
A Functorial Framework for Constraint Normal Logic
Programming

P. Lucio2, F. Orejas1, E. Pasarella1, and E. Pino1

1 Departament LSI
Universitat Polit̀ecnica de Catalunya,

Campus Nord, M̀odul C5, Jordi Girona 1-3, 08034 Barcelona, Spain
2 Departament LSI
Univ. Pais. Vasco,

San Sebastián, Spain
jiplucap@si.ehu.es,{orejas,edelmira,pino}@lsi.upc.es

Abstract. The semantic constructions and results for definite programs do not
extend when dealing with negation. The main problem is related to a well-known
problem in the area of algebraic specification: if we fix a constraint domain as
a given model, its free extension by means of a set of Horn clauses defining a
set of new predicates is semicomputable. However, if the language of the exten-
sion is richer than Horn clauses its free extension (if it exists) is not necessarily
semicomputable. In this paper we present a framework that allows us to deal with
these problems in a novel way. This framework is based on two main ideas: a
reformulation of the notion of constraint domain and a functorial presentation
of our semantics. In particular, the semantics of a logic programP is defined in
terms of threefunctors: (OP P,ALGP,LOGP) that apply to constraint domains
and provide the operational, the least fixpoint and the logical semantics ofP,
respectively. To be more concrete, the idea is that the application ofOP P to a
specific constraint solver, provides the operational semantics ofP that uses this
solver; the application ofALGP to a specific domain, provides the least fixpoint
of P over this domain; and, the application ofLOGP to a theory of constraints,
provides the logic theory associated toP. In this context, we prove that these three
functors are in some sense equivalent.

1 Introduction

Constraint logic programming was introduced in ([9]) as a powerful and conceptually
simple extension of logic programming. Following that seminal paper, the semantics
of definite (constraint) logic programs has been studied in detail (see, e.g. [10], [11]).
However, the constructions and results for definite programs do not extend when deal-
ing with negation. The main problem is related to a well-known problem in the area of
algebraic specification: if we fix a constraint domain as a given model, its free extension
by means of a set of Horn clauses defining a set of new predicates is semicomputable.
However, if the language of the extension is richer than Horn clauses its free extension
(if it exists) is not necessarily semicomputable ([8]). Now, when working without nega-
tion we are in the former case, but when working with negation we are in the latter case.
In particular, this implies that the results about the soundness and completeness of the

operational semantics with respect to the logical and algebraic semantics of a definite
constraint logic program do not extend to the case of programs with negation, except
when we impose some restrictions to these programs.

The only approach that we know that has dealt with this problem is ([19]). In that
paper, Stuckey presents one of the first operational semantics which is proven com-
plete for programs that include (constructive) negation. Although we use a different
operational semantics, that paper has had an important influence in our work on nega-
tion. The results in ([19]) were very important when applied to the case of standard
(non-constrained) logic programs because they provided some good insights about con-
structive negation. However, the general version (i.e., logic programs over an arbitrary
constraint domain) is not so interesting (in our opinion). The reason is that the com-
pleteness results are obtained only for programs overadmissibleconstraints. We think
that this restriction on the constraints that can be used in a program is not properly
justified.

In our opinion, the problem when dealing with negation is not on the class of con-
straints considered, but rather, in the notion of constraint domain used. In particular,
we argue that the notion of constraint domain used in the context of definite programs
is not adequate when dealing with negation. Instead, we propose and justify a small
reformulation of the notion of constraint domain. To be precise, we propose that a do-
main should be defined in terms of a class of elementarily equivalent models and not in
terms of a single model. With this variation we are able to show the equivalence of the
logical, operational, and fixpoint semantics of programs with negation without needing
to restrict the class of constraints.

The logical semantics that we have used is the standard Clark-Kunen 3-valued com-
pletion of programs (see, e.g. [19]). The fixpoint semantics that we are using is a vari-
ation of other well-known fixpoint semantics used to deal with negation ([5, 19, 6, 15]).
Finally, the operational semantics that we are using is an extension of a semantics called
BCN that we have defined in previous work ([16]) for the case of programs without con-
straints. The main reason for using this semantics and not Stuckey’s semantics is that
our semantics, is in our opinion, simpler. This implies having simpler proofs for our
results. In particular, we do not claim that our semantics is better than Stuckey’s (nor
that it is worse). A proper comparison of these two semantics and of others like [5, 6]
would need experimental work. We have a prototype implementation of BCN ([1]), but
we do not know if the other approaches have been implemented. Anyhow, the pragmatic
virtues of the various operational approaches to constructive negation are not a relevant
issue in this paper.

In addition, our semantics is functorial. We consider that a constraint logic program
is a program that is parameterized by the given constraint domain. Then, we think that
the semantics of a program should be some kind of mapping. However, we also think
that working in a categorical setting provides some additional advantages that are shown
in the paper.

The paper is organized as follows. In the following section we give a short intro-
duction to the semantics of (definite) constraint logic programs. In Section three, we
discuss the inadequacy of the standard notion of constraint domain when dealing with
negation and propose a new one. In Section four we study the semantics of programs

when defined over a given arbitrary constraint domain. Then, in the following section
we define several categories for defining the various semantic domains involved and
define the functorial semantics of logic programs. Finally, in Section 6 we prove the
equivalence of the logical, fixpoint and operational semantics.

Due to lack of space, the paper includes no proofs. However, the detailed proofs
can be found at our web page (http://www.lsi.upc.edu/˜orejas/) in the extended
version of the paper.

2 Preliminaries

2.1 Basic Notions and Notation

A signatureΣ consists of a pair of sets(FSΣ,PSΣ) of function and predicates symbols,
respectively, with some associated arity.TΣ(X) denotes the set of allfirst-orderΣ-terms
over variables fromX, andTΣ denotes the set of all ground terms. A literal is either an
atomp(t1, . . . , tn) (namely a positive literal) or a negated atom¬p(t1, . . . , tn) (namely a
negative literal). The setFormΣ is formed by allfirst-order Σ-formulaswritten (from
atoms) using connectives¬,∧,∨,→,↔ and quantifiers∀,∃. We denote byf ree(ϕ) the
set of all free variables occurring inϕ. ϕ(x) specifies thatf ree(ϕ)⊆ x. SentΣ is the set
of all ϕ ∈ FormΣ such thatf ree(ϕ) = /0, calledΣ-sentences. Byϕ∀rz (resp.ϕ∃rz) we
denote the formula∀x1 . . .∀xn(ϕ) (resp.∃x1 . . .∃xn(ϕ)), wherex1 . . .xn are the variables
in f ree(ϕ)rz. In particular, the universal (resp. existential) closure, that isϕ∀r /0 (resp.
ϕ∃r /0) is denoted byϕ∀ (resp.ϕ∃).

To define the semantics of normal logic programs and their completion, it becomes
necessary to use a concretethree-valuedextension of the classical two-valued inter-
pretation of logical symbols. The connectives¬,∧,∨ and quantifiers (∀, ∃) are inter-
preted as in Kleene’s logic ([12]). However,↔ is interpreted as the identity of truth-
values (hence,↔ is two-valued) Moreover, to makeϕ ↔ ψ logically equivalent to
(ϕ→ ψ)∧ (ψ→ ϕ), Przymusinski’s interpretation ([17]) of→ is required. It is also
two-valued and gives the valuef exactly in the following three cases:t→ f, t→ u
andu→ f. Equality is two-valued also. Following [3], it is easy to see that the above
detailed three-valued logic satisfies (as classical first-order logic does) all of the basic
metalogical properties, in particular completeness and compactness.

A three-valuedΣ-structure,A , consists of a universe of valuesA, and an interpre-
tation of every function symbol by a total function (of adequate arity), and of every
predicate symbol by a total function on the set of the three boolean values{t,f,u} (i.e.,
a partial relation). Hence, terms cannot be undefined, but atoms can be interpreted as
u. Classical (two-valued) first-orderΣ-structures can be seen as a special case of three-
valued ones, where every predicate symbol is interpreted by a total relation.ModΣ de-
notes the set of all three-valuedΣ-structures. AΣ-structureA ∈ModΣ is a model of (or
satisfies) a set of sentencesΦ if, and only if, A(ϕ) = t for any sentenceϕ ∈ Φ. This
is also denoted byA |= Φ. We will denote byA |=σ Φ that A satisfies the sentence
σ(Φ), resulting from the valuationσ : f ree(Φ)→ A of the formulaΦ. Given a setΦ
of Σ-sentencesModΣ(Φ) is the subclass ofModΣ formed by the models ofΦ. Logical
consequenceΦ |= ϕ means thatA |= ϕ holds for allA ∈ModΣ(Φ). We say that two

Σ-structuresA andB areelementarily equivalent, denotedA ' B if A(ϕ) = B(ϕ) for
every first-orderΣ-sentenceϕ. We denote byEQ(A) the set of allΣ-structures that are
elementarily equivalent toA .

A Σ-theoryis a set ofΣ-sentences closed under logical consequence. A theory can
be presentedsemanticallyor axiomatically. A semantic presentation is a classC of Σ-
structures. Then, the theory semantically presented byC is the set of allΣ-sentences
which are satisfied byC :

Th(C) = {ϕ ∈ SentΣ | f or all A ∈ C A(ϕ) = t}

An axiomaticpresentation is a decidable set of axiomsAx⊆ SentΣ. Then, the theory
axiomatically presented byAx is the set of all logical consequences ofAx:

Th(Ax) = {ϕ ∈ SentΣ | Ax |= ϕ}

A Σ-theoryT is said to becompleteif, and only if, ϕ ∈ T or ¬ϕ ∈ T holds for every
Σ-sentenceϕ.

Example 1 Given a signatureΣ, the free-equality theoryF EA(Σ) is complete and can
be presented by the following axioms:
(1) ∀x(x = x)
(2) ∀x∀y(x = y ↔ f (x) = f (y)) for each f∈ FSΣ
(3) ∀x∀y(x = y → (p(x)↔ p(y))) for each p∈ PSΣ (in part. =)
(4) ∀x∀y¬(f (x) = g(y)) for each pair f,g∈ FSΣ such that f6≡ g
(5) ∀x¬(x = t) for each t∈ TΣ(X) and x∈ X such that x∈ var(t) and x 6≡ t.
(6) ∀x(

∨
f∈FSΣ ∃y(x = f (y))) if Σ is finite.

2.2 Constraint Domains

A constraint logic program can be seen as a program where some function and predicate
symbols have a predefined meaning on a given domain, called the constraint domain.
To be more precise, a constraint domain determines the interpretation of the given pre-
defined symbols. In particular, according to the standard approach for defining the class
of CLP(X) programs ([10], [11]), a constraint domainX consists of five parts:

X = (ΣX ,LX ,AxX ,DX ,solvX)

whereΣX = (FSX ,PSX) is the constraint signature, i.e., the set of symbols that are
considered to be predefined;LX is the constraint language, i.e., the class ofΣX -formulas
that can be used in programs;DX is the domain of computation, i.e., a model defining
the semantics of the symbols inΣX ; AxX is an axiomatization of the domain, i.e., a
decidable set ofΣX -sentences such thatDX |= AxX ; and, finally,solvX is a constraint
solver, i.e., an oracle that answers queries about constraints and that is used for defining
the operational semantics of programs. In general, constraint solvers are expected to
solve constraints, i.e., given a constraintc, one would expect that the solver will provide
the values that satisfy the constraint or that it returns an equivalent constraint insolved
form. However, in our case, we just need the solver to answer (un)satisfiability queries.

We consider that, given a constraintc, solvX (c) may returnF, meaning thatc is not
satisfiable or it may answerT, meaning thatc is valid in the constraint domain, i.e., that
¬c is unsatifiable. The solver may also answerU meaning that either the solver does not
know the right answer or that the constraint is neither valid nor unsatifiable.

In addition, a constraint domainX must satisfy:

– T,F, t1 = t2 ∈ LX (hence the equality symbol= belongs toPSX) andLX is closed
under variable renaming, existential quantification and conjunction. Moreover, the
equality symbol= is interpreted as the equality inDX , andAxX includes the equal-
ity axioms for=.

– The solver does not take variable names into account, that is, for all renamingsρ,
solvX (c) = solvX (ρ(c))

– AxX ,DX andsolvX agree in the sense that:

1. DX is a model ofAxX .
2. For allc∈ LX ∩SentΣX : solvX (c) = T⇒ AxX |= c.
3. For allc∈ LX ∩SentΣX : solvX (c) = F⇒ AxX |= ¬c.

Moreover,solvX must be well-behaved, i.e., for any constraintsc1 andc2:

1. solvX (c1) = solvX (c2) if |= c1↔ c2.

2. If solvX (c1) = F and|= c1← c∃r f ree(c1)
2 thensolvX (c2) = F.

In what follows, a constraint domainX = (ΣX ,LX ,AxX ,DX ,solvX) will be called
a (ΣX ,LX)-constraint domain.

2.3 Constraint Logic Programs

A constraint logic program over a(ΣX ,LX)-constraint domainX can be seen as a gen-
eralization of a definite logic program. In particular, a constraint logic program consists
of rulesp :− q1, ...,qn, where eachqi is either an atom or a constraint inLX and where
atoms have the formq(t1, . . . , tn) whereq is a user-defined predicate andt1, . . . , tn are
terms overΣX . A constraint logic program rule

p(t1, . . . , tn) :− q1, ...,qn

can be written, equivalently, in flat form

p(X1, . . . ,Xn) :− q1, ...,qn,X1 = t1, . . .Xn = tn

whereX1, . . . ,Xn are fresh new variables. In what follows we will assume that constraint
logic programs consist only of flat rules. We will also assume that the rules are written
as follows:

p :− q1, ...,qn�c1, ...,cm

where theq1, ...,qn are atoms and thec1, ...,cm are constraints. Moreover we will also
assume that all clauses defining the same predicatep have exactly the same head
p(X1, . . . ,Xm).

The semantics of a(ΣX ,LX)-logic programP can be also seen as a generalization
of the semantics of a (non-constrained) logic program. In particular, in [10, 11], the
meaning ofP is given in terms of the usual three kinds of semantics.

Theoperational semanticsis defined in terms of finite or infinite derivations

S1 S2 . . . Sn . . .

where the statesSi in these derivations are tuplesGi�Ci , whereGi is a goal (i.e., a
sequence of atoms) andCi is a sequence of constraints (actually a constraint, since con-
straints are closed under conjunction). In particular, from a stateS= G�C we can de-
rive the stateS′ = G′�C′ if there is an atomp(t1, . . . , tn) in G, and a rulep(X1, . . . ,Xn) :
− G0�C0, whereX1, . . . ,Xn are fresh new variables not occurring inG�C, such that
G′ =< G0,(G\p(t1, . . . , tn)) > andC′ =< C,C0,X1 = t1, . . .Xn = tn > is satisfiable.
Then, given a derivationS1 S2 . . . Sn, with Sn = Gn�Cn, we say thatCn is
an answer to the queryS1 = G1�C1 if Gn is the empty goal.

The logical semanticsof P is defined as the theory presented byP∪AxX .
Finally its algebraic semantics, M(P,X), is defined as the least model ofP extend-

ing DX , in the sense that this model agrees withDX in the corresponding universe of
values and in the interpretation of the symbols inΣX . It may be noted thatΣ-structures
extendingDX can be seen as subsets ofBaseP(DX), whereBaseP(DX) is the set of all
atoms of the formp(α1, . . . ,αn), wherep is a user-defined predicate andα1, . . . ,αn are
values inDX .

As in the standard case, the algebraic semantics ofP can be defined as the least
fixpoint of the immediate consequence operatorTX

P : 2BaseP(DX) → 2BaseP(DX) defined
as follows:

TX
P (I) = {σ(p) | σ : f ree(p)→DX is a valuation,(p :−a�c) ∈ P, I |=σ a andDX |=σ c}

In [11] it is proved that the above three semantics are equivalent in the sense that:

– The operational semantics is sound with respect to the logical semantics. That is, if
a goal G has answer c then

P∪AxX |= c→G

– The operational semantics is also sound with respect to the algebraic semantics.
That is, if a goal G has answer c then

M(P,X) |= c→G

– The operational semantics is complete with respect to the logical semantics. That
is, if

P∪AxX |= c→G

thenG has answersc1, . . . ,cn such that

AxX |= c↔ c1∨ . . .∨cn

– The operational semantics is complete with respect to the algebraic semantics. That
is, if

M(P,X) |=σ G

whereσ : f ree(G)→DX is a valuation, thenG has an answerc such that

DX |=σ c

2.4 A functorial semantics for constraint logic programs

The semantic definitions sketched in the previous subsection are, in our opinion, not
fully satisfactory. On one hand, a constraint logic program can be seen as a logic pro-
gram parameterized by the constraint domain. Then, we think that its semantics should
also be parameterized by the domain. This is not explicit in the semantics sketched
above. On the other hand, we think that the formulation of some of the previous equiva-
lence results could be found to be, in some sense, not fully satisfactory. Let us consider,
for instance, the last result, i.e., the completeness of the operational semantics with re-
spect to the algebraic semantics. In our opinion, a fully satisfactory result would have
said something like:

if M(P,X) |=σ G whereσ : f ree(G)→DX is a valuation, then G has an answer c such
that solvX (c) 6= F

However this property will not hold unless the constraint solversolvX is also com-
plete with respect to the computation domain. A similar situation would occur with the
result stating the completeness of the operational semantics with respect to the logical
semantics. In that case we would need that thesolvX is complete with respect to the
domain theory.

In our opinion, each of the three semantics (logical, algebraic and operational se-
mantics) of a constraint logic program should be some kind of mapping. Moreover, we
can envision that the parameters of the logical definitions would be constraint theo-
ries. Similarly, the parameters for algebraic definitions would be computation domains.
Finally, the parameters for the operational definitions would be constraint solvers.

In this context, proving the soundness and completeness of one semantics with re-
spect to another one would mean comparing the corresponding mappings. In particular,
a given semantics would be sound and complete with respect to another one if the two
semantic mappings are in some sense equivalent. Or, in more detail, if the two map-
pings when applied to the same (or equivalent) argument return an equivalent result.
On the other hand, we believe that these mappings are better studied if the given do-
mains and codomains are not just sets or classes but categories, which means taking
care of their underlying structure. As a consequence, these mappings would be defined
as functors and not just as plain set-theoretic functions, which means that they must be
structure-preserving mappings.

In Section 5 the above ideas are fully developed for the case of constraint normal
logic programs. Then, the case of constraint logic programs can be seen as a particular
case.

3 Domain constraints for constraint normal logic programs

In this section, we provide a notion of constraint domain for constraint normal logic
programming. The idea, as discussed in the introduction, is that this notion, together
with a proper adaptation of the semantic constructions used for (unconstrained) nor-
mal logic programs, will provide an adequate semantic definition for constraint normal

logic programs. In particular, the idea is that the logical semantics of a program should
be given in terms of the (3-valued) Clark-Kunen completion of the program, the op-
erational semantics in terms of some form of constructive negation [19, 5, 6], and the
algebraic semantics in terms of some form of fixpoint construction (as, for example, in
[19, 6, 15]).

The main problem is that a straightforward extension (as it may be just the inclu-
sion of negated atoms in the constraint languages) of the notion of constraint domain
introduced in Subsection 2.2 will not work, as the following example shows.

Example 2 Let P be the CLP(N) program:

q(z) :− �z= 0
q(v) :− q(x)�v = x+1

and assume that its logical semantics is given by its completion:

∀z(q(z)↔ (z= 0∨∃x(q(x)∧v = x+1))).

This means, obviously, that q(n) should hold for every n. Actually, the model defined
by the algebraic semantics seen in Subsection 2.2 would satisfy∀zq(z).

Now consider that P is extended by the following definitions:

r :− ¬q(x)
s :− ¬r

whose completion is:
(r ↔∃x(¬q(x))) ∧ (s↔¬r).

Now, the operational semantics, and also theω-iteration of the Fitting’s operator
[7], would correspond to a three-valued structure extendingN , where both r and s are
undefined and where, as before, q(n) holds for every n. Unfortunately, such a structure
would not be a model of the completion of the program since this structure satisfies
∀zq(z) but it does not satisfy either¬r or s.

The problem with the example above is that, if the algebraic semantics is defined by
means of theω-iteration of an immediate consequence operator, then, in many cases, the
resulting structure would not be a model of the completion of the program. Otherwise,
if we define the algebraic semantics in terms of some least (with respect to some order
relation) model of the completion extendingN , then, in many cases, the operational
semantics would not be complete with respect to that model. Actually, in some cases
this model could be non (semi-)computable ([2], [8]).

The situation could be considered similar to what happens in the case of (non-
constrained) normal logic programs, where the least fixpoint of Fitting’s operator may
not agree with the operational semantics of a given program. However, the situation is
worse in the current case. On one hand, in the non-constrained case one may define
other immediate consequence operators (e.g. [6, 15]) whose least fixpoint is equivalent
to the operational semantics of a given program and provides a model of the 3-valued
completion of the program. Unfortunately these operators would not be adequate in the

constrained case. For instance, in the example above they would build models which
are not extensions ofN . On the other hand, if when defining the logical semantics of
a program we restrict our attention to the structures extendingN (i.e., if we consider
that the class of models of a programP is the class of all 3-valued structures satisfy-
ing Comp(P) and extendingN) then we cannot expect the operational semantics to be
complete with respect to the logical consequences of this class of models.

In our opinion, the problem is related to the following observation. Let us sup-
pose, in the example above, that the computation domain would have been any other
algebra which is elementarily equivalent to the algebra of the natural numbers, instead
of N itself. Then, no difference should have been noticed, since both algebras satisfy
exactly the same constraints, i.e., we may consider that two structures that are elemen-
tarily equivalent should be considered indistinguishable as domains of computation for
a given constraint domain. As a consequence, we may consider that the semantics of
a program over two indistinguishable constraint domains should also be indistinguish-
able. However, ifX = (Σ,L ,Ax,D,solv) andX ′ = (Σ,L ,Ax,D′,solv) are two constraint
domains such thatD andD′ are elementarily equivalent andP is a(Σ,L)-program, then
M(P,X) andM(P,X ′) are not necessarily elementarily equivalent. In particular if we
consider the programP of Example 2 and we consider as constraint domain a non-
standard model of the natural numbersN ′, then we would have thatM(P,N) |= ∀zq(z)
butM(P,N ′) 6|= ∀zq(z).

In this sense, we think that this problem is caused by considering that the domain of
computation,DX , of a constraint domain is a single structure. In the case of programs
without negation this apparently works fine and it seems quite reasonable from an intu-
itive point of view. For instance, if we are writing programs over the natural numbers,
it seems reasonable to think that the computation domain is the algebra of natural num-
bers. However, when dealing with negation, we think that the computation domain of
a constraint domain should be defined in terms of the class of all the structures which
are elementarily equivalent to a given one. To be precise, we reformulate the notion of
constraint domain as follows:

Definition 3 A constraint domainX is a 5-tuple:

X = (ΣX ,LX ,AxX ,DomX ,solvX)

whereΣX = (FSX ,PSX) is the constraint signature,LX is the constraint language,
DomX = EQ(DX) is the domain of computation, i.e., the class of of allΣX -structures
which are elementarily equivalent to a given structureDX , AxX is a decidable set of
ΣX -sentences such thatDX |= AxX , and solvX is a constraint solver, such that:

– T,F, t1 = t2∈LX (hence the equality symbol= belongs to PSX) andLX is closed un-
der variable renaming, existential quantification, conjunction and negation. More-
over, the equality symbol= is interpreted as the equality in DomX and AxX includes
the equality axioms for=.

– The solver does not take variable names into account, that is, for all variable re-
namingsρ, solvX (c) = solvX (ρ(c))

– AxX ,DomX and solvX agree in the sense that:
1. DX is a model of AxX .

2. For all c∈ LX ∩SentΣ: solvX (c) = T⇒ AxX |= c.
3. For all c∈ LX ∩SentΣ: solvX (c) = F⇒ AxX |= ¬c.

In addition, we assume that solvX is well-behaved, i.e., that for any constraints c1

and c2:

1. solvX (c1) = solvX (c2) if |= c1↔ c2.

2. If solvX (c1) = F and|= c1← c∃r f ree(c1)
2 then solvX (c2) = F.

As before, a constraint domainX =(ΣX ,LX ,AxX ,DomX ,solvX) is called a(ΣX ,LX)-
constraint domain.

4 Semantic constructions for constraint normal logic programs

Analogously to constraint logic programs, given a signatureΣ = (PSΣ,FSΣ), normal
constraint logicΣ-programs over a constraint domainX = (ΣX ,LX ,AxX ,DomX ,solvX),
can be seen as a generalization of a normal logic programs. So, aΣ-program now con-
sists of clauses of the form

a :− `1, ..., `m�c1, . . . ,cn

wherea and thè i , i ∈ {1, . . . ,m}, are a flat atom and flat literals, respectively, whose
predicate symbols belong toPSΣ \PSX and thec j , j ∈ {1, . . . ,n} belong toLX . For this
class of programs, we also assume that all clauses defining the same predicatep have
exactly the same headp(X1, . . . ,Xm).

4.1 Logical semantics

The standard logical meaning of aΣ-programP is its (generalized) Clark’s completion
CompX (P) = AxX ∪P∗, whereP∗ includes a sentence

∀z(q(z)↔ ((G1∧c1)∃rz∨ . . .∨ (Gk∧ck)∃rz))

for eachq∈ PSΣ \PSX , and where{(q(z) : − G1�c1), . . . ,(q(z) : − Gk�ck)} is the set
3 of all the clauses inP with head predicateq. In what follows, this set will be denoted
by De fP(q). Intuitively, in this semantics we are considering thatDe fP(q) is acomplete
definitionof the predicateq. A weaker logical meaning for the programP is obtained
by defining its semantics asAxX ∪P∀, whereP∀, is the set including a sentence

∀z(q(z)← ((G1∧c1)∃rz∨ . . .∨ (Gk∧ck)∃rz))

for eachq∈ PSΣ \PSX , and where, as above,De fP(q) = {(q(z) :−G1�c1), . . . ,(q(z) :
−Gk�ck)}.

3 If there are no clauses inP with head predicateq, i.e., the set is empty, then the above sentence
is simplified to∀z(q(z)↔ F

4.2 TheBCN operational semantics

In this section we generalize theBCN operational semantics introduced in [16] and
refined in [1] in such a way that it can be used for any constraint domain. TheBCN
operational semantics is based on two operators originally introduced by Shepherdson
[18] to characterize Clark-Kunen’s semantics in terms of satisfaction of (equality) con-
straints. Such operators exploit the definition of literals in the completion of programs
and associate a constraint formula to each query. As a consequence, the answers are
computed, on one hand, by a symbolic manipulation process that obtains the associated
constraint(s) of the given query and, on the other hand, by a constraint checking pro-
cess that deals with such constraint(s). In particular, the original version ([16]) of the
BCN operational semantics works with programs restricted to the constraint domain of
terms with equality. In that case,BCNuses the equality theoryF EA , defined by Clark
[4] (or any equation solver) as a solver. Here, we generalize this semantics to arbitrary
constraint domains.

Definition 4 For any program P, the operators TPk and FP
k associate a constraint to

each query, as follows:

Let De fP(q)={q(z) :− `i�ci | 1≤ i ≤m}

TP
0 (q(z)) = F TP

k+1(q(z)) =
∨m

i=1∃yi(ci ∧TP
k (`i))

FP
0 (q(z)) = F FP

k+1(q(z)) =
∧m

i=1∀yi(¬ci ∨FP
k (`i))

For all k ∈ IN:

TP
k (T) = T FP

k (T) = F

TP
k (¬q(z)) = FP

k (q(z)) FP
k (¬q(z)) = TP

k (q(z))

TP
k (

∧n
j=1` j) =

∧n
j=1TP

k (` j) FP
k (

∧n
j=1` j) =

∨n
j=1FP

k (` j)

For any c∈ LX , for any k∈ IN:

TP
k (c) = c FP

k (c) = ¬c

Definition 5 Let P be a program and solvX a constraint solver. A BCN(P,solvX)-
derivation stepis obtained by applying the following derivation rule:

(R) `1, `2�d is BCN(P,solvX)-derivedfrom `1, `(x), `2�c if there exists k> 0 such that

d = TP
k (`(x))∧c and solvX (d∃) 6= F.

Definition 6 Let P be a program and solvX a constraint solver.

1. A BCN(P,solvX)-derivation from the query L is a succession of BCN(P,solvX)-
derivation steps of the form

L (P,solvX) . . . (P,solvX) L′

Then, L
n
 (P,solvX)L′ means that the query L′ is BCN(P,solvX)-derived from the query

L in n BCN(P,solvX)-derivation steps.

2. A finite BCN(P,solvX)-derivation L
n
 (P,solvX)L′ is asuccessfulBCN(P,solvX)-derivation

if L′ = �c.
In this case, c∃\ f ree(L) is the corresponding BCN(P,solvX)-computed answer.

3. A query L= `�c is a BCN(P,solvX)-failed queryif solvX ((c→ FP
k (`))∀) = T for

some k> 0 such that solvX (FP
k (`)∀) 6= F.

A selection ruleis a function selecting a literal in a query and, wheneverSolvxis
well-behaved,BCN(P,solvX) is independent of the selection rule used. To prove this
assertion we follow the strategy used in [14, 11], so we first prove the next lemma.

Lemma 7 (Switching Lemma) Let P be a program and Solvx be a well-behaved solver.
Let L be a query,̀1, `2 be literals in L and let L (P,solvX) L1 (P,solvX) L′ be a non-failed
derivation in which̀ 1 has been selected in L and`2 in L1. Then there is a derivation
L (P,solvX) L2 (P,solvX) L′′ in which`2 has been selected in L and`1 in L2, and L′ and L′′

are identical up to reordering of their constraint component.

Theorem 8 (Independence of the selection rule)Let P be a program and solvX a well-
behaved solver. Let L be a query and suppose that there exists a successful BCN(P,solvX)-
derivation from L with computed answer c. Then, using any selection rule R there exists
another successful BCN(P,solvX)-derivation from L of the same length with an answer
which is a reordering of c.

Next, we establish the basis for relating theBCN(P,solvX) operational semantics to
the logical semantics of a particular class of constraint logic programs. The proposition
below provides the basis for proving soundness and completeness of the semantics.

Proposition 9 Let Σ = (FSX ,PSX ∪PS) be an extension of a given signature of con-
straintsΣX = (FSX ,PSX) by a set of predicates PS, and let P be aΣ-program. Then,
for eachΣX -theory of constraints AxX , each conjunction ofΣ-literals ` and each k in
IN:

P∗∪Th(AxX) |= (TP
k (`)→ `)∀

4.3 Fixpoint semantics

According to what is argued in Section 3, we consider the domain(DomΣ/≡,�) for
computing immediate consequences defined as follows: LetDomΣ be the class of three-
valuedΣ-interpretations which are extensions of models inDomX . Then, as it is done in
[19] to extend [13] to the general constraint case, we consider the Fitting’s ordering on
DomΣ interpreted in the following sense: For all partial interpretationsA ,B ∈ DomΣ,
for eachΣX -constraintc(x) and eachΣ-literal `(x):

A � B i f f A((c→ `)∀) = t ⇒ B((c→ `)∀) = t

It is quite easy to see that(DomΣ,�) is a preorder. Therefore, we consider the equiv-
alence relation≡ induced by� (A ≡ B if, and only if, A � B andB � A), and the
induced partial order

[A], [B] ∈ DomΣ/≡ : [A]� [B] i f f A � B

to build a cpo(DomΣ/≡,�) with a bottom class[⊥Σ] such that for eachA ∈ [⊥Σ] we
have thatA((c→ `)∀) 6= t for all ΣX -constraintc(x) and allΣ-literal `(x). That is, the
set of goals of the form(c→ `)∀ satisfied by the models in[⊥Σ] is empty.

Proposition 10 (DomΣ/≡,�) is a cpo with respect to�, and, the equivalence class
[⊥Σ] is its bottom element.

Remark 11

1. The relation≡ builds classes of models which are indistinguishable with respect to
satisfaction of goal formulas.

2. Moreover, it is easy to see that all the models in a≡-class are elementarily equiv-
alent in its restrictions toΣX .

Definition 12 (Immediate consequence operatorT DomX
P) Let P be aΣ-program, then

the immediate consequence operatorT DomX
P : DomΣ/≡→ DomΣ/≡ is defined for each

[A] ∈ DomΣ/≡, as

T DomX
P ([A]) = [ΦDX

P (A)]

whereDX is the distinguished domain model in the class DomX , A is any model in[A],
and[ΦDX

P (A)] is the≡-class of models such that for eachΣX -constraint c(x) and each
Σ-atom p(x),

(i) ΦDX
P (A)((c→ p)∀) = t if, and only if, there are (renamed versions of) clauses
{p(x) :−`i

1, . . . , `
i
ni

�di |1≤ i≤m}⊆De fP(p) andDX -satisfiable constraints{ci
j |1≤

i ≤m ∧ 1≤ j ≤ ni} such that
• A((ci

j → `i
j)
∀) = t

• DX ((c→
∨

1≤i≤m∃yi(
∧

1≤ j≤ni
ci

j ∧di))∀) = t

(ii) ΦDX
P (A)((c→ ¬p)∀) = t if, and only if, for each (renamed version) clause in
{p(x) :− `i

1, . . . , `
i
ni

�di | 1 ≤ i ≤ m} = De fP(p(x)) there is a Ji ⊆ {1, . . .ni} and
DX -satisfiable constraints{ci

j | 1≤ i ≤m ∧ j ∈ Ji} such that

• A((ci
j →¬`i

j)
∀) = t

• DX ((c→
∧

1≤i≤m∀yi(
∨

j∈Ji
ci

j ∨¬di))∀) = t

where, for each i∈ {1, . . . ,m}, yi are the free variables in{`i
1, . . . , `

i
ni
,di} not inx.

Remark 13

1. In the definition of the operatorΦDX
P , we could choose any other model in DomX ,

instead ofDX , since all of them are elementarily equivalent, and the domain is just
used for constraint satisfaction checking. Similarly,A could be any other model in
[A] since it is used for checking satisfaction of sentences of the form(c→ `)∀.

2. Moreover, models in a≡-class[ΦDX
P (A)] are elementarily equivalent in its restric-

tions toΣX . In fact, [ΦDX
P (A)]|ΣX = DomX since, all classes in DomΣ are (conser-

vative) predicative extensions of DomX and, the operatorT DomX
P does not compute

new consequences fromLX . However, neither[A] nor T DomX
P ([A]) = [ΦDX

P (A)]
are elementarily equivalence classes in general.

In what follows we will prove thatT DomX
P is continuous in the cpoDomΣ/≡. As a

consequence, it has an effectively computable least fixpoint:

l f p(T DomX
P) = T DomX

P ↑ω =
⊔

[ΦDX
P ↑n]

However, it is important to notice that, as we will show in example 14,⊔
[ΦDX

P ↑n] 6= [ΦDX
P ↑ω]

In fact, the operatorΦDX
P can be considered a variant of the Stuckey’s immediate

consequence operator in [19], so, it inherits its drawbacks. On one hand,ΦDX
P is mono-

tonic but not continuous. On the other hand, it will have different behavior depending
on the constraint domain inDomX that may be predicatively extended. As argued in
Section 3, the key to solve these problems is to use the whole classDomX as domain
of computation instead of a single model. In fact, the key technical point is using its
predicative extension,DomΣ, in defining the target and the source,DomΣ/≡, of T DomX

P ,
as the following example aims to illustrate.

Example 14 Consider the CNLP(N)-program from example 2:

q(z) :− �z= 0
q(v) :− q(x)�v = x+1
r :− ¬q(x)

First, let us look at the behaviour of the operatorΦ:

– ΦN
P ↑ω would be the model extendingN where r is undefined and all the sentences

{(z= n→ q(z))∀|n≥ 0}

are true, so, the sentence∀z.q(z) will be evaluated as true inΦN
P ↑ω. This is not a

fixpoint since we can iterate once more, to obtain a different modelΦN
P ↑(ω+1)

where¬r is true.
– In contrast, if we consider any non-standard modelM elementarily equivalent to

N , the sentence∀z.q(z) will be evaluated as undefined inΦM
P ↑ω, so, no more

consequences will be obtained if we iterate once more.

Now we can compare with the behaviour ofT :

Similar to the first case,T EQ(N)
P ↑ω is the class of≡-equivalent models extending

EQ(N), where r is undefined and all the sentences

{(z= n→ q(z))∀|n≥ 0}

are true. But now, this is a fixpoint in contrast to what happens with any other operator
working over just one standard model. In particular, it is not difficult to see that the

sentence∀z.q(z) is never satisfied (by models) in[ΦN
P ↑k] for any k. This is because

we are considering also non standard models (as the predicative extension of the above
M) at each iteration. Therefore, as a consequence of the definition of

⊔
, we have that

∀z.q(z) is not satisfied in

T EQ(N)
P ↑ω =

⊔
[ΦN

P ↑k]

That is,¬r is not a consequence that can be added (or satisfied) if the iteration forward
proceeds.

Theorem 15 T DomX
P is continuous in the cpo(DomΣ/≡,�), so it has a least fixpoint

T DomX
P ↑ω.

Finally, as a consequence of the continuity ofT DomX
P , we can extend a result from

Stuckey [19] related to the satisfaction of the logical consequences of the completion
in any ordinal iteration ofΦDX

P , until the ω iteration ofT DomX
P , that is, until its least

fixpoint:

Theorem 16 (Extended Theorem of Stuckey)
Let Th(DomX) be the complete theory of DomX . For eachΣ-goal `�c:

1. P∗∪Th(DomX) |=3 (c→ `)∀ ⇔ ∀A ∈ T DomX
P ↑ω : A((c→ `)∀) = t

2. P∗∪Th(DomX) |=3 (c→¬`)∀ ⇔ ∀A ∈ T DomX
P ↑ω : A((c→¬`)∀) = t

5 Functorial semantics

As introduced in Subsection 2.4, one basic idea in this work is to formulate the construc-
tions associated to the definition of the operational, least fixpoint and logical semantics
of constraint normal logic programs in functorial terms. This allows us to separate the
study of the properties satisfied by these three semantic constructions, from the classic
comparisons of three kinds of semantics of programs over a specific constraint domain.
Moreover, once the equivalence of semantic constructions is (as intended) obtained,
the classicalsoundnessandcompletenessresults that can be obtained depending on the
relations among solvers, theories and domains, are just consequences of the functorial
properties.

However, comparing these semantic functors is not straightforward since, intu-
itively, their domains and codomains are different categories. In particular, we can see
that the logical semantics of a(ΣX ,LX)-constraint logic programP as a mapping (a
functor), let us denote it byLOGP, whose arguments are logical theories and whose
results are also logical theories. The algebraic semantics ofP, denotedALGP, can be
seen as a functor that takes as arguments logical structures and returns as results logical
structures. Finally, the operational semantics ofP, denotedOP P can be considered to
take as arguments constraint solvers and return as results (for instance) interpretations
of computed answers.

Now, comparing the algebraic and the logical semantics is not too difficult, since
we can consider logical theories not as sets of formulas but, equivalently, as classes of
logical structures. In this way, the domains and codomains ofLOGP andALGP would

be, in both cases, (classes of) logical structures. Of course, we could also associate
classes of models to solvers, but given this semantics to solvers would not be adequate.
In particular, this would be equivalent to closing the solver (the associated set of non
unsatisfiable constraints) up to logical consequence. The problem is that the class of
all models that satisfy a given set of formulas (constraints) would also satisfy all its
logical consequences. However, solvers may not show a logical behaviour (even if they
are well-behaved according to Section 2.2). A solver may say that certain constraints
are unsatisfiable but may be unable to say that some other constraint is unsatisfiable,
even if its unsatisfiability is a logical consequence of the unsatisfiability of the former
constraints.

We take actually the dual approach: we will represent all the semantic domains in-
volved in terms of sets of formulas. This is a quite standard approach in the area of
Logic Programming where, for instance, (finitely generated) models are often repre-
sented as Herbrand structures (i.e., as classes of ground atoms) rather than as algebraic
structures. One could criticize this approach in the framework of constraint logic pro-
gramming, since a class does not faithfully represents a single model (the constraint
domain of computationDomX) but a class of models. However, we have argued pre-
viously that, when dealing with negation, a constraint domain of computation should
not be a single model, but the class of models which are elementarily equivalent to
DomX . In this sense, one may note that a class of elementarily equivalent models is
uniquely represented by a complete theory. However, since we are dealing with three-
valued logic, we are going to represent model classes, theories and solvers as pairs of
sets of sentences, rather than just as single sets.

In what follows, we present the categorical setting required for our purposes. Being
more precise, first of all, we need to define the categories associated to solvers, compu-
tation domains and theories (axiomatizable domains). Then, we will define the category
which properly represents the semantics of programs. Finally, we will define the three
functors that respectively represent the operational, logical and algebraic semantics of
a constraint normal logic programs.

Definition 17 Given a signatureΣX , aΣX -pre-theoryM is a pair of sets ofΣX -sentences
(Mt,Mf).

Remarks and Definitions 18

1. Given a solver solvX of a given languageLX of ΣX -constraints, we will denote by
MsolvX the pre-theory associated to solvX , i.e., the pair(Mt,Mf) whereMt is
the set of all constraints c∈ LX such that solvX (c) = T and Mf is the set of all
constraints c∈ LX such that solvX (c) = F.

2. Similarly, given a set of axioms AxX of a given languageLX of ΣX -constraints, we
will denote byMAxX the theory associated to AxX .

3. Finally, given a computation domain DomX of a given languageLX of ΣX -constraints,
we will denote byMDomX the theory associated to DomX , i.e., the pair(Mt,Mf)
whereMt is the set of sentences satisfied by DomX and Mf is the set of sen-
tences which are false in DomX . Note that, since constraint domains are typically
two-valued,Mt would typically be a complete theory and, therefore,Mf is the
complement ofMt.

For the sake of simplicity, given a pre-theoryM , we will write M (c) = t, to mean
c∈Mt; M (c) = f, to mean c∈Mf; and M (c) = u, otherwise.

Now, according to the above ideas, we will define categories to represent constraint
solvers, computation domains and domain axiomatizations. Also, following similar
ideas we are going to define a category of semantic domains for programs. In this case,
we will define the semantics in terms of sets of formulas. However, we will restrict
ourselves to sets of answers, i.e., formulas with the formc→G, where G is any goal.

Definition 19 (Categories for Constraint Domains and Program Interpretations)
Given a signatureΣX we can define the following categories:

1. the category ofΣX -pre-theories, PreThΣX (or just PreThif ΣX is clear from the
context) is defined as follows:

– Its class of objects is the class ofΣX -pre-theories.
– For each pair of objectsM andM ′ there is a morphism fromM to M ′, noted

just byM �c M ′, if Mt ⊆M ′
t andMf ⊆M ′

f
2. ThΣX (or just Th) is the full subcategory of PreThΣX whose objects are theories.
3. CompThΣX

(or just CompTh) is the full subcategory of PreThΣX whose objects are

complete theories
4. Given a constraint languageLX and a signatureΣ extendingΣX , ProgIntΣ(ΣX ,LX)

(or just ProgInt if Σ,ΣX andLX are clear from the context) is the category where:

– Its objects are sets of sentences(c→ `)∀ or (c→¬`)∀, where c∈ LX and` is
a conjunction ofΣ-literals.

– For each pair of objectsA andA ′ there is a morphism fromA to A ′, noted just
by A � A ′ if A ⊆ A ′

• ΣX ⊆ ΣX ′ and
• for each(FSX ,PSX ∪PS)-literal `(x) andΣX -formula c(x), A((c→ `)∀) =
t implies A ′((c→ `)∀) = t, and A((c→ ¬`)∀) = t implies A ′((c→
¬`)∀) = t.

As pointed out before, this categorical formulation allows us to speak about rela-
tions among solvers, domains and theories by establishing morphisms among them in
the common categoryPreTh, in such a way that the morphism between two objects rep-
resents the relation“agrees with” (or completenessif they are seen in the reverse sense).
To be more precise, given a constraint (domain) parameterX =(ΣX ,LX ,AxX ,DomX ,solvX),
we can reformulate the conditions (in Section 2.2) required amongsolvX , DomX and
AxX as:

MsolvX �c MAxX �c MDomX

in PreTh. That is, sinceDomX must be a model ofAxX , there is a morphism from
MAxX to MDomX . Moreover, sincesolvX must agree withAxX , there is a morphism from
MsolvX to MAxX . Then, by transitivity,solvX agrees with DomX , so there is a morphism
MsolvX to MDomX . In addition, we can also reformulate other conditions in these terms:

– solvX is AxX -complete(respectively,DomX -complete) if, and only if, MAxX �c

MsolvX (respectively,MDomX �c MsolvX).
– AxX completelyaxiomatizesDomX if, and only if,MDomX �c MAxX , so, as expected

MAxX = MDomX .

Finally, we will define the three functors that represent, for a given programP, its
operational, its algebraic or least fixpoint, and its logical semantics.

Definition 20 (Functorial semantics)Let P be aΣ-program. We can define three func-
torsOP P : PreTh→ProgInt, ALGP :CompTh→ProgInt andLOGP : Th→ProgInt
such that:

a) OP P, ALGP andLOGP assign objectsM in its corresponding source category to
objects in ProgInt, in the following way

1. Operational Semantics:

OP P(M) = {(c→ `)∀ | (M (c∃) 6= f) and there is a BCN(P,M)−derivation for
`�T with computed answer d such thatM ((c→ d)∀) = t}∪
{(c→¬`)∀ | `�c is a BCN(P,M)− failed goal}

2. Least Fixpoint Semantics:

ALGP(M) = {(c→ `)∀ | (M (c∃) 6= f)∧T M
P ↑ω |= (c→ `)∀}∪

{(c→¬`)∀ | (M (c∃) 6= f)∧T M
P ↑ω |= (c→¬`)∀}

3. Logical Semantics:

LOGP(M) = {(c→ `)∀ | (M (c∃) 6= f)∧P∗∪Th(M) |= (c→ `)∀}∪
{(c→¬`)∀ | (M (c∃) 6= f)∧P∗∪Th(M) |= (c→¬`)∀}

b) To each pair of objectsM and M ′ such thatM �c M ′ in the corresponding
source category,F ∈ {ALGP,LOGP} assigns the morphismF (M)� F (M ′) in
ProgInt. However,OP P is contravariant, i.e.,M �c M ′ in PreThimpliesF (M ′)�
F (M) in ProgInt.

It is easy to see thatALGP and LOGP are functors as a straightforward conse-
quence of the fact that morphisms are partial orders and the monotonicity of the opera-
tor T M

P and the logic, respectively. The contravariance ofOP P is a consequence of the
fact that theBCN-derivation process only makes unsatisfiability queries to the solver
to prune derivations. This means that whenMf is larger the derivation process prunes
more derivation sequences.

Now, given a(ΣX ,LX)-programP, we can define the semantics ofP as

[[P]] = (OP P,ALGP,LOGP)

6 Equivalence of semantics

In this subsection, we will first prove that the semantic constructions represented by the
functorsOP P, ALGP andLOGP are equivalent in the sense that for each objectM in
CompTh, OP P(M), ALGP(M), andLOGP(M) are the same object inProgInt.

Then, we will show the completeness of the operational semantics with respect
to the algebraic and logical semantics just as a consequence of the fact that functors
preserve the relations from its domains into its codomains.

Theorem 21 Let P be aΣ-program. For each objectM in CompTh,

OP P(M) = ALGP(M) = LOGP(M)

in ProgInt.

Finally, we present the usual completeness results of the operational semantics that
can be obtained when the domains, theories and solvers are not equivalent. As we
pointed out before, these results can be obtained just as a consequence of working with
functors. In particular, sinceMsolvX �c MDomX the contravariance ofOP P implies that
ALGP(MDomX)�c OP P(MsolvX), and similarly for the logical semantics. That is:

Corollary 22 (Completeness of the operational semantics)For any program P,OP P

is complete with respect toALGP and with respect toLOGP. That is, for each con-
straint domain(ΣX ,LX ,AxX ,DomX ,solvX):

– ALGP(MDomX)�c OP P(MsolvX)
– LOGP(MAxX)�c OP P(MsolvX)

Acknowledgements: The authors would like to thank an anonymous referee for his
work in improving this paper. This work has been partially supported by the Spanish
CICYT project GRAMMARS (ref. TIN2004-07925-C03).

References

1. JavierÁlvez, Paqui Lucio, and Fernando Orejas. Constructive negation by bottom-up com-
putation of literal answers. InProceedings of the 2004 ACM Symposium on Applied Com-
puting, pages 1468–1475, 2004.

2. Jan A. Bergstra, Manfred Broy, J. V. Tucker, and Martin Wirsing. On the power of algebraic
specifications. In Jozef Gruska and Michal Chytil, editors,Mathematical Foundations of
Computer Science 1981, Strbske Pleso, Czechoslovakia, August 31 - September 4, 1981,
Proceedings MFCS, volume 118 ofLecture Notes in Computer Science, pages 193–204.
Springer, 1981.

3. W. A. Carnielli. Sistematization of finite many-valued logics through the method of tableaux.
Journal of Symbolic Logic, 52(2):473–493, 1987.

4. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,Logic and Databases,
pages 293–322. Plenum Press. New York, 1978.

5. W. Drabent. What is a failure? An approach to constructive negation.Acta Inforḿatica,
32:27–59, 1995.

6. F. Fages. Constructive Negation by pruning.Journal of Logic Programming, 32:85–118,
1997.

7. M. Fitting. A Kripke-Kleene semantics for logic programs.Journal of Logic Programming,
4:295–312, 1985.

8. J. Goguen and J. Meseguer.Initiality, Induction and Computability. in Algebraic Methods
in Semantics, (M. Nivat and J. Reynolds, eds.). Cambridge Univ. Press:459–540, 1985.

9. Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InPOPL, pages 111–
119, 1987.

10. J. Jaffar and M. Maher. Constraint logic programming: a survey.The Journal of Logic
Programming, (19/20):503–581, 1994.

11. J. Jaffar, M. Maher, K. Marriot, and P. Stukey. The semantics of constraint logic programs.
The Journal of Logic Programming, (37):1–46, 1998.

12. S. C. Kleene.Introduction to Metamathematics. Van Nostrand, 1952.
13. K. Kunen. Signed data dependencies in logic programs.Journal of Logic Programming,

7:231–245, 1989.
14. J. W. Lloyd.Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
15. P. Lucio, F. Orejas, and E. Pino. An algebraic framework for the definition of compositional

semantics of normal logic programs.Journal of Logic Programming, 40:89–123, 1999.
16. E. Pasarella, E. Pino, and F. Orejas. Constructive Negation without subsidiary trees. In

9th International Workshop on Functional and Logic Programming (WFLP’00), Benicssim,
Spain. 2000.

17. T. Przymusinski. On the declarative semantics of deductive databases and logic programs.
In J. Minker, editor,Foundations of Deductive Databases and Logic Progamming, pages
193–216. Morgan Kaufmann, 1988.

18. J.C. Shepherdson. Language and equality theory in logic programming. Technical Report
PM-91-02, University of Bristol, 1991.

19. P. J. Stuckey. Negation and constraint logic programmming.Information and Computation,
118:12–23, 1995.

7 Appendix

Proof of Lemma 7Let L be`1, `1, `2, `2, `3�c. Then,L1 = `1, `2, `2, `3�c∧TP
k (`1), k> 0,

andsolvX ((c∧TP
k (`1))∃) 6= F, and,L′ = `1, `2, `3�c∧TP

k (`1)∧TP
k′ (`2), k> 0,k′ > 0 and

solvX ((c∧TP
k (`1)∧TP

k′ (`2))∃) 6= F.
Now, to construct the derivationL (P,solvX) L2 (P,solvX) L′′ in which `2 is select first

in L1 we chooseL2 = `1, `1, `2, `3�c∧TP
k′ (`2) andL′′ = `1, `2, `3�c∧TP

k′ (`2)∧TP
k (`1).

SincesolvX ((c∧TP
k (`1)∧TP

k′ (`2))∃) 6= F, by the well-behavedness property ofsolvX ,
we know thatsolvX ((c∧TP

k′ (`2))∃) 6= F andsolvX ((c∧TP
k′ (`2)∧TP

k (`1))∃) 6= F. Hence,
L (P,solvX) L2 (P,solvX) L′′ is a validBCN(P,solvX)-derivation.

Proof of Theorem 8The proof follows by induction on the length,n, of theBCN(P,solvX)-
derivation. The base step,n = 0, trivially holds. Assume that the statement holds for
n′ < n. Now, to prove the inductive step, consider theBCN(P,solvX)-derivation

L (P,solvX) L1 (P,solvX) . . . (P,solvX) Ln−1 (P,solvX) �c

Since this is a successful derivation, each literal inL is selected at some point of the
derivation. Let us consider the literal` in L and suppose that it is selected inLi . By ap-
plying Lemma 7i times we can reorder the above derivation to obtain the following one
L (P,solvX) L′1 (P,solvX) . . . (P,solvX) L′n−1 (P,solvX) �c′, such that̀ is selected inL andc′ is
a reordering ofc. Assume that the selection ruleRselects literal̀ when considering the
singleton derivationL. From the induction hypothesis, there is anotherBCN(P,solvX)-
derivationL′1

n−1
 (P,solvX)�c′′, using the selection ruleR′, whereR′ selects literals as they

are selected by the ruleR when considering the derivationL (P,solvX) L′1
n−1
 (P,solvX)�c′′.

So, c′′ is a reordering ofc′ and hence ofc. Thus,L (P,solvX) L′1 (P,solvX) . . . (P,solvX)

L′n−1 (P,solvX) �c′′ is theBCN(P,solvX)-derivation we were looking for.

Proof of proposition 9Actually we are going to prove that for eachk∈ IN

P∗∪Th(AxX) |= (TP
k (`)→ `)∀

since it is easy to see that the general case is a straightforward consequence of Definition
4.

The proof follows by induction onk and it merely relies on standard syntactical
properties of first-order logic. For the base case,k = 0, the proposition trivially holds.
Assume that the statement holds fork′ < k. Now we have to prove it fork. There are two
situations: eitherTP

k (`) is satisfiable or is not. The proof for the latter case is analogous
to the base step. AssumeTP

k (`) is satisfiable. There are two cases:

1. ` = p(x). Then, applying twice the definition ofTP
k , the first time for atoms and the

second time for the conjunction of literals, we obtain the following:

TP
k (p(x)) =

m∨
i=1

∃yi(ci ∧TP
k−1(`

i)) =
m∨

i=1

∃yi(ci ∧
ni∧

j=1

TP
k−1(`

i
j))

Now, from the induction hypothesis we have that, for alli ∈ {1, . . . ,m} and for all
j ∈ {1, . . . ,ni}:

P∗∪Th(AxX) |= (TP
k−1(`

i
j)→ `i

j)
∀

Then, it follows logically that,

P∗∪Th(AxX) |= (
m∨

i=1

∃yi(ci ∧
ni∧

j=1

TP
k−1(`

i
j))→

m∨
i=1

∃yi(ci ∧
ni∧

j=1

`i
j))
∀

And, again, applying the definition ofTP
k we obtain the following:

P∗∪Th(AxX) |= (TP
k (p)→

m∨
i=1

∃yi(ci ∧
ni∧

j=1

`i
j))
∀ (1)

In addition, by the completion of predicatep(x), we have that,

P∗∪Th(AxX) |= (
m∨

i=1

∃yi(ci ∧
ni∧

j=1

`i
j)→ p(x))∀ (2)

Hence, by (1) and (2), we can conclude that

P∗∪Th(AxX) |= (TP
k (p(x))→ p(x))∀, k > 0

The proof for the second case is quite similar to the previous one.
2. ` = ¬p(x). Then,TP

k (¬p(x)) = FP
k (p(x)), and applying the definition ofFP

k we
obtain the following:

FP
k (p(x)) =

m∧
i=1

∀yi(¬ci ∨FP
k−1(`

i)) =
m∧

i=1

∀yi(¬ci ∨
ni∨

j=1

FP
k−1(`

i
j))

Now, using the induction hypothesis we have that, for alli ∈ {1, . . . ,m} and for all
j ∈ {1, . . . ,ni}:

P∗∪Th(AxX) |= (FP
k−1(`

i
j)→¬`i

j)
∀

Therefore, it follows logically that,

P∗∪Th(AxX) |= (
m∧

i=1

∀yi(¬ci ∨
ni∨

j=1

FP
k−1(`

i
j))→

m∧
i=1

∀yi(¬ci ∨
ni∨

j=1

¬`i
j))
∀

Again, applying the definition ofFP
k , we have that,

P∗∪Th(AxX) |= (FP
k (p(x))→

m∧
i=1

∀yi(¬ci ∨
ni∨

j=1

¬`i
j))
∀ (3)

Finally, as in the previous case, we use the completion of the predicatep(x) to
obtain:

P∗∪Th(AxX) |= (
m∧

i=1

∀yi(¬ci ∨
ni∨

j=1

¬`i
j)→¬p(x))∀ (4)

Hence, by (3) and (4), we can conclude that

P∗∪Th(AxX) |= (FP
k (p(x))→¬p(x))∀, k > 0 �

Proof of proposition 10To prove that(DomΣ/≡,�) is a cpo, we show that each in-
creasing chain{[Ai]}i∈I ⊆ DomΣ/≡

[A1]� . . .� [An]� . . .

has a least upper bound
⊔

[An]. Let [A] be such thatA((c→ `)∀) = t iff, for somen,
An((c→ `)∀) = t. Then, it is almost trivial to see that

– for eachn, [An]� [A]
– for any other[B] such that[An]� [B] for eachn, [A]� [B].

Finally, it is trivial to see that[⊥Σ]� [A] for all [A] ∈ DomΣ/≡.

Proof of Theorem 15First of all, T DomX
P is monotonic, that is, for all[A] and [B] in

DomΣ/≡
[A]� [B] ⇒ T DomX

P ([A])� T DomX
P ([B])

as a consequence of the fact thatΦDX
P is monotonic:

[A]� [B] ⇒ A � B ⇒ ΦDX
P (A)�ΦDX

P (B) ⇒ [ΦDX
P (A)]� [ΦDX

P (B)]

Then, beingT DomX
P monotonic, to prove that it is continuous it is enough to prove

that is is finitary. That is: For each increasing chain{[An]}n∈I , [A1]� . . .� [An]� . . .

T DomX
P (

⊔
[An])�

⊔
T DomX

P ([An])

Let [A] =
⊔

[An] and [B] = T DomX
P (

⊔
[An]) = [ΦDX

P (A)]. Let us assumeB((c→
`)∀) = t. We have two cases:

(a) If ` = p(x) then, by the definition of the operatorΦDX
P , we know there are (renamed

versions of) clauses{p(x) :− `i
1, . . . , `

i
ni

�di | 1≤ i ≤ m} in P and DX -satisfiable
constraints{ci

j | 1≤ i ≤m ∧ 1≤ j ≤ ni} such that
• A((ci

j → `i
j)
∀) = t

• A((c→
∨

1≤i≤m∃yi(
∧

1≤ j≤ni
ci

j ∧di))∀) = t
In such a situation, by definition of

⊔
, we know that for each 1≤ i ≤ m and 1≤

j ≤ ni there is a[Ak] ∈ {[An] | n ∈ I} such thatAk((ci
j → `i

j)
∀) = t. Then, since

(DomΣ/≡,�) is a cpo, we know that each finite sub-chain has a least upper bound
in {[An]}n∈I . Let it be [As]. In addition, since all models inDΣ are elementarily
equivalent we can state that
• As((ci

j → `i
j)
∀) = t

• As((c→
∨

1≤i≤m∃yi(
∧

1≤ j≤ni
ci

j ∧di))∀) = t

Therefore,ΦDX
P (As)((c→ p(x))∀) = t so for all modelsC ∈ [ΦDX

P (As)] we have
that C ((c→ p(x))∀) = t. Thus, by definition of

⊔
, this implies that for allC ′ ∈⊔

[ΦDX
P (An)] =

⊔
T DomX

P ([An]) we have thatC ′(c→ p(x)))∀ = t.
(b) The proof for` = ¬p(x) proceeds in the same way. That is, by the definition of

the operatorΦDX
P , we know that for each (renamed version) clause in{p(x) :

− `i
1, . . . , `

i
ni

�di | 1 ≤ i ≤ m} = De fP(p(x))) there is aJi ⊆ {1, . . .ni} and DX -
satisfiable constraints{ci

j | 1≤ i ≤m ∧ j ∈ Ji} such that
• A((ci

j →¬` j)∀) = t

• A((c→
∧

1≤i≤m∀yi(
∨

j∈Ji
ci

j ∨¬di))∀) = t
Again, by definition of

⊔
, we know that for eachj ∈ J there is a[A j]∈ {[An] |n∈ I}

such thatA j((c j → ¬` j)∀) = t. Then, as a consequence of(DomΣ/≡,�) being a
cpo, and all models inDΣ being elementarily equivalent, there is a class[As] in the
chain such that
• As((ci

j →¬` j)∀) = t

• As((c→
∧

1≤i≤m∀yi(
∨

j∈Ji
ci

j ∨¬di))∀) = t

ThereforeΦDX
P (As)((c→¬p(x))∀) = t so, for all modelsC ∈ [ΦDX

P (As)] we have
thatC ((c→¬p(x))∀) = t. And, finally, by definition of

⊔
, this implies that for all

C ′ ∈
⊔

[ΦDX
P (An)] =

⊔
T DomX

P ([An]) we have thatC ′(c→¬p(x)))∀ = t.

Proof of Theorem 16We prove that 1 and 2 hold for a goal`�c. Then, the general
case for̀ �c easily follows from the logical definition of the truth-value of(c→ `)∀ and
(c→¬`)∀.
The Stuckey’s result states thatP∗∪Th(DomX) |=3 (c→ `)∀ if, and only if,

ΦDX
P ↑ k((c→ `)∀) = t

for some finitek. So, by definition ofT DomX
P , this is equivalent to

∀A ∈ T DomX
P ↑ k : A((c→ `)∀) = t

for some finitek. And, by definition of
⊔

, to

∀A ∈
⊔

T DomX
P ↑ k : A((c→ `)∀) = t

Proof of Theorem 21First of all, we have thatLOGP(M) = ALGP(M) as a direct
consequence of Theorem 16 (Extended Theorem of Stuckey).
In what follows, we will prove that

– ALGP(M)� OP P(M) and
– OP P(M)� LOGP(M)

(a) To prove thatALGP(M)�OP P(M) we use induction on the number of iterations
of T M

P . We just consider goals such that` = p(x) and` = ¬p(x), since the general
case follows from the properties of operatorsTP

k andFP
k and the fact thatBCN is

independent of the selection rule.
The base casen = 0 is trivial, sinceT M

P ↑0 = [⊥Σ] and[⊥Σ]((c→ `)∀) 6= t for all
ΣX -constraintc(x) and allΣ-literal `(x).
Assume that for allk≤ n, T M

P ↑k((c→ `)∀) = t impliesOP P(M)((c→ `)∀) = t.

i) If ` = p(x) then, by the definition ofT M
P , we know that there are (renamed

versions of) clauses{p(x) :− `i
1, . . . , `

i
ni

�di |1≤ i ≤m} in P andM -satisfiable

constraints{ci
j | 1≤ i ≤ m ∧ 1≤ j ≤ ni} such thatT M

P ↑n((ci
j → `i

j)
∀) = t

and

M ((c→
m∨

i=1

∃yi(
ni∧

j=1

ci
j ∧di))∀) = t

Then, by the induction hypothesis we have thatOP P(M)((ci
j → `i

j)
∀) = t

for all 1 ≤ i ≤ m and 1≤ j ≤ ni . Thus, there exist successfulBCN(P,M)-
derivations for each 1≤ i ≤mand 1≤ j ≤ ni :

`i
j �di (P,M) �TP

ki
j
(`i

j)∧di

such thatM ((TP
ki

j
(`i

j))∧di)∃) 6= f andM (ci
j → TP

ki
j
(`i

j))
∀) = t.

Let k> 0 be the largest number in{ki
j |1≤ i ≤m∧ 1≤ j ≤ ni}. Then, as a con-

sequence of the monotonicity of the operatorTP
− , we knowM ((

∧ni
j=1TP

k (`i
j))∧

di)∃) 6= f. And since

TP
k (

ni∧
j=1

`i
j) =

ni∧
j=1

TP
k (`i

j)

and

M ((
ni∧

j=1

ci
j → TP

k (
ni∧

j=1

`i
j))
∀) = t

we have that

M ((c→
m∨

i=1

∃yi(T
P
k (

ni∧
j=1

`i
j)∧di))∀) = t

That is,M (TP
k+1(p(x))∃) 6= f and

M ((c→ TP
k+1(p(x)))∀) = t

Therefore, we can guarantee the existence of a successfulBCN(P,M)-derivation:

p(x)�t (P,M) �TP
k+1(p(x))

such thatOP P(M)((c→ p(x))∀) = t.
ii) The proof for ` = ¬p(x) proceeds in the same way. That is, according to the

definition of the operatorT M
P , we know that for each (possibly renamed) clause

in {p(x) :− `i
1, . . . , `

i
ni

�di |1≤ i ≤m}= De fP(p(x))) there is aJi ⊆ {1, . . .ni}
andM -satisfiable constraints{ci

j | 1≤ i ≤m ∧ j ∈ Ji} such that:

∗ T M
P ↑n((ci

j →¬` j)∀) = t

∗ M ((c→
∧

1≤i≤m∀yi(
∨

j∈Ji
ci

j ∨¬di))∀) = t
Again, by the induction hypothesis we have that for all 1≤ i ≤m and j ∈ Ji ,
OP P(M)((ci

j →¬`i
j)
∀) = t so, for somer i

j > 0

M ((ci
j → FP

r i
j
(`i

j))
∀) = t

Let r > 0 be the largest number in{r i
j |1≤ i ≤m ∧ j ∈ Ji}. Then, as a conse-

quence of the monotonicity of the operatorFP
− , we knowM ((

∨
j∈Ji

FP
r (`i

j))
∃) 6=

f. And, sinceFP
r (

∨
j∈Ji

`i
j)=

∨
j∈Ji

FP
r (`i

j) andM ((
∨

j∈Ji
ci

j→FP
r (

∨
j∈Ji

`i
j))
∀)=

t we have that

M ((c→ FP
r+1(p(x)))∀) = t

Therefore, we can guarantee thatp(x)�c is aBCN(P,M)-failure, soOP P(M)((c→
¬p(x))∀) = t.

(b) Finally, we prove thatOP P(M)� LOGP(M). Again we have two cases:
(i) Suppose thatOP P(M)((c→ ¬`)∀) = t so, `�c is a BCN(P,M)-failed goal.

Hence,M ((c→ FP
k (`))∀) = t, for somek > 0. Therefore, by Proposition 9,

we can conclude thatP∗∪Th(M) |= (c→¬`)∀.

(ii) Suppose now thatOP P(M)((c→ `)∀) = t. Again we will prove the casè=
p(x) since the general case will follow from the properties ofTP

k and the fact
that BCN is independent of the selection rule. So we assumep(x)�c has a
BCN(P,M)-derivation

p(x)�t (P,M) �TP
k (p(x))

such thatM ((c→ TP
k (p(x)))∀) = t. Then, again as a consequence of Proposi-

tion 9, we can conclude thatP∗∪Th(M) |= (c→ p(x))∀.

