityzé?omx , We can extend a result from
Stuckey [19] related to the satisfaction of the logical consequences of the completion
in any ordinal iteration oﬂ)?x, until the w iteration of‘IPDomX, that is, until its least
fixpoint:

Theorem 16 (Extended Theorem of Stuckey) ~
Let THDomy) be the complete theory of DgmFor eachZ-goal ¢oc:

1. PPUTh(Domy) 3 (c— 7)Y & VA€ T2°™ tw: A((c—0)") =t
2. P'UTh(Domy) =3 (¢ — —0) & VA e T2°™ 1w: A((c— —0)) =t

5 Functorial semantics

As introduced in Subsection 2.4, one basic idea in this work is to formulate the construc-
tions associated to the definition of the operational, least fixpoint and logical semantics
of constraint normal logic programs in functorial terms. This allows us to separate the
study of the properties satisfied by these three semantic constructions, from the classic
comparisons of three kinds of semantics of programs over a specific constraint domain.
Moreover, once the equivalence of semantic constructions is (as intended) obtained,
the classicaboundnesandcompletenesmesults that can be obtained depending on the
relations among solvers, theories and domains, are just consequences of the functorial
properties.

However, comparing these semantic functors is not straightforward since, intu-
itively, their domains and codomains are different categories. In particular, we can see
that the logical semantics of @, Lx)-constraint logic progran® as a mapping (a
functor), let us denote it by OGp, whose arguments are logical theories and whose
results are also logical theories. The algebraic semantiBs @énoted4 LG, can be
seen as a functor that takes as arguments logical structures and returns as results logical
structures. Finally, the operational semantic®ptlenotedO®Pp can be considered to
take as arguments constraint solvers and return as results (for instance) interpretations
of computed answers.

Now, comparing the algebraic and the logical semantics is not too difficult, since
we can consider logical theories not as sets of formulas but, equivalently, as classes of
logical structures. In this way, the domains and codomains@f;, andA4.L G, would



be, in both cases, (classes of) logical structures. Of course, we could also associate
classes of models to solvers, but given this semantics to solvers would not be adequate.
In particular, this would be equivalent to closing the solver (the associated set of non
unsatisfiable constraints) up to logical consequence. The problem is that the class of
all models that satisfy a given set of formulas (constraints) would also satisfy all its
logical consequences. However, solvers may not show a logical behaviour (even if they
are well-behaved according to Section 2.2). A solver may say that certain constraints
are unsatisfiable but may be unable to say that some other constraint is unsatisfiable,
even if its unsatisfiability is a logical consequence of the unsatisfiability of the former
constraints.

We take actually the dual approach: we will represent all the semantic domains in-
volved in terms of sets of formulas. This is a quite standard approach in the area of
Logic Programming where, for instance, (finitely generated) models are often repre-
sented as Herbrand structures (i.e., as classes of ground atoms) rather than as algebraic
structures. One could criticize this approach in the framework of constraint logic pro-
gramming, since a class does not faithfully represents a single model (the constraint
domain of computatioidomy) but a class of models. However, we have argued pre-
viously that, when dealing with negation, a constraint domain of computation should
not be a single model, but the class of models which are elementarily equivalent to
Domy. In this sense, one may note that a class of elementarily equivalent models is
uniquely represented by a complete theory. However, since we are dealing with three-
valued logic, we are going to represent model classes, theories and solvers as pairs of
sets of sentences, rather than just as single sets.

In what follows, we present the categorical setting required for our purposes. Being
more precise, first of all, we need to define the categories associated to solvers, compu-
tation domains and theories (axiomatizable domains). Then, we will define the category
which properly represents the semantics of programs. Finally, we will define the three
functors that respectively represent the operational, logical and algebraic semantics of
a constraint normal logic programs.

Definition 17 Given a signatur& y, aZx-pre-theoryM is a pair of sets oE x-sentences
(M, Ms).

Remarks and Definitions 18

1. Given a solver soly of a given language.x of Zx-constraints, we will denote by
Msolv, the pre-theory associated to sglyi.e., the pair(M;, M) where M is
the set of all constraints € Lx such that soly(c) = T and M5 is the set of all
constraints a= Ly such that soly(c) =F.

2. Similarly, given a set of axioms fxf a given language .y of Zx-constraints, we
will denote byMay, the theory associated to Ax

3. Finally, given a computation domain Dgiof a given languagé . of > x-constraints,
we will denote byMpom, the theory associated to Dgmi.e., the pair( M., My )
where M; is the set of sentences satisfied by Qoand 2 is the set of sen-
tences which are false in DomNote that, since constraint domains are typically
two-valued,M; would typically be a complete theory and, therefadé; is the
complement ofif; .



For the sake of simplicity, given a pre-theoftf, we will write M (c) = ¢, to mean
CE My ; M(c) = £, to mean &= Ms; and M (c) = u, otherwise.

Now, according to the above ideas, we will define categories to represent constraint
solvers, computation domains and domain axiomatizations. Also, following similar
ideas we are going to define a category of semantic domains for programs. In this case,
we will define the semantics in terms of sets of formulas. However, we will restrict
ourselves to sets of answers, i.e., formulas with the form G, where G is any goal.

Definition 19 (Categories for Constraint Domains and Program Interpretations)
Given a signatur& x we can define the following categories:

1. the category ok x-pre-theories, PreTH (or just PreThif Zx is clear from the
context) is defined as follows:

— Its class of objects is the classbf-pre-theories.
— For each pair of object$ and 4’ there is a morphism frorfi{ to M’, noted
justbyM <c M, if My C M’ and Mz C M’ ¢
. Thy (orjust TH is the full subcategory of PreTh whose objects are theories.
3. CompT QX (or just CompT his the full subcategory of Prekh whose objects are
complete theories
4. Given a constraint languagéy and a signatureX extendingZ y, ProgInt’

(Zx,Lx)
(or just Proglntif Z,%y and £ are clear from the context) is the category where:

N

— Its objects are sets of sentendes— /)" or (c — —/)", where cc Lx and/ is
a conjunction ok-literals.
— For each pair of objects and .4’ there is a morphism fromi to 2/, noted just
bya<4aitaca
e >y Cy and
o for each(FSy,PSyUPS-literal £(X) andZy-formula qx), 4((c— ¢)") =
t implies 4'((c — ¢)) = t, and 4((c — —¢)") = t implies 4’((c —
-0)") = t.

As pointed out before, this categorical formulation allows us to speak about rela-
tions among solvers, domains and theories by establishing morphisms among them in
the common categofyreT h in such a way that the morphism between two objects rep-
resents the relatiotagrees with” (or completenesthey are seen in the reverse sense).

To be more precise, given a constraint (domain) paramétef> x, Ly, Axx, Domy, solvy),
we can reformulate the conditions (in Section 2.2) required ansohg, Domy and
AXxy as:

W[solvx =c MAXX =c MDomX

in PreTh That is, sinceEDomy, must be a model oRAxy, there is a morphism from
Mpy, 10 Mpom, . Moreover, sincsolvy must agree witthxy, there is a morphism from
Msolv, 10 Mpx, . Then, by transitivitysolvy agrees with Doy, so there is a morphism
Msolv, 10 Mpom, . In addition, we can also reformulate other conditions in these terms:




— solvy is Axy-complete(respectively,Domy-completg if, and only if, Max, =¢
Msoly, (respectivelyMpom, =<c Msolyy)-
— Axy completelyaxiomatizeomy if, and only if, Mpom, =c Max,, SO, as expected

MAXX == MDomX .

Finally, we will define the three functors that represent, for a given prodtaits
operational, its algebraic or least fixpoint, and its logical semantics.

Definition 20 (Functorial semantics)Let P be a-program. We can define three func-
tors OPp : PreTh— Progint, 4L G, :CompT h— Progintand LOG, : Th— Proglnt
such that:

a) OPp, ALGp and LOG, assign objectsy in its corresponding source category to
objects in Proglntin the following way

1. Operational Semantics

OPp(M) = {(c—0)" | (M(c”) # £) and there is a BCKP, M) — derivation for
£ot with computed answer d such thaf((c — d)") = t}u
{(c— —0)" | foc is a BCNP, M) — failed goal}

2. Least Fixpoint Semantics

ALGp(M) = {(c— )"

* | () £ AT 0 e D))
{(c—-0)"|

(M(c?) # £) /\'TPMTQ)|: (c— —=0)"}

3. Logical Semantics

LOGp(M) = {(c—0)" | (M(c?) # £) AP*UTh(M) |= (c — £)7}U
{(c— )" [ (M(c7) # £) AP UTH(M) [= (c— ~0)"}

b) To each pair of objectsW and M’ such thatM =<; M’ in the corresponding
source categoryf € {ALGp, LOGp} assigns the morphisi (M) < F(M') in
Progint. HoweverO®Pp is contravariant, i.e.M <c M’ in PreT himpliesF (M') <
F (M) in Progint.

It is easy to see thalLGp and LOGp are functors as a straightforward conse-
guence of the fact that morphisms are partial orders and the monotonicity of the opera-
tor ‘IPM and the logic, respectively. The contravarianc®dfp is a consequence of the
fact that theBCN-derivation process only makes unsatisfiability queries to the solver
to prune derivations. This means that whfz is larger the derivation process prunes
more derivation sequences. B

Now, given a(Zx, Lx)-programP, we can define the semantics®as

[Pl = (OPp,ALGp, LOG)



6 Equivalence of semantics

In this subsection, we will first prove that the semantic constructions represented by the
functorsOPp, AL G, and LOG, are equivalent in the sense that for each objécin
CompTh OPp(M), ALGH(M), andLOG (M) are the same object Progint.

Then, we will show the completeness of the operational semantics with respect
to the algebraic and logical semantics just as a consequence of the fact that functors
preserve the relations from its domains into its codomains.

Theorem 21 Let P be a>-program. For each objecd/ in CompTh

OPp(M)=ALGp(M)=LOGp(M)
in Proglnt.

Finally, we present the usual completeness results of the operational semantics that
can be obtained when the domains, theories and solvers are not equivalent. As we
pointed out before, these results can be obtained just as a consequence of working with
functors. In particular, sinc84soy, <c Mpom, the contravariance ad®p implies that
ALGp(Mpomy) =c OPp(Msalv, ), and similarly for the logical semantics. That is:

Corollary 22 (Completeness of the operational semanticgor any program POPp
is complete with respect td £ G, and with respect toa. OGp. That is, for each con-
straint domain(Zy, Lx, Axy, Domy, solvy):

- ﬂLgP(MDomx) =c OTP(%ON){)
- LOgP(MAxX) =c O{'PP(%ON)()
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7 Appendix

Proof of Lemma 7LetL bely, 1,02, (2, l30C. Then,Ly = 1,05, 02, l30c AT (41), k> 0,
andsolvy ((cATE (€1))?) #F, and L’ = 01,05, (30 A T (41) ATF (€2), k> 0,K > 0 and
solvy ((CATL (L) ATE (£2))7) #F.

Now, to construct the derivation ~> ..., L2 ~+ sy, L” in Which /3 is select first
in L1 we choosd p = 011,02, l30C AT (£2) andL” = 01,05, l3oC AT (£2) AT (£2).
Sincesolvy ((CATE(¢1) ATF (£2))7) # F, by the well-behavedness propertysafivy,
we know thasolvy ((cATY (¢2))?) # F andsolvy ((cA TP (£2) ATF (¢1))7) # F. Hence,
L~ psony) L2 ~>psany) L 1S @ validBCN(P, solvy )-derivation. ®

Proof of Theorem 8he proof follows by induction on the length,of theBCN(P, solvy )-
derivation. The base step,= 0, trivially holds. Assume that the statement holds for
n’ < n. Now, to prove the inductive step, consider B@N(P, solvy )-derivation

L ~ (B solvy) L1 "~ (Bsolvy) -+ 7 (Rsolvy) Ln—1 ~ (psolvy) OC



Since this is a successful derivation, each literal iis selected at some point of the
derivation. Let us consider the liter&ln L and suppose that it is selected.in By ap-
plying Lemma 7 times we can reorder the above derivation to obtain the following one
L~ psone) L1~ msovg) - - - > pson) L1 ~=psony) OC, SUCh that is selected ik andc’ is
areordering ot. Assume that the selection ruRselects literal when considering the
singleton derivatiof.. From the induction hypothesis, there is anotBEN(P, solvy )-

. . —1 . . .
derlvatlonL’lnw rson0C7, USINg the selection rul®, whereR' selects literals as they

are selected by the rulR when considering the derivatidn~~ g, L’lnv_»lmso.vx)uc”.

So,c” is a reordering o’ and hence of. Thus,L ~» gy, L] ~esony) - ~msong)
Li_1 ~@sany 0C" is theBCN(P, solvy )-derivation we were looking for. ®

Proof of proposition 9Actually we are going to prove that for eakle N
P*UTh(AXy) = (TF(4) — £)7

since itis easy to see that the general case is a straightforward consequence of Definition
4,

The proof follows by induction ok and it merely relies on standard syntactical
properties of first-order logic. For the base cdse, 0, the proposition trivially holds.
Assume that the statement holds Kbk k. Now we have to prove it fdk. There are two
situations: eithem,”(¢) is satisfiable or is not. The proof for the latter case is analogous
to the base step. Assuriif (¢) is satisfiable. There are two cases:

1. ¢ = p(X). Then, applying twice the definition @f", the first time for atoms and the
second time for the conjunction of literals, we obtain the following:

TPpm) = \/ 39 AT 1(T) = \/ ¥ (A AT 2(0)
i=1 i=1 j=1

Now, from the induction hypothesis we have that, forial{1,...,m} and for all
je{1,....n}: _ _
P UThAXy) = (T4 (6)) — £,)7
Then, it follows logically that,
m o n . m o n
PrUTHAX) = (\/ 37 (A A TEL(E) — V3P A )"
. . Y

i=1 j=1 =1

And, again, applying the definition de’ we obtain the following:

PYUTHAX) = (TF(p) — \/ 27 (@ A A )" ®
i=1 j=1
In addition, by the completion of predicapgX), we have that,
PYUTHAX) £ (V 37(E A A B) = p®)" @

i=1 j=1



Hence, by (1) and (2), we can conclude that

P*UTh(AX() = (T¢(P(X) — P(X))", k>0

The proof for the second case is quite similar to the previous one.
2. £ ==p(X). Then, TP (=p(X)) = F°(p(X)), and applying the definition of} we
obtain the following:

RO(p /\W - VRE /\W ﬂcv\/Fk

i=1

Now, using the induction hypothesis we have that, for al{1,...,m} and for all
je{1,....n}:

P UTh(Axy) = (RC4(6) — —£))"
Therefore, it follows logically that,

m

N
P*UTh(AX) = (A YW (¢ v \/ RE 4 (6) /\W ﬂcv\/ﬁz'
i=1 j=1 i=1
Again, applying the definition dFkP, we have that,
P*UTh(Axy) = (R (p(X)) /\vy' (~c v \/ 13' 3)

i=1 =1

Finally, as in the previous case, we use the completion of the predi¢ateo
obtain:

P*UTh(AXy) = /\\7;7' (=c v\/ =) — —p(x))" 4
i=1 =1

Hence, by (3) and (4), we can conclude that
P*UTh(A) |= (¢ (P(X) — —p(X))", k>0

Proof of proposition 10To prove that(Doms /=, <) is a cpo, we show that each in-
creasing chaif [4]}ic) € Doms /=

] < ... <[2] < ...

has a least upper bound[4,]. Let [4] be such thatd((c — ¢)¥) = t iff, for somen,
4,((c— £)") = t. Then, it is almost trivial to see that

— for eachn, [4] < [4]
— for any other{B] such thai4,] < [B] for eachn, [4] < [B].

Finally, itis trivial to see thaf L 5] < [4] for all [4] e Domy/=. &



Proof of Theorem 15First of all, Z-°™ is monotonic, that is, for all4] and[B3] in
Doms /=
) < (3] = T°™ (1) < ™ ()

as a consequence of the fact thﬁx is monotonic:
(4] < [B] = A= B = &p¥(A) <O (B) = [0 ()] < (@5 ()]

Then, beingTPDomX monotonic, to prove that it is continuous it is enough to prove
that is is finitary. That is: For each increasing chflifn) }nel, [Z1]) < ... 2 [4n] = ...

T o™ (L)) = || 72°™ (1))

Let [4] = U[4n] and [B] = T2°™ (L[ 4n]) = [®5* (4)]. Let us assumeB((c —
£)") = t. We have two cases:

(@) If £=p(x) then, by the definition of the opera@é”‘, we know there are (renamed
versions of) clause$p(x) : — ¢,,..., 0, .0di |1 <i <m} in P and Dx-satisfiable
constralnts{c' [1<i<mAl<j< n,} such that

* A((c —>€') )=t

° ﬂl((CH V1<|<m3y| (/\1<J<n, c NG )) )=t
In such a situation, by def|n|t|on of, we know that for each £ i < mand 1<
j < njthere is al 4] € {[4n] |n € |} such thatﬂlk((c' — é') ) =t. Then, since
(Doms /=, =) is a cpo, we know that each finite sub-chain has a least upper bound
in {[4n]}nei. Let it be[4s]. In addition, since all models ids are elementarily
equivalent we can state that

e As((c; —>€') )=t

b les((c—> Vl<|<m3y|(/\1<1<n CJ /\dl)) )=t
ThereforefD *(4s)((c — p(X))") = t so for all modelsC € [<D *(4s)] we have
that C((c — p( X))") = t. Thus, by definition of |, this implies that for allc’ €
LI[®R™ (An)] = LT °™ ([An]) we have that’ (¢ — p(X)))? = t.

(b) The proof for¢ = —p(X) proceeds in the same way. That is, by the definition of
the operatortbgfx, we know that for each (renamed version) clausexx) :

— 0. 6hodi |1 <i<m} =Defs(p(x)) there is ak C {1,...n} and Dy-
satisfiable constramt@:‘ [1<i<mA jeJ} suchthat

o A((cj —~4)") =t

b -521((0H /\1<|<mvy|(\/]e\], | \/_‘dl)) )=t
Again, by definition of |, we know that for each e Jthere is d4;] € {[4a] |Ine | }
such thatZ;((cj — —¢;)") = t. Then, as a consequence(&ony /=, <) being a
cpo, and all models id)z being elementarily equivalent, there is a clggg in the

chain such that
o As5((c — —t))")

=t
o ﬂS((CH A1<i<m ¥ (Ve C' -d)") =t
ThereforeCD,?X (ﬂs)(( — = p( )) ) =t so, for all models” € [CD?X(JZIS)] we have
that C((c — —p(X))") = t. And, finally, by definition of |, this implies that for all

C" € L[®p" (An)] = % °™ ([4]) we have that”(c— —p(X)))¥ =t. m



Proof of Theorem 16We prove that 1 and 2 hold for a goétc. Then, the general
case for/oc easily follows from the logical definition of the truth-value@f— ¢)” and
(c— =),

The Stuckey’s result states tHaitu T h(Domy) =3 (¢ — ¢) if, and only if,

DX Tk((c—0)Y) =t
for some finitek. So, by definition of %™, this is equivalent to
VA TXO™ 1k: A((c—0)7) =t
for some finitek. And, by definition of |, to
vae| |72™ 1k A(c—0)) =t

Proof of Theorem 21First of all, we have thalL OGp(M) = ALGp(M) as a direct
consequence of Theorem 16 (Extended Theorem of Stuckey).
In what follows, we will prove that

- ALGp(M) =X OPp(M) and
— OPp(M) X LOGp(M)

(a) ToprovethalLG(M) < OPp(M) we use induction on the number of iterations
of 75¥. We just consider goals such that p(X) and? = —p(X), since the general
case follows from the properties of operatd’fs and FkP and the fact thaBCN is
independent of the selection rule.

The base case= 0 is trivial, sinceZs¥ 10 = [Ls] and[ L5]((c — ¢)7) # t for all
> x-constraintc(X) and allZ-literal ¢(X).
Assume that for alk < n, 75" Tk((c — £)7) = t implies OPp(M)((c — £)") = t.

i) If = p(x) then, by the definition ofTPM, we know that there are (renamed
versions of) clausegp(X) : —£,,..., ¢ odi | 1 < i < m} in P and M -satisfiable
corgjstraints{cij [1<i<mA 1<j<n}suchthatZg Tn((c, — €)") =t
an

m n; )
M(c—VI(Acjad)) =t
i=1 j=1
Then, by the induction hypothesis we have tiadp(90)((c, — ¢})") = t
forall 1 <i<mand 1< j < n. Thus, there exist successBCN(P, M )-
derivations foreach ¥i <mand 1< j <n;:
Kijmdi ~ b DTkFij)(Eij)/\di

such thatM (TP (4)) Adi)?) # £ and M (c] — TP(£4))") = t.



Letk > O be the largest number{rkij [1<i<mA1<j<n}. Then,asacon-
sequence of the monotonicity of the operalt8r we knowa (AT T (¢))) A
di)?) # £. And since

n; ) n; )
T (A6 = A\TEW)
j=1 j=1
and

we have that . o
M((c— \ITEA G rd)) =t
i=1 =1
Thatis, M (T”,(p(X))?) # £ and

M((c— Ta(p(X)) =t

Therefore, we can guarantee the existence of a succ&3RN(P, M )-derivation:

P(R)OL sy T (P(X))

such thatoPp(M)((c — p(X))") = t.
ii) The proof for¢ = —p(X) proceeds in the same way. That is, according to the

definition of the operato”pr , we know that for each (possibly renamed) clause
in {p(X) : = 44,..., 000 [1<i <m} =Defp(p(X))) there is & C {1,...n;}
and M -satisfiable constraintﬁr:ij [1<i<mA je€J} suchthat:

© TMN((S - ) =t

* M((C— Ni<iem Vi (Vjes Clj v-d))Y) =t
Again, by the induction hypothesis we have that for aff 1 <mandj € J,
0Pp(M)((c, — —f})") = t so, for some’, >0

M((c] — FP(4))) =<

Letr > O be the largest number i{rrij |IL<i<mA jeJ}. Then, as a conse-
quence of the monotonicity of the operakdt, we knows ((V jcy R (£))7) #
£. And' SinceFrP(\/jeJi KIJ) = VjeJi Frp(glj) andM((V]eJi Clj - FrP(VjeJi glj))v) =
t we have that

M((c— Fa(p(®)") =t
Therefgre, we can guarantee tipgx)ocis aBCN(P, M )-failure, soOPp(M)((c —
~p(®)¥) =t.
(b) Finally, we prove thaDPp(M) < LOGH(M ). Again we have two cases:
(i) Suppose thaDPp(M)((c — —£)") = t so,loc is aBCN(P, M )-failed goal.
Hence, M ((c — FP(¢))") = t, for somek > 0. Therefore, by Proposition 9,
we can conclude tha@&* UTh(M) |= (c — —F)".



(i) Suppose now tha®Pp(M)((c — £)") = t. Again we will prove the casé=
p(X) since the general case will follow from the properties‘l’@fand the fact

that BCN is independent of the selection rule. So we assyf®oc has a
BCN(P, M )-derivation

P(R)OL sy T (P(X)

such thatM ((c — TP (p(X)))") = t. Then, again as a consequence of Proposi-
tion 9, we can conclude th& UTh(M) = (c — p(X))".



