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Ononehand, traditional tableau systems for temporal logic (TL) generate an auxiliary graph

that must be checked and (possibly) pruned in a second phase of the refutation procedure.

On the other hand, traditional sequent calculi for TL make use of a kind of inference rules

(mainly, invariant-based rules or infinitary rules) that complicates their automatization. A

remarkable consequence of using auxiliary graphs in the tableaux framework and invari-

ants or infinitary rules in the sequents framework is that TL fails to carry out the classical

correspondence between tableaux and sequents. In this paper, we first provide a tableau

method ttm that doesnot require auxiliary graphs todecidewhether a set ofPLTL-formulas

is satisfiable. This tableaumethod ttm is directly associated to a one-sided sequent calculus

called ttc. Since ttm is free from all the structural rules that hinder the mechanization of

deduction, e.g. weakening and contraction, then the resulting sequent calculus ttc is also

free from this kind of structural rules. In particular, ttc is free of any kind of cut, including

invariant-basedcut. Fromthededuction system ttc,weobtaina two-sided sequent calculus

GTC that preserves all these good freeness properties and is finitary, sound and complete for

PLTL. Therefore, we show that the classical correspondence between tableaux and sequent

calculi can be extended to TL. Every deduction system is proved to be complete. In addition,

we provide illustrative examples of deductions in the different systems.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Temporal logic (TL) plays a significant role in computer science, since it is an ideal tool for specifying object behaviour,

cooperative protocols, reactive systems, digital circuits, concurrent programs and, in general, for reasoning about dynamic

systems whose states change along the time.

Tableau systems are refutational proof methods that play a prominent role in the development of automated reasoning

for TL (and many other logics). The first detailed description of a tableau method for TL was presented in [24]. Since then,

several authors (e.g. [13,2,15]) have proposed and studied tableau methods for different temporal logics, sometimes in the

more general frame ofmodal logic. The interested reader is referred to [12] for a good survey. Traditional tableaumethods for

TL generate auxiliary graphs that are checked and (possibly) pruned in a second phase of the procedure. Both, the auxiliary

graph and the second phase, prevent the association of a sequent calculus proof to each tableau refutation.

Sequent calculi provide a general deductive setting that uniformly embeds refutational methods and other deduction

techniques such as goal-directed proofs or natural deduction. Traditional sequent calculi for TL (e.g. [16,17,22]) usually

include some inference rules that complicate the automatization of temporal deduction. In particular, temporal sequent

calculi either need some form of cut (classical cut or invariant-based cut) or they include infinitary rules. Cut rules imply the
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“invention” of lemmata, called cut formulas, for their application. Invariants are particular cut formulas for proving temporal

eventualities. In [16,22], two sequent calculi for TL with invariant-based rules are presented. In fact, in both approaches, a

system that includes also a cut rule is presented and then a cut elimination proof is provided. However, invariant-based rules

for temporal connectives cannot be avoided. In [17] various sequent calculi are presented for TL without the until operator

(thismeans that the logic considered has a limited expressive power). In thatwork completeness and cut-elimination proofs,

together with various interesting reductions among various calculi are provided. However, every calculus includes either

some infinitary rule or some invariant-based rule.

A remarkable consequence of using auxiliary graphs in the tableau framework and invariants or infinitary rules in the

sequent framework is that TL fails to carry out the classical correspondence between tableaux and sequents. In classical

logic, and even in some non-classical logics (e.g. many-valued logics), each step in a tableau construction corresponds to an

inference in the sequent calculus. Therefore, there is an easy, useful and well known correspondence that associates to each

tableau a sequent proof, which is a refutation.

In this paper, we introduce a tableau system together with a dual cut-free, invariant-free finitary sequent calculus for

Propositional Linear Temporal Logic (PLTL).Wefirst provide a temporal tableaumethod ttmwhich does not require auxiliary

graphs to decide if a set of PLTL-formulas is satisfiable. The tableau method ttm is directly associated to a one-sided (or Tait

style) sequent calculus that we call ttc (from tait-style temporal calculus). Since ttm is free from all the structural rules that

hinder the mechanization of deduction, e.g. weakening and contraction, then the resulting sequent calculus ttc is also free

from this kind of structural rules. In particular, ttc is free of any kind of cut, including invariant-based cut. From the deduction

system ttc, we obtain a two-sided sequent calculus gtc (from gentzen-style temporal calculus) that preserves all these good

freeness properties and is finitary, sound and complete for PLTL. Therefore, we show that the classical correspondence

between tableaux and sequent calculi can be extended to TL. Such correspondence is mainly enabled by a new style of

inference rule for eventualities which introduces a new kind of temporal deduction.

This paper extends and improves the work introduced in two previous papers (cf. [9,8]). In addition to all the work on

deductive methods for TL mentioned above, there are two approaches whose results are closely related to ours. On the one

hand, in [20] a one-phase tableau calculus is introduced which, unlike our method, is based in checking, on the fly and

branch-by-branch, the fulfillment of the so-called eventuality formulas. On the other hand, at the time of the publication of

[9], to our knowledge the first published finitary invariant-free sequent calculus for PLTL, we learned the work of Brünnler

and Lange (see [5]) which provides an interesting alternative approach to the proof theory of PLTL. The calculus presented

in [5] has the analytic superformula property. Actually, in [5], the strategy that leads to prove completeness of the sequent

system –which lies in fairly distinguishing exactly one eventuality and sticking to it until it is fulfilled– is incorporated in the

sequent system bymeans of the so called annotated formulas (which do not belong to the logic language). The completeness

proof of our system is also based on thementioned strategy but such a strategy is not incorporated in the system. In this way

different strategies can be used. We differentiate between the systematic derivation (which guarantees completeness) and

the many other derivations that usually are feasible.

Other proof-theoretic approaches for PLTL include its first axiomatization à la Hilbert presented in [7] and, also, the

resolution-based approach started in [6]. See [18] for a good survey about theorem-proving in PLTL and its extensions.

2. Sequent-based deduction systems and tableaux

Sequent calculus, first introduced by Gentzen [10], is the most elegant and flexible system for writing proofs. Each line

of a sequent calculus proof is a sequent. A sequentwas (originally) formed by two sequences of formulas separated by some

kind of arrow. The intended meaning of a sequent ϕ1,ϕ2, . . . ,ϕn � ψ1,ψ2, . . . ,ψm is the formula

n∧
i=1

ϕi →
m∨
i=1

ψi

where → is the classical connective of implication. The sequence ϕ1,ϕ2, . . . ,ϕn is called the antecedent of the above sequent

and ψ1,ψ2, . . . ,ψm is called its consequent (or succedent). Since the seminal work of Gentzen, many variations of the notion

of sequent have been explored to provide different sequent-based deduction systems. A sequent calculus is a proof system

given by a set of rules that indicates that a sequent may be inferred from a set of sequents. That is, a (finitary) rule consists of

a numerator formed by a (finite) set of sequents S1, . . . , Sn and a denominator S separated by a horizontal line, next to which

is the name of the rule:1

(r)
S1, . . . , Sn

S

1 Sometimes, due to space reasons, the rule is formatted as follows:

S1
.
.
.

Sn

S
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In a rule (r) as above, each sequent Si is called a premise and S is the conclusion. Traditionally, a sequent calculus consists

of structural rules and connectives rules. The conclusion of a connective rule has a principal formula that is affected by the

inference. For example

(∧L) �,ϕ,ψ � χ
�,ϕ ∧ ψ � χ

is a rule for conjunction (∧) whose principal formula is ϕ ∧ ψ . However, in structural rules, the inference is guided by the

whole conclusion. An example of structural rule is classical weakeaning

(Wk)
� � χ

�,�′ � χ
There are many variations of sequents. The simplest one is obtained by allowing the antecedent and consequent to be a

(multi)set instead of a sequence. This choice (of sequences,multisets or sets) is directly related to the classical structural rules

of exchange and contraction. In particular, the exchange rule only makes sense in sequence-based sequent calculi, whereas

the contraction rule, which is well-founded for sequences and multisets, leads to some confusion when sets are considered.

More precisely, the classical contraction rule (on the left):

�,ϕ,ϕ � χ
�,ϕ � χ

makes no sense when the antecedent is a set, however some legal application of connectives rules could hide a contraction.

For example, the inference

ϕ ∧ ψ ,ϕ,ψ � χ
ϕ ∧ ψ � χ

could result from a legal application of the above rule (∧L) for � = {ϕ ∧ ψ}. In classical logic this kind of hidden use of the

contraction does not harm, however in temporal logic2 we must be more careful on this matter. The sequent systems we

are going to introduce are based on sets. The notation�,ϕ stands for� ∪ {ϕ} where ϕ �∈ �. This convention clearly disallows

hidden contraction. In particular, it disallows the above inference that uses the rule (∧L) for � = {ϕ ∧ ψ}.
Another simple variation of sequent is related to the cardinality of the consequent. That is, sequents canbe eithermultiple-

conclusioned or single-conclusioned, or even one-sided, respectively depending on whether the consequent is a set, a

singleton or empty.3 One-sided sequents were first used by Schütte [19] with multisets and by Tait [23] with sets, hence

when a new system is presented it is usual to point out whether it is a Gentzen-Schütte style calculus or whether it is a

Tait style calculus. There are really two kinds of one-sided sequents: left-handed (empty consequent) and right-handed

(empty antecedent). In this paper, we will use left-handed sequents because they are very close to tableau systems. In fact,

we will give a tableau system ttm that is directly related to the left-handed sequent calculus ttc. Besides, the established

results for the calculus ttc can be easily extended to the two-sided sequent calculus gtc. We have preferred to formulate

the calculus gtc by means of single-conclusioned sequents, instead of multiple-conclusioned sequents, because in our

opinion single-conclusioned sequents are closer to natural deduction and capture better our intuition in logical reasoning.

A multiple-conclusioned system can be easily obtained from gtc.

3. PLTL : language and model theory

APLTL-formula isbuiltusing theconstantproposition F, propositional variables (denotedby lowercase lettersp, q, . . .) from

a set Prop, the classical connectives ¬ and ∧, and the temporal connectives ◦ and U . A lowercase Greek letter (ϕ,ψ ,χ , γ , . . .)

denotes a formula and an uppercase one (�,�,�,	,
, . . .) denotes a finite set of PLTL-formulas. PLTL-formulas of the form

p and ¬p, where p ∈ Prop, are called literals. As usual other connectives can be defined in terms of the previous ones: T ≡ ¬F,

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ϕRψ ≡ ¬(¬ϕ U ¬ψ), �ϕ ≡ T U ϕ, �ϕ ≡ ¬�¬ϕ. Note that �ϕ ≡ F Rϕ. The connectives T,∨, R and � are

the duals of F,∧, U and� respectively. The connective◦ is its own dual. The defined connectiveswill be used as abbreviations

for readability. PLTL-formulas of the form ϕ U ψ and�ϕ are called eventualities. Eventualities of the form ϕ U ψ are also called

until formulas. Literals and PLTL-formulas of the form F, T, ¬F, ¬T and ◦ϕ are called elementary, also sets of elementary

formulas are called elementary. In the rest of this paper, formulameans PLTL-formula.

The operator unnext obtains from any (possibly empty) set of formulas another set of formulas as follows:

unnext(�) = {γ | ◦γ ∈ �}
Note that, unnext(�) could be the empty set, which we denote by { }.
A logic is said to be compactwhen it verifies that, given any set of formulas�, if every finite subset of� is satisfiable then�

is satisfiable. It is well known that PLTL is a non-compact logic. For example, the infinite set of formulas {◦ip | i ∈ IN} ∪ {�¬p}
is not satisfiable but every finite subset of it is satisfiable. As a consequence of the fact that PLTL is a non-compact logic,

any strongly complete proof system should be infinitary, i.e., its deduction rules may require infinitely many premises. Our

2 In general, in modal logic.
3 There are more sophisticated variants of sequents that are obtained, for example, by adding structure or labels into sequents, but they are out of the

scope of this paper.
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Fig. 1. Cyclic sequence of states.

calculus is finitary, hence, as usual (see, e.g. [7,16,22]), our completeness result is in this sense, weak. Therefore, along this

paper, every set of formulas is assumed to be finite.

Given a set � = {ϕ1, . . . ,ϕn} we will use �¬ to denote the formula ¬(ϕ1 ∧ · · · ∧ ϕn) and ∧
� denotes ϕ1 ∧ · · · ∧ ϕn. In

particular, when � is empty, �¬ and
∧
� are the constants F and T, respectively.

Formally, a PLTL-structure M is a pair (SM,VM) such that SM is a denumerable sequence of states s0, s1, s2, . . . and VM is

a map VM : SM → 2Prop. Intuitively, VM(s) specifies which atomic propositions are (necessarily) true in the state s.

The formal semantics of PLTL-formulas is given by the truth of a formula ϕ in the state sj of a PLTL-structure M, which

is denoted by 〈M, sj〉 |= ϕ, which is inductively defined as follows:

• 〈M, sj〉 �|= F

• 〈M, sj〉 |= p iff p ∈ VM(sj) for p ∈ Prop
• 〈M, sj〉 |= ¬ϕ iff 〈M, sj〉 �|= ϕ

• 〈M, sj〉 |= ϕ ∧ ψ iff 〈M, sj〉 |= ϕ and 〈M, sj〉 |= ψ

• 〈M, sj〉 |= ◦ϕ iff 〈M, sj+1〉 |= ϕ

• 〈M, sj〉 |= ϕ U ψ iff there exists k ≥ j such that 〈M, sk〉 |= ψ and for every j ≤ i < k it holds 〈M, si〉 |= ϕ.

The extension of the above formal semantics to the defined connectives yields:

• 〈M, sj〉 |= T

• 〈M, sj〉 |= ϕ ∨ ψ iff 〈M, sj〉 |= ϕ or 〈M, sj〉 |= ψ

• 〈M, sj〉 |= ϕRψ iff for every k ≥ j it holds either 〈M, sk〉 |= ψ or 〈M, si〉 |= ϕ for some j ≤ i < k

• 〈M, sj〉 |= �ϕ iff 〈M, sk〉 |= ϕ for some k ≥ j

• 〈M, sj〉 |= �ϕ iff 〈M, sk〉 |= ϕ for every k ≥ j.

The semantics is extended from formulas to sets of formulas in the usual way: 〈M, sj〉 |= � iff 〈M, sj〉 |= γ for all γ ∈ �. We

say thatM is a model of�, in symbols M |= �, iff 〈M, s0〉 |= �. A satisfiable set of formulas has at least onemodel, otherwise

it is unsatisfiable. The logical consequence relation between a set of formulas� and a formula χ , denoted as� |= χ , is defined

in the following way:

� |= χ iff for every PLTL-structure M and every sj ∈ SM:

if 〈M, sj〉 |= � then 〈M, sj〉 |= χ

The notion of logical consequence above is usually called local logical consequence. There is a weaker notion called global

logical consequence which demands χ to be true at all states in M if � is true at al states in M. This latter notion is also

interesting for many applications.

In order to construct models for satisfiable sets of formulas we use cyclic PLTL-structures that we define in terms of paths

over cycling sequences.

Any infinite sequence e0, e1, . . . , ek , . . . involves an implicit successor relation, namely R, such that (ei, ei+1) ∈ R for all i ∈ IN.

When convenient, we will write nRn′ to denote (n,n′) ∈ R. A finite sequence gives also a corresponding implicit successor

relation with a pair for each element except for the last one. A finite sequence S = e0, e1, . . . , ek is said to be cyclic iff its

successor relation extends the implicit Rwith a pair (ek , ej) for some 0 ≤ j ≤ k (see Fig. 1). Then, ej , . . . , ek is called the loop of

S, ej is called the cycling element of S, and the path over S is the infinite sequence

path(S) = e0, e1, . . . , ej−1 · 〈ej , ej+1, . . . , ek〉ω

where _ · _ is the infix operator of concatenation of sequences and Uω denotes the infinite sequence that results by concate-

nation of the sequence U infinitely many times. Naturally, for any non-cyclic finite sequence S we consider that path(S)=S.

A PLTL-structure M is cyclic if its (infinite) sequence of states SM is a path over a cyclic sequence of states.

4. The tableau method ttm

In this section we present a tableau system, called ttm, for PLTL. In ttm, tableaux are essentially trees but branches can

end in a leave that represents a loop into another node in its branch. Our tableaux are one-pass in the sense of [20], that is,

they do not require a second pass to check an auxiliary graph of states in order to determine if every eventuality is satisfied.

As a consequence, temporal stages are represented inside the branches of the tableaux instead of in an auxiliary graph.

The contents of this section are divided into four subsections. In Section 4.1 we introduce concepts related to the tableau

structure. In Sections 4.2 and 4.3 we present the rules for constructing tableaux and the notion of tableau itself. Finally, in

Section 4.4 we provide some detailed examples of tableaux.
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4.1. Pre-tableaux

A tableau T� for a finite set of formulas� is a tree-like structure where each node n is labelled with a set of formulas L(n).

The root is labelled with the set � whose satisfiability we wish to check. The children of a node n are obtained by applying

one of the rules to one of the formulas in L(n). Nodes are organized in branches, so that the rules serve to either enlarge the

branch (with one new child) or split the branch with two new children. In order to formalize the notion of branch we recall

the concept of strongly generated set.

Definition 4.1. Let Nodes be a finite non-empty set of nodes, n a node in Nodes and Nodes+ the set of all non-empty

sequences of elements in Nodes. A non-empty set B ⊆ Nodes+ is strongly generatedwith respect to Nodes and n iff it verifies

the following conditions:

1. If n0,n1, . . . ,nk ∈ B, then ni �= nj for all 0 ≤ i < j ≤ k

2. If n0,n1, . . . ,nk ∈ B, then n0 = n

3. If n0,n1, . . . ,nk ∈ B, then n0,n1, . . . ,ni ∈ B for any 0 ≤ i < k

4. For every nodem ∈ Nodes there is a unique sequence n0,n1, . . . ,nk ∈ B such that nk = m.

We denote by trees(Nodes,n) the collection of all subsets of Nodes+ that are strongly generated with respect to Nodes
and n. Let B ∈ trees(Nodes,n), each sequence b ∈ B is called a branch. A branch b′ = n0,n1, . . . ,ni is a prefix of another branch

b = n0,n1, . . . ,nk if 0 ≤ i ≤ k. If, besides, i �= k, we say that b′ is a proper prefix of b. A branch b ∈ B is maximal whenever b is

not proper prefix of any other branch in B.

Note that, in the above Definition 4.1, condition 1means that a node cannot appearmore than once in a branch, condition

2 means that the first element in every branch is the node n, condition 3 means that a strongly generated set is closed with

respect to non-empty prefixes and condition 4 states that every node must belong to at least one branch. Note also that

trees(Nodes,n) is finite and every sequence b ∈ B is finite for any B ∈ trees(Nodes,n).
Now we define the concept of pre-tableau for a set of formulas.

Definition 4.2 (Pre-tableau). A pre-tableau for a finite set of formulas � is a tuple T� = (Nodes,n�, L,B,R) such that:

1. Nodes is a finite non-empty set of nodes

2. n� is a node in Nodes, called initial node

3. L : Nodes → 2� is the labelling function where � is a set of formulas that contains � such that the the initial node is

labelled by �, that is L(n�) = �

4. B is a strongly generated set in trees(Nodes,n�), called the set of branches

5. R is the successor relation over Nodes. R should be coherent with B in the sense that for all n,n′ ∈ Nodes, (n,n′) ∈ R iff

there exists n0,n1, . . . ,nk ∈ B such that n = ni and n′ = ni+1 for some 0 ≤ i < k.

As usual, R+ and R* respectively denote the transitive closure and the reflexive-transitive closure of any binary relation R.

4.2. Tableau rules

A tableau rule is applied to a set of formulas L(n) labelling anoden (which is the last nodeof a branch). Each rule application

requires a previous selection of a formula from L(n). We call the set L(n) \ {ϕ}, where ϕ is the selected formula, the context

and it is denoted by �.

Fig. 2. Primitive ttm-rules.
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Fig. 3. Some derived ttm-rules.

As usual, the ttm-rules are based in a classification of the formulas into conjunctive anddisjunctive,which are respectively

named as α-formulas and β-formulas. In Fig. 2, any α-formula α is decomposed in a unique set, called A(α), and any β-formula

β is decomposed into two constituent sets B1 and B2. The set B1 depends on the considered formula β, whereas B2 can also

depend on the context �.4

This classification gives raise to the tableau rules whose names are also given in Fig. 2. Every rule, except (U )2, is well

known in the literature. It is worth to note that (U )1 and (U )2 affect the same β formula, but not in the same way. The rule

(U )2 can be considered quite peculiar, since B2(β,�) includes a formula which depends on the whole set of formulas in the

node.Moreover, (U )2 leads to a new tableau construction style that allows us to dispensewith the auxiliary graph. This rule is

based on the fact that if a formula ϕ U ψ is satisfiable in a given context�, it is because there exists amodel that is minimal in

the sense that the sequenceof states alongwhichψ is not true shouldbe anever-changing sequence. Consequently, no context

can be repeated from the state where ϕ U ψ is true until the state where ψ is true. This property does not allow to postpone

indefinitely the truth of ψ , provided that the number of possible contexts is finite. In the proof of the Lemma 5.1, we show in

detail that the rule (U )2 is correct.We believe that this correctness proof reflects the intuition behind the rule (U )2. Onemay

wonderwhether the rule (U )1 is essential for completeness.Our completenessproofuses it, but it is anopenproblemwhether

there exists an alternative proof disregarding the rule (U )1. However, we conjecture that (U )1 is essential for completeness.

Anyway, from a practical point of view it is better that the system includes the rule (U )1, since (U )2 is costly to use.

As well as the above primitive ttm-rules, the method ttm also uses the operator unnext (see Section 3) to convert the

labelling set L(n) of a node n into another set unnext(L(n)) that will label a new node and that intuitively represents the jump

from one instant to the next one.

From the primitive ttm-rules we can derive rules for the defined connectives like the ones in Fig. 3. There are also dual

rules for ¬�, ¬� and ¬ R that are left to the reader.

Tableaux are constructed with the aim of refuting the initial set of formulas.

Definition 4.3. A node n is consistent iff F �∈ L(n) and there is no ϕ such that {ϕ,¬ϕ} ⊆ L(n). Otherwise, n is inconsistent.

Note that, inDefinition4.3, the formulaϕ is not required to be an atom. Indeed, bydemandingϕ to be atomic the completeness

of ttmwouldbe lost. For example, the setof formulas	 = {pU q,¬(pU q)}wouldnotbe refutable, if the label of an inconsistent

node should contain F or {p,¬p} for some p ∈ Prop. In fact, using the tableau rules there is no way to achieve such atomic

inconsistency. However,	must be inconsistent in order to achieve completeness. It is alsoworthy to note that a node labelled

by 	 ′ = {pU q, (¬p)R (¬q)} (which is equivalent to 	) is not inconsistent (in the sense of Definition 4.3). The node 	 ′ can be

refuted by our tableau method, but using the (non-atomic) inconsistency of {◦((¬p)R (¬q)),¬◦((¬p)R (¬q))}.
When a branch b contains an inconsistent nodewe say that b is closed. Any closed branch is trivially unsatisfiable. Branches

that are not closed are said to be open. However, open branches are not necessarily satisfiable. In particular, an open branch

could be a prefix of a closed one.

4.3. Semantic tableaux

The tableau rules given in Section 4.2, together with the notion of consistent node, allow us to determine when a pre-

tableau is a tableau. Along this subsection T� stands for a pre-tableau for � given by a tuple (Nodes,n�, L,B,R).

Definition 4.4. A pre-tableau T� is coherent if and only if every node n in a non-maximal branch in B is consistent and

exactly one of the following items holds for every b = n0,n1, . . . ,ni, ni+1, . . . ,nk ∈ B and every 0 ≤ i < k:

(1) L(ni+1) = A(α) ∪ L(ni) \ {α} for some α ∈ L(ni)

(2) There exists exactly one node n′ ∈ N \ {ni+1} and one branch b′ = n0,n1, . . . ,ni,n
′ ∈ B such that for some β ∈ L(ni) either

4 Remember that � is always assumed to be a finite set and that �¬ is F whenever � is empty.
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• L(ni+1) = B1(β) ∪ L(ni) \ {β} and L(n′) = C(β, L(ni)) ∪ L(ni) \ {β} or
• L(ni+1) = C(β, L(ni)) ∪ L(ni) \ {β} and L(n′) = B1(β) ∪ L(ni) \ {β}

where C(β, L(ni)) is B2(β) or B2(β, L(ni) \ {β}).
(3) L(ni+1) = unnext(L(ni)).
In (1) and (3), every branch in Bwith proper prefix n0,n1, . . . ,ni must also have prefix n0,n1, . . . ,ni,ni+1, whereas in (2) every

branch in B with proper prefix n0,n1, . . . ,ni has also prefix n0,n1, . . . ,ni,ni+1 or prefix n0,n1, . . . ,ni,n
′.

In a coherent pre-tableau branches whose last node is inconsistent do not accept more enlargements or splittings. Every

enlargement or splitting of a branch corresponds to the application of a ttm-rule or the unnext operator to its last node. The

application of an α-rule enlarges a branch n0, . . . ,ni with a new node ni+1 that includes, in the label, the constituents of the

treated formula α, but not α itself. Whereas the application of a β-rule splits a branch n0, . . . ,ni with two new nodes ni+1 and

n′ that respectively include the constituents in B1(β) and B2(β) (alternatively B2(β,�)), but not the treated formula β.

In order to ensure when an open branch describes a model, we deal with the notions of stage, cyclic branch, saturated set

and fulfilling branch.

In a coherent pre-tableau T� there exist only a finite number of different labels. Consequently, any infinite branch must

contain infinitely many different nodes with the same label. In particular, when a repetition arises in an open branch

n0,n1, . . . ,nj−1,nj , . . . ,nk (i.e., when L(nk) = L(nj−1) for some 0 < j ≤ k), then an infinite branch of the form n0,n1, . . . ,

nj−1,nj , . . . ,nk ,nj , . . . ,nk , . . . can be obtained. In fact, this will be a cyclic branch that will be finitely represented.

Definition 4.5. If b = n0,n1, . . . ,nk is an open branch such that L(nk) = L(nj−1) for some 0 < j ≤ k, then b is cyclic and we

define

path(b) = n0,n1, . . . ,nj−1 · 〈nj ,nj+1, . . . ,nk〉ω

In other words, we consider that the implicit successor relation on b is extended with nkRnj .

Every branch (cyclic or not) of a coherent pre-tableau can be seen as divided into stages according to the applications of

the operator unnext. In other words, a stage is a sequence of consecutive nodes between two consecutive applications of the

unnext operator.

Definition 4.6. Given a branch b, every maximal subsequence ni,ni+1, . . . ,nj of path(b) such that L(n�) �= unnextL(n�−1) for

every i < � ≤ j, is called a stage. We denote by stages(b) the sequence of all stages of a branch b. The successor relation on

stages(b) is induced by the successor relation on path(b). That is, if s and s′ are respectively stages n0, . . .ni and n′
0
, . . . ,n′

j
in

path(b) then sRs′ whenever niRn
′
0
. Hence, if b is a cyclic sequence of nodes, then stages(b) is a cyclic sequence of stages.

Example 4.7. Consider a cyclic branch b = n1,n2,n3,n4,n5 such that L(n5) = L(n3). Then, path(b) = n1,n2,n3 · 〈n4,n5〉ω .
Let us suppose that L(n2) = unnext(L(n1)) and L(n5) = unnext(L(n4)). Then, stages(b) is formed by three stages: s1 = 〈n1〉,
s2 = 〈n2,n3,n4〉 and s3 = 〈n5,n4〉. Therefore, the induced relation R on stages(b) is given by s1Rs2, s2Rs3 and s3Rs3. Hence,

path(stages(b)) = s1, s2 · 〈s3〉ω .
With a slight abuse of notation, the labelling function L is extended from nodes to stages in the natural way. That is, for

any stage s:

L(s) =
⋃
n∈s

L(n)

Definition 4.8. Let S be a sequence of stages, s ∈ S and ϕ U ψ ∈ L(s), we say that ϕ U ψ is fulfilled in S iff there exists s′ such
that sR*s′ andψ ∈ L(s′). A sequence S of stages is fulfilling iff for all s ∈ S every ϕ U ψ ∈ L(s) is fulfilled in S. A branch b is fulfilling

iff the sequence path(stages(b)) is fulfilling.

The concept of fulfilling branch together with the following concept of αβ-saturated stage is crucial for determiningwhen

branches are able to describe a model.

Definition 4.9. A stage s is αβ-saturated if and only if for every ϕ ∈ L(s):

1. If ϕ is an α-formula then A(ϕ) ⊆ L(s)

2. If ϕ is a β-formula then B1(ϕ) ⊆ L(s) or B2(ϕ) ⊆ L(s) or B2(ϕ,�) ⊆ L(s), where � = L(ni) \ {ϕ} for some ni ∈ s such that

ϕ = δ U γ ∈ L(ni).

Now, we give a sufficient condition to consider that a branch is (sufficiently) expanded. That is, it is able to describe a

collection of models. This condition can be syntactically checked. For the construction of systematic tableaux (see Section

5.2) we will refine this syntactic condition to a simpler one.

Definition 4.10. An open branch b is expanded if and only if b is fulfilling and each stage s ∈ stages(b) is αβ-saturated.

For example, an expanded branch of a coherent pre-tableau for {r U p} can be formed by a unique stage s0 such that

L(s0) = {r U p, p}. Actually that branch is fulfilling and αβ-saturated, hence it is expanded. But also the sequence of stages
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Fig. 4. An example of open tableau.

s0, s1, s2 where L(s0) is as above and L(s1) = L(s2) = { } is an expandedbranch satisfying coherence, sinceunnext({r U p, p}) = { }
and unnext({ }) = { }. Unlike the former, the latter branch is cyclic and the loop consists of the last stage. Actually, the path on

stages is s0, s1 · 〈s2〉ω . It is easy to see that, in general, any non-cyclic expanded branch b such that unnext(L(n)) = { } where

n is the last node of b, can be made cyclic by extending it with two empty nodes (each one is an stage). This idea is used

in Section 5.2 for the systematic construction of tableaux. We intentionally add two empty sets instead of one because this

repetition is what we will use (in the systematic tableau) for detecting the loop.

When constructing a tableau, only the non-expanded open branches are enlarged. When all the maximal branches are

closed or expanded, the pre-tableau cannot be further expanded.Moreover, a completely expanded tableau is constructed for

deciding if the original set of formulas is satisfiable or not, respectively depending onwhether there is at least one expanded

open branch or all its branches are closed.

Definition 4.11 (Tableau). A tableau for a set of formulas� is a coherent pre-tableau for� such that every expanded or closed

branch is maximal. An expanded tableau is a tableau where everymaximal branch is either expanded or closed. An expanded

tableau is open if it has at least one open maximal branch,5 otherwise it is closed.

4.4. Examples of tableaux

Now, we give some examples of expanded tableaux. For readability, we underline the formula which the ttm-rule is

applied to. Here and in the following, branches with the mark # are closed branches. Note that, when a formula is treated

at one node, this formula does not appear in any successor of the node, although it remains belonging to the whole stage.

Hence, already treated formulas cannot be expanded again (at the same stage).

Example 4.12. The following is a closed expanded tableau for the set of formulas {pU F}:

#

F

#

F

#

p, F,¬F,◦((p ∧ F)U F)

p ∧ F,¬F,◦((p ∧ F)U F)
(∧)

(p ∧ F)U F
(U )1

p,¬F,◦((p ∧ F)U F)
(unnext)

pU F
(U )2

Note that the rightmost branch consists of two stages, the first one is formed by the two higher nodes. The remaining

three nodes form the second stage of the branch.

It is worth to note that using only the rule (U )1 the fulfillment of an eventuality can be indefinitely delayed. It is easy to

realize that the above set of formulas {pU F} cannot be ttm-refuted without using the rule (U )2:

#

F

..

..
pU F

p,¬F,◦(pU F)
(◦)

pU F
(U )1

5 Which is expanded.
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Example 4.13. The following is an open tableau for {p,◦¬p,¬F U ¬p}:

#

p,◦¬p,¬p

¬p

#

¬p,¬F,¬¬p,◦(¬F U p)

¬p,¬F U ¬p
(U )1

p,◦¬p,¬¬p,¬F,◦(¬F U ¬p)
(unnext)

p,◦¬p,¬F U ¬p
(U )1

The tableau has two closed branches and one open branch, which is the central one. This open branch describes a collection

of models. The first state of those models should satisfy the formulas labelling the first stage of the branch which is formed

by the first two nodes. In particular, p should be satisfied at the first state. The second stage is given by the third and fourth

nodes of the branch, in particular ¬p should be satisfied in the second state of the models. In fact, any sequence of states

prefixed by these two states is a model of the root of the tableau.

Example 4.14. An example of open tableau for the set of formulas {pU q,�¬q} can be found in Fig. 4. Note that it makes use

of the derived rules (�)1 and (�)2 that are shown in Fig. 3. This tableau has three open branches describing three different

collections of models. The leftmost open branch represents the class of models with a first state where p and ¬q are true and

a second state where q is true. In the first state of the models represented by the central open branch q is true, whereas in

the second one ¬q holds. Finally, the rightmost open branch gives three states which respectively make true the literals q, q

and ¬q.

5. Soundness and completeness of ttm

A tableau method is sound if, whenever a closed tableau exists for �, then � is unsatisfiable. And a tableau method is

complete if, whenever� is unsatisfiable, a closed tableau for� can be constructed. Therefore, a sound and complete tableau

method is suitable for deciding in a finite amount of time whether a set of formulas is unsatisfiable. However, the above

concept of completeness does not guarantee that the satisfiability of a set of formulas is decidable. For that reason, the

above notion of completeness is often called refutational completeness, whereas completeness stands for the case when both

satisfiability and unsatisfiability are decidable.

In this section, we prove that the tableau system ttm is sound, refutationally complete and also complete. The first

subsection is devoted to soundness. In Section 5.2 we introduce the construction of systematic tableaux together with

the concepts and results that the algorithm and its correctness give rise to. In particular, we discuss about the analytic

superformula property and present our notion of closure. In Section 5.3 we give some examples of systematic tableaux. In

Section 5.4 we prove the completeness of ttm, by proving, as a first step, its refutational completeness. In Section 5.5 we

provide a practical improvement of the rule (U )2.

5.1. Soundness

First, we show that the ttm-rules preserve equi-satisfiability and that the unnext operator preserves satisfiability. Then,
soundness is proved in Theorem 5.2.

Lemma 5.1. For every set of formulas �, any α-formula ϕ and any β-formula ψ :
1. � ∪ {ϕ} is satisfiable iff � ∪ A(ϕ) is satisfiable

2. � ∪ {ψ} is satisfiable iff � ∪ B1(ψ) or � ∪ B2(ψ) or � ∪ B2(ψ ,�) is satisfiable.

3. If � is satisfiable then unnext(�) is satisfiable.

Proof. Every right-to-left implication is trivial. For the left-to-right implications, the only difficult case is the rule (U )2. We

will show that, ifweassume that� ∪ {ϕ U ψ} is satisfiable, thenwewouldbuild amodel for at least oneof the two sets:� ∪ {ψ}
and� ∪ {ϕ,¬ψ ,◦((ϕ ∧�¬)U ψ)} . Let 〈M, si〉 |= � ∪ {ϕ U ψ}and z the least j ≥ i such that 〈M, sj〉 |= ψ . If z = i then 〈M, si〉yields
amodel of� ∪ {ψ}. Otherwise, if z > i, let y be the greatest j such that i ≤ j < z and 〈M, sj〉 |= � ∪ {ϕ U ψ}. As a consequence of
the choice of z and y, it holds that 〈M, sy〉 |= ◦((ϕ ∧�¬)U ψ). Then, 〈M, sy〉 yields amodel of� ∪ {ϕ,¬ψ ,◦((ϕ ∧�¬)U ψ)}. �

Hence, soundness can be proved.

Theorem 5.2. If there exists a closed expanded tableau for � then � is unsatisfiable.

Proof. Let T� be a closed expanded tableau for �. The set of formulas labelling each leaf is inconsistent and therefore

unsatisfiable. Then, by the Lemma 5.1, each node in T� is labelled with an unsatisfiable set of formulas, in particular the root.

Therefore � is unsatisfiable. �
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5.2. Systematic tableaux

In this subsection we provide an algorithm that, given a set of formulas �, constructs an expanded tableau for � that we

will denote by T�. We also study the main properties that our systematic tableau satisfies.

The construction of T� consists in a systematic extension of branches using the ttm-rules for decomposing the α- and

β-formulas into its constituents. The application of a β-rule splits the extended branch into two.When no rule can be applied,

the operator unnext is used to jump to a new stage.

Classical (propositional) tableaux satisfy the subformula property (SP):

For every formula ψ used in the construction of any tableau for �, there exists some formula γ ∈ � such that ψ is a

(possibly negated) subformula of γ .

This property ensures the termination of the construction of any tableau for a (finite) set of formulas. Most tableau systems

for modal and temporal logics, fail to satisfy the SP, since some of their rules introduce formulas that are not subformulas

of the principal formula of the rule. Hence, termination of modal/temporal tableaux is not obvious. However, most tableau

systems for modal and temporal logics, satisfy the analytic superformula property (ASP):

For every finite set of formulas �, there exists a finite set that contains all the formulas that may occur in any tableau

for �.

Such set is usually called the closure of�. The ASP also ensures the non-existence of infinite branches where all the nodes

have different labels. Hence, by controlling loops, the finiteness of proof search can be ensured. In our case, as a consequence

of the rule (U )2, the tableau system ttm fails to satisfy the ASP. However, ttm satisfies a slightlyweaker variant that is enough

for ensuring completeness and that we call the weak analytic superformula property (WASP):

For every finite set of formulas �, there exists a finite set clo(�) (closure of �) that contains all the formulas that may

occur in any systematic tableau for �.

Hence we give an algorithm that constructs, for any �, a systematic tableau T� such that ttm satisfies the WASP

(see Fig. 5). This is achieved by keeping at most one distinguished formula to which the rule (U )2 can be applied. In this

way, the notion of closure –that we define below– captures the superformulas produced by the rule (U )2. For handling

distinguished formulas the algorithm uses a function d. Along the construction of the systematic tableau, the function d

associates to every node n one of the following three possible sets of formulas:

1. the empty set

2. a non-elementary singleton of the form {ϕ U ψ}
3. an elementary singleton of the form {◦(ϕ U ψ)}.

The case 1 means that no until formula is distinguished. In 2, d yields the set containing the distinguished formula to which

(U )2 will be applied. The case 3 results after the application of (U )2 to the distinguished formula. At the begining, d associates

the empty set to the initial node.

Our algorithm for constructing T� nondeterministically selects, at each step, a maximal branch to be extended. Actually,

the algorithm endswhen everymaximal branch is either closed or expanded, so that there is no branch that can be extended.

Maximal branches that achieve one of these two status are consequently marked. The procedure unmarked_branches yields

the branches that can be further extended. For extending the selected branch, the algorithm uses three procedures. First, a

procedure non-dist_expand that applies the corresponding ttm-rule, excepting (U )2, to a formula that has been nondeter-

ministically selected from the set of non-distinguished formulas in the last node of the branch. Second, when the ttm-rules

other than (U )2 cannot be further applied, the procedure dist_expand applies the rule (U )2 to the until formula that is

distinguished by the function d, if there is some. The procedure fairly_dist updates the function d using a fair strategy. Third,

Fig. 5. Systematic tableau algorithm.
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when the node is labelled by an elementary set, then the operator unnext is applied using the procedure unnext_expand. Let

us give a more detailed explanation of all the procedures used by the algorithm.

last_node(b) gives the last node added to a given branch b.

non-dist_expand(γ ,T�, d) applies to the branch b the α- or β-rule (excepting (U )2) that corresponds to the formula γ . In

both cases, the node distinguished by the function d is preserved. That is, for nk = last_node(b):

• If γ is an α-formula, create a new node n and a new branch b′ = b · n according to the corresponding α-rule such that

L(n) = (L(nk) \ {γ }) ∪ A(γ ) and extend d and R to be d(n) = d(nk) and nkRn.

• If γ is a (non-distinguished)β-formula, create twonewnodesn′ andn′′ and twonewbranchesb′ = b · n′ andb′′ = b · n′′
according to the corresponding β-rule such that L(n′) = (L(nk) \ {γ }) ∪ B1(γ ) and L(n′′) = (L(nk) \ {γ }) ∪ B2(γ ). Extend

d and R to be d(n′) = d(nk), d(n
′′) = d(nk) and nkRn

′,nkRn′′.
dist_expand(T�, d) applies the rule (U )2 to an until formula ϕ U ψ that is distinguished by the function d. The function

d yields empty for the new node that contains ψ since the until formula has been fulfilled. In the other branch, the

new distinguished formula is ◦((ϕ ∧�¬)U ψ). That is, for nk = last_node(b):

Let d(nk) = {ϕ U ψ}. Create two new nodes n′ and n′′ and two new branches b′ = b · n′ and b′′ = b · n′′ such that

L(n′) = (L(nk) \ {ϕ U ψ}) ∪ {ψ} and L(n′′) = (L(nk) \ {ϕ U ψ}) ∪ {ϕ,¬ψ ,◦((ϕ ∧�¬)U ψ)} where � = L(nk) \ {ϕ U ψ}.
Extend d and R to be d(n′) = { }, d(n′′) = {◦((ϕ ∧�¬)U ψ)} and nkRn

′,nkRn′′.

unnext_expand(T�, d) creates a new node n and a new branch b′ = b · n such that L(n) = unnext(L(nk)) and extends d and

R to be d(n) = unnext(d(nk)) and nkRnwhere nk = last_node(b).

unmarked_branches(B) returns the set of unmarked maximal branches in a given set of branches B.

fairly_dist(T�, d) distinguishes an until formula, if there is some. That is, for nk = last_node(b), whenever d(nk) = { } and
L(nk) contains at least one until formula, it updates d(nk)with a singleton {ϕ U ψ} such that ϕ U ψ ∈ L(nk). Otherwise,

d(nk) remains the empty set. If the node contains more than one until formula, the selection performed by fairly_dist

on L(nk) should be fair, in the sense that no until formula could remain non-distinguished indefinitely.

The systematic tableau algorithm is depicted by a while-program in Fig. 5. The systematic tableau construction provides

a proof search procedure for automated deduction.

Let us give some useful results about the systematic tableau T� that this algorithm constructs for any set of formulas �.

Proposition 5.3. If {ϕ,¬ϕ} ⊆ L(s) for some stage s in a branch b of T�, then every maximal branch of T� prefixed by b is closed.

Proof. By structural induction on ϕ. It is easy to see that the application of ttm-rules to two complementary formulas that

belong to the same stage, but not necessarily to the same node, should generate complementary constituents until they

occur in the same node or, at most, they become elementary. �
In the next proposition we show that non-satisfied undistinguished eventualities are kept in branches at least until they

are fulfilled or they become distinguished.

Proposition 5.4. Let b be a branch6 of T�, and s0, s1, s2, . . . , sk be any initial subsequence of path(stages(b)). If ϕ U ψ ∈ L(si) for

some 0 ≤ i ≤ k, ϕ U ψ is not distinguished in si, . . . , sk and ψ �∈ L(si) ∪ · · · ∪ L(sk), then {ϕ,¬ψ ,◦(ϕ U ψ)} ⊆ L(sj) for all i ≤ j ≤ k.

Proof. By the construction of T�, since non-distinguished eventualities are handled by procedure non-dist_expand using the

rule (U )1 . �
Next, we give a more detailed description of the syntactic form of the formulas appearing in sequences of stages where a

distinguished eventuality remains unfulfilled. Under that proviso, at each stage, there is exactly onedistinguished eventuality

and exactly one node to which the procedure dist_expand is applied. We also call this node the distinguished node of that

stage. That is a crucial fact for defining the notion of closure with respect to which ttm satisfies the WASP. We first define

some auxiliary sets of sub- and super-formulas of a given set of formulas�. Let sf(�) denote the set of all the subformulas of

the formulas in � and their negations. Then, the preclosure of �, preclo(�), is the set of formulas that extends sf(�)with all

the superformulas that are generated from sf(�) by means of all the ttm-rules with the exception of the rule (U )2. That is

preclo(�) = sf(�) ∪ {◦(ϕ U ψ),¬◦(ϕ U ψ),◦¬(ϕ U ψ) | ϕ U ψ ∈ sf(�)}
∪ {◦¬ϕ | ¬◦ϕ∈ sf(�)}

Note that preclo(�) cannot be used as closure only because it does not capture the superformulas generated by the

application of the rule (U )2. In order to capture these superformulas, we define the following set of conjunctions of negated

contexts:

conj(�)=
{∧

� | � ⊆ {ϕ | ϕ U ψ ∈ sf(�)} ∪ negctx(�)
}

where negctx(�) = {�¬ | � ⊆ preclo(�)}

6 The branch b could be cyclic or not, so that path(stages(b)) could respectively be infinite or finite.
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That is, negctx(�) is the set of all possiblenegated contexts and conj(�) is formedby all the possible conjunctions of formulas in

negctx(�) and the left-hand side subformulas of all the until formulas in sf(�). In particular, F ∈ negctx(�) and F,¬F ∈ conj(�),
since F and¬F are respectively the disjunction and the conjunction of the empty set of formulas. Note also that, by definition,

in the conjunctions of conj(�) every element of negctx(�) occurs at most once.

Proposition 5.5. Let b be a branch6of T�, let s0, s1, s2, . . . , sk be any initial subsequence of path(stages(b)) and ϕ U ψ ∈ sf(�) such
that i is the least natural number such that d(n) = {ϕ U ψ} for some n ∈ si. Then, ifψ �∈ L(si) ∪ · · · ∪ L(sk) then for all 0 ≤ � ≤ k − i :

{δ�,¬ψ ,◦(δ�+1 U ψ)} ⊆ L(si+�)

where δ0 = ϕ and δ�+1 = δ� ∧ χ for some χ ∈ negctx(�). Moreover, if δ� = ∧
� for some � such that χ ∈ � then every maximal

branch of T� prefixed by s0, . . . , si+� is closed.

Proof. On one hand, by construction of T� and induction on �, the procedure dist_expand yields two branches such that

each branch either contains {δ�,¬ψ ,◦(δ�+1 U ψ)} or contains ψ . Note that if d(n) = {◦(δ�+1 U ψ)} for some n ∈ si+�, then
d(n′) = {δ�+1 U ψ} for the first node n′ ∈ si+�+1. Therefore, δ0 = ϕ and for all j > 0: δj = δj−1 ∧�¬

j−1
where �¬

j−1
∈ negctx(�)

and�j−1 is the context L(n) \ d(n) of the distinguished node n of the stage si+j−1. Hence, by induction on �, δ� ∈ conj(�) holds
for all 0 ≤ � ≤ k − i.

On the other hand, since χ is the negation of the context of the distinguished node n ∈ si+�, if δ�+1 = δ� ∧ χ and δ� = ∧
�

for some � such that χ ∈ �, then every branch prefixed by s0, . . . , si+� contains at the same stage (possibly at different nodes)

{γ ,¬γ } for some formula γ . Hence, by Proposition 5.3, every maximal branch prefixed by s0, . . . , si+� is closed. �

Corollary 5.6. Every distinguished eventuality in a cyclic branch of T� is fulfilled.

Proof. By Proposition 5.5 since, whenever there is an unfulfilled distinguished eventuality in a branch, the presence of the

formulas δ� makes impossible the existence of a loop. �
It is trivial, by construction, that every stage in an open branch of T� is αβ-saturated. Hence, by Proposition 5.4 and

Corollary 5.6, we can refine the sufficient conditions for being an expanded branch of T� as follows:

Proposition 5.7. Let b be an open branch of T�, if b satisfies the following two conditions:
(i) b is cyclic

(ii) for every eventuality γ ∈ preclo(�) such that γ ∈ L(n) for some n ∈ b, there exists some n′ ∈ b such that d(n′) = {γ }
then b is an expanded branch.

Proof. By Proposition 5.4, non-distinguished unfulfilled eventualities are preserved from one stage to its successor. In

addition, by Corollary 5.6, every distinguished eventuality in a cyclic branch is fulfilled. Hence, by condition (ii), every

eventuality from preclo(�) that occurs in b should be distinguished once and, hence, should be fulfilled. �
Consequently, we use Proposition 5.7 to refine the implementation of the procedure unmarked_branches

Remark 5.8. Whenever a branch b satisfies the conditions (i) and (ii) of Proposition 5.7, the procedure unmarked_branches

considers b to be marked as expanded.

As a consequence, every expanded branch of T� is cyclic by construction.

Hence, by Corollary 5.6 and Remark 5.8, ttm satisfies the WASP with respect to the following notion of closure:

clo(�) = preclo(�) ∪ conj(�)
∪ {(γ1 ∧ γ2)U ψ ,◦((γ1 ∧ γ2)U ψ) | ϕ U ψ ∈ sf(�) and γ1, γ2 ∈ conj(�)}

Note that, γ1 and γ2 are enough to represent the unique possible repetition of a negated context. In other words, L(n) ⊆
clo(�) holds for all node n in T�, by Corollary 5.6 and Remark 5.8. In addition, the closure set of a finite set of formulas is

finite.

Proposition 5.9. If � is a finite set of formulas, then clo(�) is also finite.

Proof. It is easy to see that, if |preclo(�)| = n then |negctx(�)| ∈ O(2n). As a consequence |conj(�)|, |clo(�)| ∈ O(2O(2
n)). �

The above results jointly with the fairness of fairly_dist, allow us to ensure that the algorithm in Fig. 5 finitely computes

an expanded tableau T� for any input �.

Lemma 5.10. The algorithm in Fig. 5, for any input �, stops leaving in T� an expanded tableau.

Proof. By König’s lemma, the only possibility for infinite iteration would be the infinite expansion of (at least) one branch,

namely b. By Propositions 5.5, 5.7 and 5.9, the branch b should contain an eventuality that is never distinguished, which

contradicts the fairness of the fairly_dist procedure. �
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Note that the use of a fair strategy for distinguishing the eventualities in each branch of the tableau is essential for proving

that the algorithm in Fig. 5 finishes.

We would like to remark that previous tableau methods for PLTL, excepting the one-pass proposal of [21], for obtaining

a model of a satisfiable set of formulas (when deciding satisfiability) should generate the whole graph of possible states and

all the successive tableaux required for constructing this graph. However, we can use a depth-first strategy and, as soon as a

branch is marked expanded, the algorithm could stop providing a model for the original set of formulas.

5.3. Examples of systematic tableaux

In this subsection, we give the systematic expanded tableaux that correspond to the two examples in Section 4.4. For

readability, the distinguished formulas are in black boxes. Besides, since open expanded branches are cyclic, we havemarked

the internal repeated node with a symbol �i1,...,in
where i1, . . . , in denote the number of all maximal branches (from left to

right in the whole tableau) whose last node coincides with the marked node.

Example 5.11. The following is the systematic tableau for {pU F}, which is closed.

#

F

#

F

#

p, F,¬F, ◦((p ∧ F ∧ F)U F)

p ∧ F,¬F, ◦((p ∧ F ∧ F)U F)
(∧)

(p ∧ F)U F

(U )2

p,¬F, ◦((p ∧ F)U F)
(unnext)

pU F

(U )2

Example 5.12. In the following systematic tableau for {p,◦¬p,¬F U ¬p}, the formula ϕ stands for ¬F ∧ ¬(p ∧ ◦¬p):

#

p,¬p,◦¬p

{ }
�2 { }

(unnext)

¬p
(unnext)

#

¬p,ϕ,¬¬p, ◦(ϕ ∧ ¬¬p)U p)

¬p, ϕ U ¬p

(U )2

p,◦¬p,¬F, ◦(ϕ U ¬p)
(unnext)

p,◦¬p,¬F,¬¬p, ◦(ϕ U ¬p)
(¬¬)

p,◦¬p, ¬F U ¬p

(U )2

The central branch represents the collection of models explained in Example 4.13.

5.4. Completeness

In this subsection we prove the completeness of ttm by showing that if � is satisfiable then we can associate to any

expanded branch b of the systematic tableau for � a cyclic PLTL-structure Gb that yields a model of �.

Definition 5.13. For any expanded branch b, we define the PLTL-structure Gb = (SGb
,VGb

) such that SGb
= path(stages(b))

and VGb
(s) = {p | p ∈ L(s) and p ∈ Prop}.

Note that termination of the systematic tableau construction is guaranteed by thefiniteness of the closure (see Proposition

5.9) together with the fairness in distinguishing until formulas. Consequently, since every maximal branch of T� is closed or

expanded, then any expanded branch must have two nodes with the same label (see Remark 5.8) which necessarily belong

to two different stages, since one stage cannot contain two identical nodes. Summarizing, any expanded branch of T� has

at least two nodes, at least two stages, and is cyclic. In the rest of this subsection we will assume that b = n0, . . . ,nk is an

expanded branch of T�, hence b is cyclic, and that Gb is the cyclic PLTL-structure associated to b.

In the previous Section 5.2 we prove some properties about the behaviour of eventualities along the branches of T�, that
obviously can be applied to Gb. The next proposition shows the behaviour of negated eventualities in Gb.

Proposition 5.14. Let sj ∈ SGb
such that ¬(ϕ U ψ) ∈ L(sj). Then, every finite subsequence π = sj , sj+1, . . . , sk of SGb

satisfies one of

the two following properties:
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(a) {ϕ,¬ψ ,¬◦(ϕ U ψ)} ⊆ L(si) for any j ≤ i ≤ k.

(b) There exists j ≤ i ≤ k such that {¬ϕ,¬ψ} ∈ L(si) and {ϕ,¬ψ ,¬◦(ϕ U ψ)} ⊆ L(s�) for all j ≤ � ≤ i − 1.

Proof.By induction on k − j. The case k = j is trivial. For k − j ≥ 1, the induction hypothesis guarantees thatπ ′ = sj , s1, . . . , sk−1

satisfies one of the properties (a) or (b). If π ′ satisfies (b), so does π . If π ′ satisfies (a) then, by αβ-saturation, we have

{ϕ,¬ψ ,¬(ϕ U ψ)} ⊆ L(sk) or {¬ϕ,¬ψ} ⊆ L(sk). Hence, π verifies (a) or (b), respectively. �
Therefore,we can prove that each state ofGb satisfies its labels, that is the set of formulas labelling all nodes that constitute

the concerned stage.

Lemma 5.15. For every s ∈ SGb
, if ϕ ∈ L(s) then 〈Gb, s〉 |= ϕ.

Proof. By structural induction on ϕ. The case of literals is trivial by definition of Gb.

For formulas of the form ¬¬ϕ,ϕ ∧ ψ ,¬(ϕ ∧ ψ),◦ϕ and ¬◦ϕ the property holds because every stage in SGb
is αβ-saturated and

the induction hypothesis on {ϕ}, {ϕ,ψ}, {¬ϕ,¬ψ}, {ϕ} and {¬ϕ}, respectively.
For ϕ U ψ , by the above Propositions 5.4 and 5.5, there should exist a finite subsequence s0, s1, . . . , sn of SGb

such that s0 =
s,ψ ∈ sn and ϕ ∈ si for every 0 ≤ i < n. By the induction hypothesis, 〈Gb, sn〉 |= ψ and 〈Gb, si〉 |= ϕ for every 0 ≤ i < n and

consequently 〈Gb, s〉 |= ϕ U ψ .
For ¬(ϕ U ψ) formulas, by the above Propositions 5.3 and 5.14 and the induction hypothesis, there does not exist any finite

path s0, s1, . . . , sn in SGb
such that s0 = s, 〈Gb, sn〉 |= ψ and 〈Gb, si〉 |= ϕ for every 0 ≤ i < n. Consequently 〈Gb, s〉 �|= ϕ U ψ and

hence 〈Gb, s〉 |= ¬(ϕ U ψ). �
Corollary 5.16. Gb |= �.

Proof. Immediate consequence of Lemma 5.15. �
By means of the collection of results proved in this section, we provide an alternative proof of the result that states that

“every satisfiable set of PLTL-formulas has a cyclic model" (see Theorem 7.1 in [24] and Theorem 1 in [3]). Our proof is

constructive in the sense that it gives a tableau-based procedure that constructs the cyclic model Gb for any satisfiable �.

Now, we prove the refutational completeness of the tableau system ttm.

Theorem 5.17. If � is unsatisfiable then there exists a closed tableau for �.

Proof. Suppose that it does not exist any closed ttm-tableau for�. Then the systematic tableau T� would be open and there

would be at least one expanded branch b of T�. By Corollary 5.16, Gb |= �. Consequently �would be satisfiable. �
Moreover, the tableau method ttm is also complete.

Theorem 5.18. If � is satisfiable then there exists a (finite) open expanded tableau for �.

Proof. The systematic tableau T� suffices to prove this fact. �
Hence, the system ttm can be used as a satisfiability decision procedure for PLTL.

5.5. Improving eventualities handling

The application of the rule (U )2 builds up complex formulas that involve thewhole context. Hence, for practical purposes,

it is interesting to simplify these formulas asmuch as possible. In this subsectionweare going to showsome ideas for avoiding

redundant formulas in the negated context produced by application of the rule (U )2. That is, we introduce a new rule (U )3
that is an improvement of (U )2 that prevents two kinds of redundancy:

1. disjuncts stating that the next stage fails to satisfy a formula which the context ensures forever

2. duplication of formulas

Roughly speaking, the first kind of redundancy is related to the logical equivalence of �δ1∧◦((ϕ∧¬(δ1∧δ2))U ψ) and �δ1∧
◦((ϕ∧¬δ2)U ψ), whereas the second one corresponds to the equivalence of ϕ ∧ ϕ ∧ ψ and ϕ ∧ ψ or equivalently ϕ ∧ ϕ and ϕ.

At the end of this subsection, we analyze the gain of the new rule with respect to the older one.

In order to deal with the first kind of redundancy, we introduce the following notion of persistence.

Definition 5.19. A formula ϕ is called persistent iff for all M and all sj ∈ SM, if 〈M, sj〉 |= ϕ then 〈M, sk〉 |= ϕ for all k > j.

When decomposing formulas in a systematic derivation process some syntactical patterns may be used to detect persistent

formulas. That is the case of the formulas of the form �ϕ and ◦�ϕ. Taking also into account that

�ϕ ≡ ¬�ϕ ≡ ¬(T U ϕ) ≡ ¬(¬F U ϕ) ≡ F Rϕ ≡ ¬T Rϕ

it is easy to prove the following result which constitutes a syntactical characterization of a subset of persistent formulas.
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Fig. 6. An example of open systematic tableau.

Fig. 7. The rule (U )3.

Proposition 5.20. Every formula that matches one of the following patterns:
◦i�ϕ,◦i¬�ϕ,¬◦i�ϕ,◦i¬(T U ϕ),¬◦i(T U ϕ),
◦i¬(¬F U ϕ),¬◦i(¬F U ϕ),◦i(F Rϕ), T,¬F

is persistent. For any set of formulas�,wewrite persist_ch(�) to denote the set of all γ ∈ � such that γ fits one of the above forms.

Note that we have characterized a proper subset of the set of all persistent formulas. For example, ¬((¬(ϕ ∧ ¬ϕ))U ψ) is a
persistent formula which does not match any of the above syntactic patterns.

On one hand, in order to avoid including (in the disjuncts of the negated context) the negation of persistent formulas of

the context, we define the following operator:

�̃ = (� \ persist_ch(�))¬

Therefore, to get rid of the above first kind of redundancy, (U )3 applies this new operator � instead of the previous

operator (_)¬ to the context.

On the other hand, we define an operator � in order to prevent duplication of formulas. First, we need to extract all the

negative conjuncts of a formula. The set cnjts(ϕ) consists of all the conjuncts of ϕ and is recursively defined as follows:

cnjts(ϕ) =
{

cnjts(ϕ1) ∪ cnjts(ϕ2) if ϕ is ϕ1 ∧ ϕ2
{ϕ} otherwise

Then, the set of all negative conjuncts of ϕ is

negcnjts(ϕ) = {ψ | ψ ∈ cnjts(ϕ) and ψ is F or ¬γ }
Consequently, the operator � is defined as follows:

ϕ � �̃ =
⎧⎨⎩

F if � = { } and F ∈ negcnjts(ϕ)
F if � ∈ {cnjts(ψ) | ¬ψ ∈ negcnjts(ϕ)}
ϕ ∧ �̃ otherwise

It is easy to see that the following two sets of formulas are logically equivalent:

� ∪ {◦((ϕ ∩ �̃)U ψ)} and � ∪ {◦((ϕ ∧�¬)U ψ)}

The rule (U )3 of Fig. 7 refines the rule (U )2 of Fig. 2 since the secondpremise◦((ϕ ∧�¬)U ψ)of the rule (U )2 is substituted
by ◦((ϕ � �̃)U ψ) in the rule (U )3. It is easy to derive, from the new rule (U )3, the corresponding rule (�)3 for the defined

connective �.
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Fig. 8. The sequent calculus ttc.

Now, let us give an example that makes use of these two new rules (Fig. 7) and the derived rules in Fig. 3.

Example 5.21. In Fig. 6 we depict a systematic tableau for {p,�p,◦��p}. As expected from the satisfiability of the root set,

the tableau is open. Concretely, there are two cyclic (expanded) branches with a common repeated node. Recall that the

distinguished formulas are in black boxes and the internal repeated node is marked with the symbol �1,2 for indicating that

this node coincides with the last node of the first and the second branch.

Finally, we formally analyze the gain of using rule (U )3 instead of (U )2. This analysis yields a small difference between

both worst cases, although the improvement is very useful for practical implementation.

We reformulate the notion of closure for the system (ttm \ {(U )2})∪{(U )3}. To this end, we also need to redefine some

other previously defined sets of formulas. However, other auxiliary sets, e.g. preclosure, remain defined as before. In order to

stress what sets are redefined, we use the prefix new_. The new definitions for the sets of negated contexts and conjunctions

are:

new_negctx(�) = {�¬ | � ⊆ (preclo(�) \ persist_ch(preclo(�)))}

new_conj(�) =
{∧
δ∈�

δ | � ⊆ new_negctx(�) and � is adequate

}

where we say that � ⊆ new_negctx(�) is adequate iff

cnjts(δ) �= cnjts(δ′) for every pair (¬δ,¬δ′) ∈ � × � such that δ �= δ′

Now, the closure of � can be redefined as follows:

new_clo(�) = preclo(�) ∪ new_conj(�) ∪
{(ϕ ∧ γ )U ψ ,◦((ϕ ∧ γ )U ψ) | ϕ U ψ ∈ sf(�) and γ ∈ new_conj(�)}

Hence, the cardinality of this closure is a bit smaller than stated in Proposition 5.9. Actually, if |preclo(�)| = n then

|new_negctx(�)| ∈ O(2n). Therefore

|new_conj(�)|, |new_clo(�)| ∈ O(22
n
).

Recall that |clo(�)| ∈ O(2O(2
n)).

6. The sequent calculus ttc

In this sectionwe introduce the sequent calculus ttc that directly corresponds to thepreviously introduced tableau system

ttm. It is a reformulation of ttm as a one-sided sequent calculus that serves as a bridge from ttm to the two-sided sequent

calculus gtc that we will introduce in the following section.
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The sequent calculus ttc follows the left-handed one-sided approach (also known as Tait-style, [23]), where sequents are

formed by a set of formulas. We write � � to represent a sequent whose set of formulas is � and whose intended meaning

is
∧
� → F.

The rules of ttc (see Fig. 8) are obtained essentially from the ttm-rules writing them upside down with the difference

that in ttcwe have left-handed sequents and in ttmwe have simply sets of formulas. The only exception is the rule (◦) that
corresponds to the application of the operator unnext in ttm. This direct relation between both systems makes possible to

obtain a ttc-proof from any closed ttm-tableau in a straightforward manner.

The strong similarity between tableau refutations and left-handed sequent proofs that are cut-free, contraction-free and

weakening-free is evident. As a consequence, ttc is cut-free, invariant-free, weakening-free and contraction-free.

We have split the primitive rules of ttc into three packages. Two of them consist of rules for classical and temporal

connectives, respectively. These rules follow the traditional style of introduction of the connective and its negation in the

sequent. In addition, we need two structural rules which form the third package.

As ttc is sound and complete (Theorems 6.1 and 6.3), given a set of formulas�, it holds that� is unsatisfiable if and only

if there is a ttc-proof for � �.
A ttc-derivation is a possibly infinite tree labelled with sequents and built according to the inference rules in ttc. A

ttc-proof is a finite derivation where the sequent to be proved labels its root and the leaves are labelled with axioms (which

are rules without premises).

A set of formulas � is ttc-consistent if and only if there is no any ttc-proof for the sequent � �.
The soundness of ttcmeans that every ttc-provable sequent, namely� �, is correct regarding to satisfiability. Inparticular,

every satisfiable set of formulas � is ttc-consistent.

In the ttc sequent calculus all the non-structural rules are invertible except for the (◦) rule. A rule is invertible when it

holds that if the conclusion is provable, so are the premises.

Theorem6.1 (Soundness). For any set of formulas�, if� is not ttc-consistent, i.e., if there exists a ttc-proof, then� is unsatisfiable.

Proof. By induction on the length of the ttc-proof, it suffices to prove that every primitive rule of ttc (see Fig. 8) is correct in

the sense that if the set of formulas of each premise is unsatisfiable then the set of formulas of the conclusion is unsatisfiable.

The only difficult case is the case of the rule (U )2. The justification for that case is already given in Theorem 5.2. �
Next, we prove that ttc is a complete calculus relating its completeness to the completeness of ttm.

Proposition 6.2. For any set of formulas�, if T� is a closed expanded tableau for � then there exists a ttc-proof for the sequent

� � .

Proof. Since each ttm-rule has its corresponding ttc-rule, the ttc-proof is directly obtained from the closed ttm-tableau for

�. �

Theorem 6.3 (Completeness). For any set of formulas �, if � is unsatisfiable, then there exists a ttc-proof for �.

Proof. If� is unsatisfiable then there exists a closed ttm-tableau for�. Hence, by Proposition 6.2 there exists a ttc-proof for

�. �
The exhaustive application of the rules in the calculus ttc, without any additional restriction or strategy, does not yield a

decision procedure for ttc. The reason is that ttc, by itself, does not satisfy the weak analytic superformula property (WASP)

(see Section 5.2). Remember that the systematic tableau algorithm of Section 5.2 incorporates an strategy for the application

of (U )2 which contributes to the satisfaction of the WASP.

The admissible rules are new sound rules that cannot be derived from the primitive rules of ttc, but do not add deductive

power to the system. That is, a set � is consistent with respect to ttc if and only if � is consistent with respect to ttc plus

the admissible rules. In other words, for every ttc-proof that includes the use of some admissible rules there exists another

ttc-proof that does not use any admissible rule.

The derived rules can be used as a shortcut for several lines of proofs that are built using only primitive and admissible

rules.

Among the admissible rules the most outstanding ones are the following classical structural rules of Weakening and Cut:

(Wk) � �
�,�′ � (Cut)

�,ϕ � �,¬ϕ �
� �

The sequent calculus ttc is cut-free since we have already proved its soundness and completeness and the cut rule is

omitted in ttc. Since ttc is complete without the cut rule, the cut rule is admissible in ttc. However, the classical syntactical

techniques for cut elimination cannot be applied here because of the context used in the rule (U )2. Hence, we have been

unable to give a syntactic proof of cut elimination. However, we are aware of the work of K. Brünnler, who introduced the

notion of deep sequent and gave a cut-elimination procedure for modal logic [4]. It seems feasible that the same technique

applied to our calculi (extended with the cut rule) could yield a syntactic cut-elimination procedure for PLTL.
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Fig. 9. Derived rules for ttc.

The weakening rule (Wk) is non-invertible so it must be used carefully. The rules (T) and (¬F), that appear below, are

particular cases of the rule (Wk) but they are invertible. So they can be used to eliminate the formulas T and ¬F knowing that

the equivalence with respect to the ttc-consistency is preserved:

(T) � �
�, T � (¬F) � �

�,¬F �

Since ttc is also contraction-free, admissible rules couldbeobtainedbyassociating to everynon-structural rule (R) the rule

(RC) that produces an (implicit) contraction in (R). For example, the rule below (∧C) is the admissible rule that corresponds

to the primitive rule (∧).
(∧C) �,ϕ ∧ ψ ,ϕ,ψ �

�,ϕ ∧ ψ �
Regarding derived rules, first we use the usual abbreviations of defined connectives in order to derive the rules in Fig. 9.

It is easy to check that (∨) is derived from (¬∧) and (¬¬); (¬∨) from (¬¬) and (∧); (R ) from (¬ U ) and (¬¬); for i ∈ {1, 2}:
(¬ R )i is derived from (¬¬) and (U )i; for i ∈ {1, 2}: (�)i is derived from (U )i and (T); (¬�) is derived from (¬ U ), (T), (¬¬)
and (Cd)2; (�) from (¬�), (¬¬), (T) and (¬◦); and for i ∈ {1, 2}: (¬�)i from (¬¬), (�)i and (T).

The soundness and invertibility of these derived rules is guaranteed by the fact that they have been obtained using only

sound and invertible rules. Note that if the (Wk) rule is used instead of (T) for deriving the previous rules their invertibility

could not be directly guaranteed.

It is well known that the until operator, U , is not expressible in temporal logic with only◦, �, and� as temporal operators

(cf. [14,7]). As a consequence, a complete calculus for the sublogic that uses� insteadof U cannot bederived (by abbreviation)

from ttc, since the rule (�)2 needs the until operator for expressing its second premise.

Finally, let us recall the respective refinements (�)3 and (U )3 of the rules (�)2 and (U )2 that allow us to avoid including

persistent formulas and duplications in the negation of the context (see Section 5.5):

(�)3
�,ϕ �
�,¬ϕ,◦(�̃U ϕ) �

�,�ϕ � (U )3

�,ψ �
�,ϕ,¬ψ ,◦((ϕ � �̃)U ψ) �

�,ϕ U ψ �

7. The sequent calculus gtc

In this sectionwe present a sequent calculus gtc (see Fig. 10) that is two-sided and one-conclusioned (or asymmetric).We

prove the soundness of gtc and, then, we discuss about admissible and derived rules. Afterwards, we prove the completeness

of gtcwith the help of some previously derived rules. Finally, we give three examples of gtc-proofs.

The calculus gtc (see Fig. 10) is straightforwardly obtained from the previous calculus ttc. Actually, almost each primitive

rule of ttc has a counterpart in gtc that results from adding a conclusion χ to each sequent in the rule. The only exception

are the rules where the context is combined with the principal formula to produce the sequents in the numerator, where χ

(or better ¬χ) behaves as part of the context. Moreover, admissible or derived rules in gtc are the same kind of counterparts

of ttc rules as the primitive ones.
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Fig. 10. The sequent calculus gtc.

Fig. 11. Derived gtc-rules.

The soundness of gtcmeans that every gtc-provable sequent, namely � � χ , is correct regarding to logical consequence.

In particular, every satisfiable set of formulas is gtc-consistent.

Theorem 7.1 (Soundness). For any set of formulas � ∪ {χ}, if � � χ is gtc-provable then � |= χ.

Proof. By induction on the length of the gtc-proof, it suffices to prove that every primitive rule of gtc (see Fig. 10) is correct

in the sense of preserving the logical consequence relation between the antecedent and the consequent.

Now, the correctness proof of most rules is just routine. Actually, the only correctness proof that poses some difficulties

is the proof of the rule (U L)2. Hence, we only give the details for this rule, by mimicking the proof of Lemma 5.1.

Let us assume that� ∪ {ϕUψ ,¬χ} is satisfiable, thenwe can build a countermodel for some of the two premises of the rule

(U L)2. Let 〈M, si〉 |= � ∪ {ϕUψ ,¬χ} and z the least j ≥ i such that 〈M, sj〉 |= ψ . If z = i then 〈M, sz〉 serves as countermodel for

the first premise. Otherwise, if z > i, let y be the greatest j such that i ≤ j < z and 〈M, sj〉 |= � ∪ {ϕUψ ,¬χ}. As a consequence
of the choice of z and y, it holds that 〈M, sy〉 |= {ϕ,¬ψ ,◦((ϕ ∧ (� ∪ {¬χ})¬)Uψ)}. Then, 〈M, sy〉 yields a countermodel for the

second premise. �
The calculus gtc is more versatile than ttc, in particular gtc allows not only refutation proofs, but also goal-directed

proofs or, in general, the consequent can directly be used as principal formula in gtc-proofs. As a consequence, in gtc, we

can derive rules that have no sense in one-sided systems. For example, the contraposition rules:

(Cp1)
�,¬ϕ � ψ
�,¬ψ � ϕ (Cp2)

�,ϕ � ψ
�,¬ψ � ¬ϕ

which can be derived in the usual way from the classical connectives primitive rules in gtc.

The derived rules in Fig. 11 are useful for proving the completeness of gtc. They are easily derived with the help of the

above rules (Cp1) and (Cp2). It is easy to check that (FL) is derived from (Cd) and (As); (CdL) from (¬L) and (As); (◦L) from
(◦F) and (R◦L); (¬¬L) from (Cp1) and (Cp2); (¬ ∧ L) from (Cp1) and (R∧); and (¬ U L) from (Cp1) and (RU ).
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Now, we can associate to each ttc-proof a gtc-proof.

Proposition 7.2. If � � is ttc-provable then � � F is gtc-provable.

Proof. Suppose that � � is ttc-provable. Then, by admissibility of the rule (¬F) (see Section 6), �,¬F � is also ttc-provable.

It is easy to see that for each ttc-rule there is a closely related (primitive or derived) gtc-rule. In particular, ttc-rules are

gtc-derived rules or single instances of gtc-rules. More precisely, the ttc-rules (¬¬), (∨), (¬∨), (◦), (U )1, (U )2, (¬◦), (¬ U ),
(Cd1) and (Cd2), respectively correspond to (¬¬L), (∨L), (¬ ∨ L), (◦L), (U L)1, (U L)2, (¬◦L), (¬ U L), (CdL) and (FL). As a conse-

quence, we can construct a gtc-proof of the two-sided sequent �,¬F � F. Therefore, using the gtc-rule (Cd), the sequent

� � F, is also gtc-provable. �

Theorem 7.3 (Completeness). For any set of formulas � ∪ {χ}, if � |= χ then � � χ is gtc-provable.

Proof. If � � χ is not gtc-provable, then by rule (Cd) the sequent � ∪ {¬χ} � F is not gtc-provable. By Proposition 7.2, � ∪
{¬χ} � is not ttc-provable, which is a contradiction by Theorem 6.3. �

Using the abbreviations �ϕ and �ϕ for T U ϕ and ¬�¬ϕ, respectively, we are also able to derive the following useful rules:

(�L)1

�,ϕ � χ
�,¬ϕ,◦(T U ϕ) � χ

�,�ϕ � χ (�L)2

�,ϕ � χ
�,¬ϕ,◦((� ∪ {¬χ})¬ U ϕ) � χ

�,�ϕ � χ

(R�) �,¬◦�ϕ � ϕ
� � �ϕ (�L) �,ϕ,◦�ϕ � χ

�,�ϕ � χ

(R�)1

� � ϕ
�,◦(T U ¬ϕ) � ¬ϕ

� � �ϕ (R�)2

� � ϕ
�,◦(�¬ U ¬ϕ) � ¬ϕ

� � �ϕ

In addition, the ttc-rules (U )3 and (�)3 produce the corresponding gtc-rules where �′ = � ∪ {¬χ}:

(U L)3

�,ψ � χ
�,ϕ,¬ψ ,◦((ϕ � �̃′)U ψ) � χ

�,ϕ U ψ � χ (�L)3

�,ϕ � χ
�,¬ϕ,◦(�̃′ U ϕ) � χ

�,�ϕ � χ
and it is easy to derive the following rule (R�)3 for the defined connective �:

(R�)3

� � ϕ
�,◦(�̃U ¬ϕ) � ¬ϕ

� � �ϕ

Note that, by (�L) and (CdL), the following contradiction rule is also derivable:

(Cd�)
�,�ϕ,¬◦�ϕ � χ

Let us now illustrate the gtc-style of reasoning bymeans of some examples of gtc-proofs. In order to enhance readability,

we have underlined, at each step, the principal formula. Both primitive and derived rules are used in the derivations.

Example 7.4. The following gtc-proof shows that the formula q is a logical consequence of the set of formulas {pU q,¬◦�q}.

q, ◦¬�q � q
(As)

q,¬◦�q � q
(As)

p,¬¬q,¬q, ◦((p ∧ ¬¬q)U q), ◦¬�q � q
(CdL)

p ∧ ¬¬q,¬q, ◦((p ∧ ¬¬q)U q), ◦¬�q � q
(∧)

(p ∧ ¬¬q)U q, ◦¬�q � q
(U L)3

(p ∧ ¬¬q)U q,¬◦�q � q
(¬◦L)

(p ∧ ¬¬q)U q � �q (R�)

(p ∧ ¬¬q)U q,¬�q � F
(¬L)

p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬�q � ◦F (R◦L)

p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬�q � q
(◦F)

pU q, ◦¬�q � q
(U L)3

pU q,¬◦�q � q
(¬◦L)

Note that by using (U L)3 we avoid to consider the persistent formula ◦¬�q and also the repetition of ¬¬q.
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Example 7.5. The following gtc-proof shows that the formula ¬�p is a logical consequence of the set of formulas {�¬p}.

¬p, ◦�¬p, p � F
(CdL)

�¬p, p � F
(�L)

¬p, ◦�¬p, p � F
(CdL)

�¬p, p � F
(�L)

�¬p, F,¬p, ◦(FU p) � F
(FL)

�¬p, FU p � F
(U L)3

◦�¬p,¬p, ◦(FU p) � ◦F (R◦L)

◦�¬p,¬p, ◦(FU p) � F
(◦F)

�¬p,¬p, ◦(FU p) � F
(�L)

�¬p, �p � F
(�L)3

�¬p � ¬�p (R¬)

Note that, when applying the rule (�L)3 and (U L)3, the persistent formulas �¬p and ¬F are left out.

Example 7.6. The following gtc-proof shows that the formula �p is a logical consequence of {p,�(¬p ∨ ◦p)}. This is a typical
property of induction on time. In the gtc-proof below ϕ is an abbreviation for ¬p ∨ ◦p and ψ for ¬pU ¬p.

p,�ϕ � p
(As)

p,¬p, ◦�ϕ, ◦ψ � ¬p
(As)

p,�ϕ,¬p � F
(CdL)

p,�ϕ,¬p,¬¬p, ◦ψ � F
(CdL)

p,�ϕ,ψ � F
(U )1

p, ◦p, ◦�ϕ, ◦ψ � ¬p
(◦L)

p,ϕ, ◦�ϕ, ◦ψ � ¬p
(∨L)

p,�ϕ, ◦ψ � ¬p
(�L)

p,�ϕ � �p
(R�)3

8. Concluding remarks

We have introduced a tableau system and two sequent calculi for the logic PLTL that can be seen as dual systems. The

former system ttm differs from traditional temporal tableaux in that it does not require auxiliary graphs for checking the

fulfilling property for eventualities. The latter calculus gtc is finitary and completely cut-free, in particular invariant-free. In

addition, as a consequence of the duality with the tableau system, the sequent calculus is also weakening- and contraction-

free. A sequent calculus called FC, that is very similar to gtc, was presented in [9]. There, in order to prove completeness,

the weakening rule (Wk), as well as a hidden contraction, were needed. In this sense, gtc is an improvement of FC that has

been achieved using its duality with the tableau system ttm.

Wehave contributednew ideas to theproof-theoryofPLTL. In particular,webelieve that automated reasoning in temporal

logic can take benefit from the systems introduced in this paper. We are working for improving the existing methods of

temporal resolution (see [6]). Concretely, using thepresented ideasweare able not only to avoid the constructionof invariants

in the clausal resolution setting, but also to keep the classical form of clausal normal forms. However, as a consequence of the

double exponential size of the closure set (see Proposition 5.9), our decision procedure has a poor worst case performance.

Actually, thedecisionproblem forPLTL is known tobePSPACE-complete (see e.g. [21]) and traditional (graph-based)methods

require exponential time, whereas our method requires double-exponential time (in the worst case). Hence our decision

procedure is, in the worst case, suboptimal. However, we are convinced that a practical implementation that incorporates

the simplifications explained in Section 5.9 may compete with traditional methods in several cases –e.g. when most of the

formulas (in the context) are always-formulas– and even be faster in others, e.g. when satisfiability can be detected without

constructing a graph. Of course, much more experimental work still needs to be done in order to precisely compare the

performance of both decision procedures.

Another important point that can be addressed is the extension of these results to other temporal or, in general, modal

logics. Actually, PLTL can be seen as the core logic of many logics. Hence the ideas introduced in this paper could serve as

a basis for extensions to the first-order case (in spite of its incompleteness), or its complete fragments (e.g. the monodic

fragment), or other kinds of extensions of PLTL such as the modal μ-calculus, and so on. The extension to the branching case

has already been studied in [5] and [1]. In [5] the authors extend their cut-free sequent calculus to CTL. In [1] they present

an analogue of the Schwendimann’s tableau method for CTL.
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