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Abstract

The aim of our work is the definition of compositional semantics for modular units over the
class of normal logic programs. In this sense, we propose a declarative semantics for
pormal logic programs in terms of model classes that is monotonic in the sense that
Mod(P U P') C Mod(P), for any programs £ and /, and we show that in the model class as-
sociated to every program there is a least model that can be seen as the semantics of the pro-
gram, which may be built upwards as the least fix point of a continuous immediate
consequence operator. In addition, it is proved that this least model is ““typical™ for the class
of models of Clark-Kunen's completion of the program. This means that our semantics is
equivalent to Clark-Kunen's completion. Moreover, following the approach defined in a pre-
vious paper, it is shown that our semantics constitutes a *‘specification frame™ equipped with
the adequate categorical constructions needed to define compositional and fully abstract (cat-
egorical) semantics for a number of program units. In particular, we provide a categorical se-
mantics of arbitrary normal logic program fragments which is compositional and fuily
abstract with respect to the (standard) union. © 1999 Elsevier Science Inc. All rights re-
served. :

Keywords: Normal logic programs; Model-theoretic semantics: Compositionality; institutions;
Monotonic semantics; Constructive negation; Modular logic programs

1. Introduction

Despite the amount of papers on the semantics of negation (sce, e.g. Ref. [3]).
there are several semantic issues that are insufficiently explored. One such basic issue
is modularity. The reason is that a proper semantics for any kind of modular unit
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must be shown to be compositional with respect to the kind of module operations
considered, but the non-monotonic nature of negation in Logic Programming does
not seem to fit too well with compositionality. In particular, for different reasons,
none of the various cperational semantics [13,11,32], neither the different model-the-
oretic approaches (see e.g. Ref. [3]), nor the completion semantics [12,25], seems to
be adequate to be the basis for defining a compositional semantics for normal logic
program units. To our knowledge, only Refs. [17,19,27,35,9] provide some composi-
tional semantic constructs for normal logic programs. In Section 6 we compare the
results presented in this paper and these approaches. It must be noted that compo-
sitionality is a very important property for defining the semantics of a modular unit.
In particuiar, if the semantics of a unit is not compositional with respect to the given
module operations this means that, for reasoning about a program consisting of sev-
eral such units, we would need to previously “flatten’ the program (or its semantics)
“forgetting”™ the modular structure of the program. Aiso, when dealing with modular
units, another important property is full abstraction with respect to composition,
which holds if the semantics of two modules coincide if and only if the two modules
“behave™ equclly in every context. In particular, if a semantics is fully abstract tl\li/s
gnarantees that our notion of program equivalence is the right one for recasoning
about implementation, i.e., a program unit could be substituted by another unit im-
plementing the same abstraction if and only if they have the same semantics.

In Ref. [29], a methodology is presented for the semantic definition of modular
logic programs ensuring compositionality and full abstraction, and it is applied to
study several kinds of program units for the class of definite logic programs. The ap-
proach is based on the fact that most modular constructions can be defined and stud-
ied independently of the underlying formalism used ““inside™ the modules, as far as
this formalism is an “institution’’ [23] or a “‘specification frame™ [16] (or some similar
notion) equipped with some categorical constructions. In particular, the proposed
methodology for defining the semantics of a certain kind of ‘nodular unit consists,
essentially, of three steps. Firstly, one has to study the given unit. and the associated
composition operations, at the gencral level. This means defining the meaning of the
construction in terms of the categorical constructions that the specification frames
will be assumed to provide. Secondly, one has to define the given class of logic pro-
grams as an institution or specification frame with the needed constructions. At this
point one may already obtain a compositional and fully abstract semantic definition
for the given unit. The categorical constructions obtained at this stage may be more
abstract than required. A further third step can be the definition of an equivalent,
more concrete semantics.

Even if the intermediate categorical machinery is discarded at the end, the three-
step approach is instrumental in avoiding arbitrary and unfortunate choices in the
concrete semantics, which then fail to have critical properties, such as mcnotonicity.
Applying this methodology not only may save some work (since some results must
be proved just once, independently of the classes of logic programs considered) but,
whai-is‘more important, it provides clear guidelines about how the concrete seman-
tics for the various constructions must be defined. In particular, these guidelines were
extremely valuable for the work reported in this paper. In principle, the main prob-
lem found in order to apply this methodology to study modularity and composition-
ality issues for.ihe class of normal logic programs is (the lack of) monotonicity.
Institutions and specification frames can be seen as characterizations of monotonic
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formalisms. This seems to be in contradiction with ilie non-monotenic nature of ne-
gation as failure and constructive negation. However, if we look at the simpler case
of the class of definite logic programs with negative queries, then we could see one of
the basic ideas of our proposal: the class of definite logic programs (Horn Clause
Logic) is, obviously, a monotonic logic; the non-monotonicity of the negative queries
is related 1o the selection of an arbitrary model (the least one) to define what is as-
sumed to be “‘false”. Similarly, in this paper we propose a declarative semantics for
normal logic programs in terms of model classes that is monotonic in the sense that
Mod(Pu P) C Mod(P) for any programs P and P. This is enovgdh for defining a
specification frame of normal logic programs equipped with the categorical construc-
tions needed to apply the results in Ref. [29] to the class of normal logic programs,
obtaining compositional and fully abstract (categorical) semantics for a number of
program units [8.21]. In particular, we apply these results to provide a (categorical)
semantics of arbitrary program fragments which is compositional and fully abstract
with respect to (standard) union. In addition. we show that in the model class asso-
ciated to every program there is a least model that can be seen as the (non-compo-
sitional) semantics of the program. This least model is “‘typical” for the class cf
models of the Clark--Kunen’s completion of the program. In that sense, our seman-
tics is equivalent to Clark-Kunen’s completion. Morcover, we provide a continuous
immediaie consequence operator and show that this least model can be built ““up-
wards™ as the least fixpoint of that operator.

In addition, ip Section 35, it is proved that the class of models of a given program P
forms a complete lattice. For this reason, we are convinced that, not only with re-
spect to compositionality issues, our semantics is just the “right” kind of model-the-
oretic semantics for normal logic programs. In particular, if model-theoretic
semantics are usually the most adequate tool for meta-logical reasoning (e.g. for
proving completeness of operational approaches), the structure of our classes of
models, together with the closeness to ranked resolution, makes our semantics ade-
quate for the proof of such kind of properties.

Moreover, ranked structures can be seen as a special case of (a three-valued ver-
sion of) Beth structures, used to provide semantics to intuitionistic logic (e.g., see
Ref. [33]). In this sense, our semantics suggests a link, already mentioned by other
authors (e.g., see Ref. [31]). between logic programming negation and intuitionistic
logic that may be worthwhile to study. In particular, it could serve as a basis for ex-
tending with negation those approaches to modularity based on the use of an intu-
itionistic implication (e.g.. see Ref. [28]). In this line, the only work we know is Ref.
[6] whcre a semantics of programs including an intuitionistic implication and nega-
tion as failurc is defined in terms of Kripke models under some severe restrictions. In
particular, programs must be stratified and signatures may only contain predicate
symbols, i.e., function symbols are not allowed.

The paper is organized as follows: in the next section we introduce some basic no-
tions and notation; in Section 3. we review the basic definitions and results about
specification frames and, as illustration, their application io the class of definite logic
programs; in Section 4, we present the declarative model-theoretic semantics for nor-
mal logic programs, including a fix point construction of least models, and show its
connection with Clark-Kuien’s completion; in Section 5, we discuss the results pre-
sented with respect to compositionality and full abstraction issues; finally, in Sec-
tion 6, we give some conclusions and relationships with other works.
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The reader is assumed to have certain familiarity with basic constructs from cat-
egory theory. For details one may consult any basic text on the subject {e.g., Refs.
[5.4D.

2. Preliminaries

A countable signature X consists of a pair of sets (FSs, PSs) of function and pred-
icate symbols, respectively, with some arity associated. Z-terms and X-atoms are
built using functions and predicates from Z and, also, variables from a prefixed
couniable set X of variable symbols. Terms will be denoted by ¢, s,. . ., and var(r) will
denote the variables appearing in 7.

Normal programs over a signature X (or X-programs) are sets of Z-clauses
al—l],...[k,

where a is a Z-atom, £ = 0, and each /; is a Z-literal, that is b or = where b is an
atom. For simplifying some technical constructions, we consider that any Z-program
is written as its equivalent constraint normal program with flat head. That is, any
clause

p(tla---,tn) : ‘—Ilv--'lk
is written as the constraint clause

plxy,..oxg):i =L, L Oxy =4, %,

Moreover, we suppose the identical tuple x,,.... x, of fresh variables occurs in alil
clauses (in a program) with predicate p in its head. We denote by Hdp(p(x)) the
set {p(X):—FOx=7|k=1,...,m} of all clauses with head p appearing in P.

Constraints appearing in programs are a special kind of simple constraints. In
general, we consider that X-constraints are arbitrary first order X-formulas over
equality atoms. That is, formulas composing equality atoms with the connectives:
-, A, V, —, and the quantifiers: ¥, 3. For a formula ¢, in particular for a constraint,
Jfree(o) is the set of all free variables in ¢, and @(¥) specifies that free(¢) C ¥. We will
identify the list of constraints in any program clause with the corresponding conjunc-
tion (i.e., a formula). We denote constraints by ¢, . . .. (possibly with sub- or super-
scripts). Formulas ¢", ¢” stand for the universal and existential closuras of ¢,
respectively. The atomic formulas naming the two classical truth values are T and F.

We will handle constraints in a logical way, using logical consequence of the free
equality theory. The free equality theory FET; for a signature 2 is the following set of
formulas:

= a3

Vx(x = x)

Yxvi(x =y o f(X) = () for each f € FSy,

VEVp(x =y — (p(xX) < p(3))) foreach p € PS; U {=},

VEVI(F(Z) #£ g(¥) for each pair f,g € FS; such that f # g,

Vx(x # t) for each X-term r and variable x such that
x € var(t) and x # .

Besides, whenever X is finite, FET: also includes the weak closure domain axiom:
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vl \/ = f()'/))),
<FSx

Then FETs is a complete theory, that is FETs = ¢ or FETr & —o for any X-sentence

¢. Therefore ali models of FET: are elementary equivalent.

A constraint c¢ is satisfiable (resp. unsatisfiable} if and ouly if FET: | ¢? (resp.
FETs | —(c?)). A ground substitution ¥ = 7 (where ¢, are closed terms) is called a so-
lution of a constraint ¢ if and only if FETs k= (¥ == 7 — ¢)". A constraint 4 is less gen-
eral than c iff FET; (= (d — c)".

From a logical point of view, programs are sets of formulas. There are, mainly,
two logical ways of interpreting a normal program P. The first one, denoted by
PY, interprets every clause as the universal closure of the formula which results from
substituting “commas’ and O (in the clause body) by logical conjunction, and the
symbol *““:-”" by logical implication (right-to-left). The second one is Clark’s program
completion, denoted by Comp(P). The completion of a T-program £ cousists of the
free equality theory FET; together with, for each p € PSx, a predicate completion for-
mula:

vE (p(x) V3 E=#n l'f)),
k=1

where # are the variables appearing in # and F* which do not belong to x, and
Hdp(p(x}) = {p(x): —F O =F | k = 1,...,m}. In both interpretations, conjunction
(resp. disjunction) of an empty set is simplified to iiie atomic formula T (resp. F).

However, clauses like p: ——p are inconsistent when program completion is con-
sidered. To avoid this problem [25] proposed to interpret Clark’s program comple-
tion in three-valued logic. In particular, in this logic the three truth values are true
(1), false {f) or undefined (u); the connectives —, A, Vv are interpreted in Kleene’s par-
tial logic [24], — is interpreted as the identity of truth values, so it is two-valued; fi-
nally, existential quantification can be seen as infinite disjunction. and universal
quantification is treated as infinite conjunction. Equality is twe-valued. Currently,
this interpretation of Clark’s completion (from now on the Clark-Kunen comple-
tion) is considered the standard declarative meaning of normal logic programs. Any-
how, it must be noted that, in the context of completion, any three valued extension
of classical implication can be considered. The reason is that implication does not
appear in predicate completion formulas and FET: contains only implication be-
tween two-valued formulas, i.e., the choice of a three-valued semantics for implica-
tion becomes an important matter when the program itself is treated as a logical
theory. In this sense, we will use Przymusinski’s implication [30]:

v

IL L L S Y

IS 1Sy

[CNFCN L N

-
t
L
u

whose intuitive meaning is “‘¢ — ¥ is true if and only if whenever ¢ is true  is also
true and whenever  is false ¢ is also false””. Then, ¢ «— ¥ is equivalent to
(¢ — ¥) A (Y — @) and, in particular, we have that Comp(P) = P°. Note that the
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classical equivalence ¢ — ¢ = —¢ V i does not hold. However, in the case of ¢ be-
ing two-valued (e.g. an equality formula) ¢ —  is true iff —¢ V i is true, so that
@ — i is false iff —¢ V ¥ is false or undefined.

A three-valued X-structure ./ consists of a universc of values 4 and an interpr-
etation of every function svmbol bv a (total) function from 4" to 4 (of adequate arity
n) and of every predicate symbol by 2 partial relation, which can be seen as a (total)
function from A4” to the set of the three boolean values {t,f,u}. In that way, every
closed X-term can be interpreted as a value belonging to the universe of a Z-structure
(they cannot be undefined), every equality ground atom ¢, = 1, is associated to one of
the classical truth values, but every ground atom p(z;....,¢,) is associated to one of
the three boolean values: {t,f,u}.

A Herbrand three-valued structure .# is a three-valued Z-structure whose uni-
verse H 13 the Herbrand universe for X, function symbols are trivially interpreted
and the predicate interpretation is given by a pair of disjoint sets: H#* of true ground
atoms and H~ of false ground atoms, so that any other ground atom is undefined.

The ~value of any first order sentence ¢ in a three-valued structure .«/ will be de-
noted by /(). A three-valued structure ./ is a model of a set of formulas &, denot-
ed by .=/ = @, iff o/(¢) = t for any formula ¢ € . Three-valued logical consequence
@ |= ¢ means that for all three-valued structure .«7 if .« | @ then .o/ | .

3. The algebraic framework

In this section we review some basic notions on algebraic specification needed in
this paper (for further detail see e.g. Refs. [15,36] and also Refs. [22,23,14] for more
detail on institutions and specification frames).

In Scction 3.1, we introduce the notion of specificatioi: frame. A specification
frame can be seen as a formal description of a logic formalism with certain compo-
sitionality properties. From our point of view, this notion providcs an adequate the-
oretical framework for studying structuring issues in logic programming. In the
following section, we introduce some algebraic properties of specification frames
which are specially interesting for our work. In particular, these properties allow
us to study different structuring constructs at the abstract level, that means, indepen-
dently of the concrete class of logic programs used to build modular or structured
logic programs. In order to show the gains of using this framework, we present, in
Section 3.3, a compositional and fully abstract semantics with respect to the union
of logic programs [29]. These results are obtained independently from the concrete
class of logic programs considered as long as the required algebraic properties are
satisfied. Throughout the section, we illustrate the intrcduced notions with the re-
sults obtained in Ret. [29] for Horn Clause Logic.

3.1. Specification frames

The notion of specification frame was introduced in Ref. [16] to axiomatize for-
malisms with certain basic compositionality properties. in order to study the struc-
turing and modularization of specifications with independence of any logic
formalism. The notion was defined as a “‘slight” abstraction of the notion of institu-
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tion [22] defined, some vears before, by Goguen and Burstall with similar aims. That
idea was connected with the design of the Clear specification language [16]. In par-
ticular, Clear was defined as providing operations for structuring specifications inde-
pendemily of the underlying logic.

Specification frames are indexed categories that satisfy some additional struct-:ral
properties:

Definition 3.1 4 specification frame &7 is a pair (Spec,Mod), where
a Spec is a category of abstract specifications (or programs), and
e Mod: Spec” — Cat is a functor, that associates to every specification SP in
Spec its category of models Mod(SP), and to every sp._cification morphism
f: SP1 — SP2 a functor Mod(f) : Mod(SP2) — Mod(SPl), usually denoted by ¥},
such that the following two properties are satisfied:
(a) Spec has pushouts
(b) Mod transforms pushouts in Spec into pullbacks in Cat (i.e., % has amal-
gamations).

Remark 3.1. (1) Pushouts are the operations that allow us to combine spectifications,
while amalgamation is the semantic counterpart to pushouts.

In particular, pushouts in the category of specifications correctly capture the re-
quired notion of combination of specifications with a common sub-specification,
in a general way. Pushouts are diagrams in the category of specifications. Essentially,
if we want to put together two specifications SP1 and SP2, having a common sub-
specification SPO, the pushout SP3 (of SP1 and SP2, with respect to SP0) would
provide the right combination. Almost all logics of practical interest have pushouts
(see Ref. [15] for more detail).

Amalgamation allows us to define the semantics of a combined specification pure-
ly on the semantic leve! as the amalgamation of the model classes of the specifica-
tions which are combined. The rcason is that, as we show below, given a pushout
of specifications as in the diagram of Fig. 1, amalgamation can be characterized
as an operation for *‘building” the models of SP3 in terms of the models of SPO,
SP1 and SP2.

Most logics have amalgamation. This is the case, for instance, of Horn Clause
Logic (.#%.¥), Equational Logic (§2.), Conditional Equational Logic (v < 2.%),
Clausal Logic (6.%), and First Order Logic (% .%).

(2) It must be noted that the functorial character of Mod, usually, implies that
specification frames are monotonic formalisms. In particular, if we consider a

spo — 11 sP1
f2 gl
sp2—92 . sp3

Fig. 1. Pushout diagram.
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specification frai - where specifications are pairs (Z ) (where X is come kind of sig-
nature and @ is a set of axioms over that signature), ti.2n for any sets of formulas @
and @ over I

Mod(ZE, @ U &) C Mod(X, ®)

when specification inclusions, as (I, ®) C "7, @ U @), ar: considered morphisms in
Speec.

Theorem 3.1 [16]. Given &% = (Spec,Mod), Mod transforms pushouts in Spec into
pullbacks in Cat iff for every pushout diagram in Spec, given in Fig. 1, the following
three facts hold:

(i} For every /i € Mod(SFi) (i =0, i,2) such that Vi (A1) = /0 = Vpa2(./2) there
is a unigue /3 € Mod(SP3), called amalgamation of /1 and /2 via .</0, written
A3 = Al 4 9 L2, such tirat we have:

Va(e#3) = /1 and Vp(of3) = /2.
(ii) Conversely. every /3 € Mod(SP3) #as a unigue decomposition
3 = Vo (f3) +iy (s Vaa(/3).

(iii) Similar properties to 1 and 2 above hold if we replace objects </i by morphisms
h; in Mod(SPi) (for 0<i<3), leading to a unique amalgamated sum of morphisms
h3 = hl +,9 k2 with V, (h3) = hl and V,5(h3) = k2.

The next example defines a specification frame for Horn Clause Logic over a pre-
defined (universal) signature of functions. After defining it, we will analyze its prop-
erties.

Example 3.i. Horn Clause Logic over the functions signature FS can be defined as

the specification frame, ¢ ¥ = (HCL,Mod), where:

» Specifications are pairs (P S,®) formed by a signature of predicates and a
set of Horn clauses over FS and PS, and specification morphisms
h:(PS,® — (PS'. &), are mappings, #: PS — PS' such that (1) arities are pre-
served and (2) ##(®) C &', up to renaming of variables, where 4% denotes the
translation induced by A.

e (PS,®)-models, in # €. are Herbrand structures, i.e. sets of atoms over FS and
PS, that satisfy the axioms in @ (according to the standard noiion of satisfaction).
A (PS, @)-homomorphism between (P S, ®)-models, f: /1 — 2, is just an in-
clusion, .«/1 C /2. Then, Mod : HCL”” — Cat maps every specification (PS, ®)
in #€.Z into the category of all (PS, #)-models and (P S, #)-homomorphisms.
and every specification morphism Ah: (P S, #) — (PS’,?') into the corresponding
forgeiful functor ¥, :Mod{PS’, @) — Mod(PS, &) defined as usual, i.e. for every
P S'-model .« we define ¥} (.=/') as the set of atoms whose translation via h is in
A ie.:

V(') = {a € Atoms(PS)/h*(a) € </}

e Also, if f/': /1" — /2’ is a homomorphism in Mod(P S, @'), i.e. &/1' is included in
&/2', then Vy(f”) is the inclusion ¥,(=/1')} C V;(/2').
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Let PO = (PS0C,%0), Pl = (PS1,%1) and P2 = (PS2,%2) be programs in HCL,
with A1: PO — Pl and A2: PO— P2 If hl and /A2 are inclusions and
PSINPS2=PS0 then the pushout of Pl and P2 is just P3=PlUP2, ie.
(PS1UPS2,41U%2). In the general case, a pushout is a kind of disjoint union
where the symbols in PS2, but not in P S0, are renained adequately and the mo-
rphisms gl and g2 map each symbol in Pl and P2, respectively, into the correspond-
ing symbol in P3.

Given the pushout diagram of Fig. 2, for every /i € Mod(Fi) (0<i<2). with
Vi (/1) = Vjp(/2) = /0, the amalgamation of .o/1 and /2 via /0, that is
A3 = ofl +40.o/2, is defined just as .o/1U.o/2, whenever kAl and 42 are
inclusions and PSINPS2=PSO. In the general case, .«/3 would be /3=
g1# (/1) U g2#(./2).

" Horn Clause Logic, .#% %, seems to be the most obvious choice for a specifica-
tion frame for defining the (declarative) semantics of definite logic programs. Acta-
ally, this is (implicitly) done by most authors. In particular, the ‘“standard™
declarative meaning of a logic program P is defined as the least Herbrand model
of F {see, for instance, Refs. [26,1]). In algebraic terms, this is equivalent to defining
the semantics of P as the least (initial) model in Mod(P). However, if we are interest-
ed in logic programming languages as programming languages, then a reasonable
choice would be one in which the input/output behaviour of programs were better
captured. In that sense, Ref. [29] provides the definition of another specification
frame, 2% for Definite Logic Programs, which, obviously, shares the syntax with
HE L, i.e., it has the same category of programs, but it is based on different notions
of model and satisfaction.

3.2. Other proper:ies of specification frames

In this subsection, we present some other properties of specification frames that
may be required when studying specific structuring or modular constructs. As we
have already mentioned, the satisfaction of these properties provides the adequate
setting for proving some usually desired semantic properties for these constructs.
Moreover, that can be made independently of the underlying logic formalism (used
to build specifications or programs) whenever this formalism is a specification frame.
In what follows, we also sketch, as an example, that these properties hold for the
specification frame #¢€.L.

Definition 3.2. A specification frame .¥.% = (Spec,Mod : Spec? — Cat) has free
constructions ifl for every specification morphism f : SP1 — SP2 in Spec there is a

hl

FO P1
h2 g1

P2 —92 . p3
Fig. 2. .#€ #-pushout diagram.
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free functor Fy: Mod(SP1) — Mod(SP2) which is left adjoint to V. Fy (and, in
general, any functor F : Mod(SP1) — Mod(SP2)) is strongly persistent iff VyoFy = ID.

The intuition of the free construction, in this context, is quite simple. Consider the
case where fis an inclusion of programs (specifications): P C P, The free construc-
tion associated to this inclusion would build, for each model .o/ of P, the least /-
model that can be built over ./, i.e., if P and P’ are definite logic programs F (/)
is the least model associated to P’ U .«/", where .«/" denotes the program consisting
of all the atoms in .«/. If the morphism is more general than an inclusion (i.e., it de-
fines some form of translation between the signatures of P and P') then, similarly.
F(.e/) could also be defined as the least model associated to P' U .«/*, where .«/*
would mean here the program consisting of the corresponding translation of all at-
oms in /.

It may be noticed that the existence of free constructions in a given specification
frame, in general, implies the existence of “initial’” models (least models). Since the
least model of a program P can be defined as F(8) where @ denotes the empty model
and Fis the free construction associated to the inclusion £C P where & denotes the
empty program.

Conversely, it can be shown that for most specification frames the existence of ini-
tial (least) models associated to every specification {or program) ensures the existence
of free constructions.

Example 3.2 (Properties of #€.L, [29]). # € ¥ has free constructions.

It is easy to see that, given a program P = (PS, %) of .#€ %, the category Mod(P)
is closed under intersection. This means that there is a least model .#p in Mod(?)
which happens to be trivially initial, according to the notion of homomorphis:u used
(inclusions) in tiie categories of models. Therefore, in the case of #€.¥, the exis-
tence of free constructions is a consequence of the existence of initial objects. In par-
ticular, given a morphism % : P — P/, with P = (£S,%) and P’ = (PS’,%"), the free
construction F, : Mod(P) — Mod(P’) can be defined for every .« in Mod(F) as the ini-
tial mode! of the program (PS’, %" tU h*(o/)), denoted .#p.y), where A (/) is the
program consisting of the traaslation through 4 of all the atowns in .«/.

Free constructions have been used at the model level to give sernantics to pr.cam-
eterized specifications. In Ref. [29] free constructions are considered as the semnantics
of the different kinds of open (or modular) logic programs. Horn Clause Logic
(#'€L). Equational Logic (6 2.¢) and Conditional Equational Logic (¢&2.%"; hav
free constructions (see Ref, [15]). In contrast Clausal Logic (4%} and First Order
Logic (# (¢.¥), in general, do not.

Definition 3.3. A specnﬁcatwn frame . # = (Spec,Mod) has free extensions iff for
every pushoui diagram in Spec as Fig. 1, if F: Mod(s. P0) — Mod(S P1) is a strongly
persistent free functor with respect to f1, then there is a strongly persistent functor
F* :Mod(S PZ) — Mod(S P3). called the extension of F via f2, such that:

{a) I is free with respect to g2.

(b) The diagram of Fig. 3 commutes.

Extension may be, in some cases, a key construction for proving cornpositionality
and full abstraction results. This is the case. in particular, when the semantics of the
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Mod(sP0) —1l—+ Mod(sP1)
Vi2 Va
Mod(SP2) ———+ Mod(SP3)

Fig. 3. Free extension diagram.

given construction is expressed as a persistent free functor. Every logic having amal-
samations has also free extensions.

Theorem 3.2 [16]. Specification frames have free extensions.

This result is a consequence of the existence of amalgamation. Being more con-
crete, if F: Mod(S PO) — Mod(S P1) is a strongly persistent free functor with respect
to f1 then the extension of F via f2 is the strongly persistent free functor
F* : Mod(S P2) — Mod(S P3), such that for each model <72 in Mod(S P2), F*(s/2)
is the amalgamated sum /2 +;,, 42 7 (¥F2(/2)).

Example 3.3 (Properties of #€ L, 129). #% ¥ has free extensions, since it has
amalgamations.

The existence of extensions for strongly persistent free functors can be generalized
to the non-persistent case under certain circumstances:

Definition 3.4. A specification frame .7 = (Spec,Mod) has generalized free
extensions iff for every pushout diagram as in Fig. |, if F: Mod(SP0) —
Mod(SPl) is a free functor with respect to fI, then there is a funcior
F*: Mod(SP2) — Mod(S P3), called the generalized extension of F via f2, such that:
_ (a) F~ is iree with respect to g2.

(b) There is a natural transformation v : FoVy; — ¥,;0F" such that the diagram of
natural transformations in Fig. 4 commutes, where f3 = glof'! = z20/2 and v and
u* are, respectively. the universal transformations associated to ™ and F~.

Theorem 3.3 [23). If a specification frame . F has free constructions and pushouts in
all model categnries Mod(SP), for all abstract specifications SP in Spec, then °F has
generalized free extensions.

Via _Lgou' Viz o F*

‘GIOFO"}Q

Fig. 4. Matural transformations associated to a generalized Iree extension.
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Example 3.4 (Properties of #H# €L, {2Y)). A €L has generalized free extensions
because, according to Definition 4, it is enough to check that for every program P,
there are pushouts in Mod(P): Given models /0,21, 72 in Mod(P), with
f1:270 C 271 and f2: 20 C /2, we can define the pushout of .</1 and .22 along
J1 and f2 as just the join &/1 U /2.

3.3. Standard union of logic programs

In this section, we present compositionality and full abstraction results [29] for a
semantics of the standard union of logic programs, which are general in the sense
that they are independent of the class of logic programs conzidered, as long as it
is a specification frame with the properties introduced in Section 3.2.

As is well known, the least model semantics of logic programs is neither compo-
sitional nor fully abstract (in a compositional way). As a result, some form of more
complex semantics must be considered if we intend to capture a compositional be-
haviour. For instance, Ref. [21] studies the (standard) union of logic programs
and the composition of logic modules, where a logic module can be seen as a logic
program including an additional importiexport interface, with the restriction that
clauses in the module do not include imported predicates in their heads. In both
cases, the meaning of these constructions is defined in terms of sets of minimal claus-
es, that are logical consequences of the given program. In our context, we can see
these meanings as concrete representatives of our general algebraic constructions.
In this sense, i full abstraction results in Ref. [21] can be seen just as ad hoc ver-
sions of variations of the results obtained in Ref. {29).

In our approach, for studying the operation of union, we consider that a logic
program P = (PS,%¥) may be seen as a special kind of open program where all
predicates are partially defined, in the sense that more information about the pred-
icates in P Spg, can be added by union with other programs. In our context, this im-
plies that the meaning of a program P can be seen as a mapping that given a PS-
structure ./ (that can be seen as including the “missing™ definitions of the predi-
cates in P), yields as result the “complete” interpretation of P, i.e. we may consider
that the meaning of P is the free construction associated to the program inclusion:
(PS,0)C P.

Definition 3.5. The semantics of a program P = (P S, %), noted by Sem(P), is the free
functor F : Mod (PSS, @) — Mod(P), associated to the inclusion (PS,0) C P.

It may be noted that, in this case, the semantics of P is never a persistent functor,
since given a program P and a PS-model o7, F(.2/) is in genera!l different from .o/.

Definition 3.6. Let P1 = (PS1,%1) and P2 = (PS52,%2) be programs, the standard
union of PI and P2, P1 U P2, is the program (PS1UPS2,41 U%2).

It must be noted that P1 U P2 coincides with the result of the pushout diagram, in
the category of programs of the underlying specification frame, given by Fig. 5.
Fig. 6
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(PS1N PS2,0) P1

P2 PlU P2

Fig. 5. Standard union of programs.

Mod(PS,,0) —2¢2PY) | rroa(py)

’
Mod(PS,,0) Mod(PS,0) -3¢ (PL) _ proa(ps, U PSi,C1)
Sem(P2) Sem’(P2) F2
" F1
Mod(P2) Mod(PS, U PSa, C2) Mod(P, UP)

Fig. 6. Union compositionality.

Dealing with programs whose semantics is persistent, compositionality of our se-
mantics, with respect to standard union, is a direct consequence of the existence of
free extensions in the specification frame. However, in the general case, we have to
use the more complex construction of generalized free extension.

Theorem 3.4 (Compositionality, [29]). The sermantics of Pl U P2 can be obtained as:
Sem(Pl U P2) = FloSen!’ (P2) = F2oSem'(P1), where
(i) PS = PS1UPS2.
(it) Sem’(P1) and Sem’(P2) are the generalized extensions of Sem(P1) and Sem(P2)
via the inclusions (P S1,0) C (PS,8) and (PS2,0) C (PS,0), respectively.
(iii) F1 and F2 are the generalized extensions of Sem'(P1) and Sem'(P2) via the in-
clusions (PS,0) C (PS,%1) and (PS,0) C (PS,%Z), respectiveiy.

It must be noted that Theorem 3.4 really proves the compositionality of Ser with
respect to standard union, in the sense that the meaning of P1 U P2 is defined in
terms of the meaning of P1 and P2, since the generalized extension of free functor
F via an inclusion /, is uniquely determined by F and i.

On the other hand, ihe following lemma is a consequence of the fact that free con-
structions are unique up to natural isomorphism:

Lemma 3.1 [29). Given two programs Pl and P2,
Sem(P1l) = Sem(P2) iff for every P : Sem(P LI Pl) = Sem(P U P2).

This lemma can be used to prove full abstraction of the given semantics. In par-
ticular, a semantic definition of a program unit is fully abstract with respect to a
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given composition operation, for instance U, and a given observation criteria Obs if
and only if for all programs Pl and P2

Sem(P1) = Sem(P2) iff for every P : Obs(P U Pl) = Obs(P L P2).

Now, there are several observation criteria that may be used in the context of logic
programming. The most obvious one is to consider two programs Pl and P2 obser-
vationally equivalent if and only if the ground consequences of the two programs co-
incide, or equivalently if and only if their associated least models coincide (in Ref.
[29] it is also considered observations associated to the computed answers of the giv-
en programs). In this sense, full abstraction can be reformulated as:

Sem(Pl) = Sem(P2) iff forevery P: Tpupy = Tpipo.
where 7» denotes the initial model of P in the corresponding specification frame. for
example, if the underlying specification frame is .# % ¢ then Tp is the minimal Her-
brand model of P, that is, Tp = . #/p,
The abstract result of full abstraction works for all “algebraic™ specification
frames (in particular .#%.% is algebraic).

Definition 3.7. A specification frame % = (Spec.Mod) is algehraic if tor each
specification S P in Spec and for each model .«/ in Mod(P) there exists a specification
SPO such that .o/ = Tg¢pg, wWhere Tsen denotes the initia! model of S PO.

Theorem 3.5 (Full abstraction, [29])). Ler V.7 = (Prog.Mod) be an algebraic
specification frame. Then, given two pragrams Pl und P2 in Prog.

Sem(P1) = Sem(P2) iff for everv P:Tpp) = Tppa.

In Ref. [29], these results are used to analyze and improve previous ones. More
specifically, with respect to standard union, it is proved that the semantics proposed
in Ref. [21] is equivalent to the above “"abstract” semantics: this allows us to con-
clude that their semantics is not only fully abstract, as they prove, but also compo-
sitional. Being more concretely, the semantics of a logic program P = (§,%), as
defined in Ref. [21]. can be seen as a specific representative of the free construction
associated to the inclusion (P S, 0) C (P S, %) in the specification frame .# % <. Then,
the full abstraction results of Ref. [21] are just a consequence of the results in Sec-
tion 3.2 applied to the specification frame .# %.%. On the other hand. according to
these resuits, the compositionality of the semantics, with respect to the union, is a
consequence of Theorem 3.4.

4. A model-theoretic semantics for normal logic programs

As said in Section 1, our aim is to define a model-theoretic semantics for normal
logic programs (i.c., the meaning of a program P is the set Mod(P) of all models of P,
for a given notion of model), such that the following monotonicity property holds

Mod(P) D Med(PUP') forall P, P.
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In addition, we also want this semantics to be adequate for applying the general
results presented in the previous section. This means that it must be possible, based
on this semantics, to define a specification frame satisfying all the properties needed
for defining the meaning of the kind of programs units considered. In particular,
this means that ths spcuification frame must have free constructions and, as a con-
sequence, eveiy program P must have a least model, denoted .#p, that could be
considered its standard meaning. On the other hand, obviously, this semantics
should be proved equivalent to the standard meaning associated to normal logic
programs.

An obvious choice is to consider that the models of a program P are three-valued
structures. Then, one would try to find some ordering < among models satisfying
that there is a least element that can be proved equivalent to the intended meaning
of P. Unfortunately, as the following counter-example shows, this is not possible.

Example 4.1. Let us consider the normal program Pl = {a: —-b}, its least model
.#py should te the pair ({a},{b}). and consider P1' = {b: -}, inen #p py =
({b}, {a}). Then we must have ({a}, {6}) < ({b}. {a}).

Now, by considering the program P2 = {b: ——a} and extending it with the clause
{a: —} we obtain that ({b}. {«}) =< ({a}, {b}) should hold.

From our point of view, the problem in this counter-example is that . #, p and
.# p> should not be identical and should reflect, in some sense, the “dependences from
negative information” which make a given atom be in the model. For instance, .#p»
includes & as a consequence of the negative information provided by a, while . #py_p
includes » without any dependency of negative information. This consideration has
led us to consider models having ‘“‘layers™ that reflect these dependencies. We call
these models ranked structures because of their relation with ranked resolution.
For instance, if we consider again the abecve Example 4.1, the “intended” model
for Pl has a first layer giver by (0, {b}) and a second layer ({a}, {b}}). However
for P1 U P’ the first layer is ({4}.9). and the second layer ({4}, {a}). Similarly,
for P2 the first layer is (9, {a}) and the second layer is ({4}, {a}). Now the intended
models associated to Pl U P1’ and to P2 are different, since their first layers differ.

In what follows, first we sketch the propositional case to provide some intuition.
In Section 4.2 we extend the already presented semantical notions to the class of all
normal logic programs. Then, in Section 4.3 we prove the existence of a leasi model
and we provide a continuous immediate consequence operator for obtaining it in a
bottom-up constructive way. Finally, we show the equivalence of our semantics with
Clark—Kunen semantics, proving that our least model is a‘‘typical™ element in %
class of all models of program completion.

4.1. A first approach: The propositional case

In the propositional case, it is enough to consider sequences of Herbrand three-
valued Z-structures. In the next section we extend this notion of semantical structure
to deal with normal programs with variables.

Defirition 4.1 (Propositional case). A ranked three-valuwed X-structure </ is an infinite
sequence of pairs (4}, 4] )}, such that for any i € N:
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e A C A7, and A7 C A7,
e AfﬂA;:@.

We will just write a finite number n of layers, whenever the rest of the layers are
equal to the nth layer.

The layers of our structures could also be related to the notion of stratification
[2,34], but stratification is a syntactic restriction on the class of programs for ensur-
ing the existence of certain semantic constructions, whereas ranked structures are
models. Actually, as it can be seen below, we do not impose any restriction on the
kind of programs we deal with (they do not have to be stratified in any sense).

Now, we define when one of these structures is a model of a program. In order to
distinguish the satisfaction relation between ranked structures and programs and the
logical consequence relation in the three-valued logic, the former will be denoted by
=k and the latter by |=;.

Definition 4.2. A ranked three-valued X-structure ./ is a model of a propositional
normal X-program P (denoted by .o/ p P) iff the following four conditions are
satisfied:
(a) If P" UA; 3 athen a € 4] (in particular if a: — € P).
(b) If a € 4; then there is not any clause a: —/ i P.
(c) If PP LA, U—A; =3 a then a € 4},,, where —4; means{—ala € 4] }.
(d) If a € 4, then for every a: —] € P one of the following two facts holds:
e there exists b € [ such that b € 4,
e there exists =& € [ such that b € 4;.

Notice that for the program Pl = {¢: ——b} of Example 4.1, the following are
some of its models:

A1 = {(8,{b}), ({a}, {b}))

M2 = {({a}.{b}))

83.= {({a, b}.0))

.44 = ((0,0))

A5 = (({6},0), ({6}, {a})}
but .#6 = (({b}, {a})) is not a model of P.

Our model notion allows us to inciude (in any layer) more positive information
than what is supported as logical consequence of the previous layers, but the nega-
tive information of each layer must be supported (in that sense}. Thus, if we want to
define an ordering < on ranked structures such that the least model is the one hav-
ing, at each layer, the least amount of pcsitive information and the greatest amount
of negative information supported by the previous layer, it suffices to take < to be
the lexicographic extension over sequences {(4;}",4;)),. of the standard ordering
over three-valued structures:

(4*,47) < (B*,B") iff A* CB* and 4~ D B-.

It is easy to see that, for the above program Pl, ./#1 is the =-least model in
Mod(Pl). Now, consider the case where we add the clause b: —b to Pl, then .#1
and .#2 are not models of the new program. In this case, the least model is .#4. Fur-
thermore, by adding a third clause : —, .#4 is not a model of the new program
{a: ——b, b: —b, b: -}, and the least model would now be .#5.
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4.2. Normal logic programs

In this section, we extend the model-theoretic semantics to the general case of nor-
mal programs with variables. Firstly, it must be noticed that this extension can not
just be based on seeing normal programs with variables as abbreviations for pro-
grams inctuding all possible ground instances of the given ciauses. For instance,
the programs

Pl = {nat(0) : —, nar{s{x)}: —nai(x)}} and P2 = {nar(x): —

have exactly the same instances (considering the signature including, as unigue furic-
tion symbols, the constant 0 and the unary function symbol s), but they have a com-
pletely different behavior. In particular, the query

? — -nat(x)

would be undefined for Pl and false for P2. The solution proposed is rather t- han
dle the first-order case in a similar manner to the propositional case, by considering
ranked structures including not just ground atoms but corstrained atoms with vari-
ables.

Definition 4.3. A ranked three-valued Z-structure is an infinite sequence
ot = (A7 A7 e

such that for any i € N:

e Af and 4; are sets of pairs p(¥)0c(x). where p € PSy and (%) is a satisfiable -
constraint.

e A and A4; are closed under renaming of variables.

A+ c A,:, and 47 € 47,

. (Conals‘em,y Property) For any p € PSy, if there exists Z-constraints ¢ and d such
that p(¥)0c € 4; and p(x)[0d € 4, then ¢ A d is unsatisfiable.

We will not make explicit the free variables of a constrained atom whenever they
are not relevant and we will just write a finite number » of Jayers whenever rest of the
layers are identical te the nth layer.

A pair plc € 4] is log:cally interpreted as the formula (¢ — p)’, and a pair
pOc € A; has the logxcal meaning of (c — —p)”. Consequently, we define the sets:

A7 ={(c = pY|pOc € 477},

"= {(c-— -p)’Ipc € 4; },
A" =AM uAav.

Definition 4.4. A ranked three-valued X-structure </ is a model of a normal X-pro-
gram P (denoted by .o/ = P) iff the followmg four conditions are satisfied:

(@) If FETz UPY U 4;Y |=3 (¢ — p)” and c is satisfiable, then pOc € A

(b} If p(x)Oc(¥) € 4; then ¢ A ¢’ is unsatisfiable for every (proper]y renamed)
clause p(x): —ICIc' € P. -
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() If FETx U P¥ UA{;Vl uAd Y s (e — p)v and c is satisfiable, then plic € 4.

(d) If p(x)Cc € 4| then FETz U 4] =3 ((c A ) — -N)" for every (properly re-
named) clause p(x): —/O¢" € P.

Remark 4.1. Conditions (a) and (c) can be slightly simplified to:

(a") If FETs U P7 |=; (¢ — p)” and c is satisfiable, then pllc € A,

(c) If FETs UPY U A" =3 (¢ — p)” and c is satisfiable, then pOc € 4/,
if we would not have the aim of proving that this semantics defines a specification
frame. Unfortunately, properties (a) and (c) are needed for proving the so-called

amalgamation property cf specification frames.

Now, we can define a model theoretic semantics for normal programs, in terms of
the class of models, for a progiam P-

Mod(P) = { /|« | P}.

This semantics is monotonic with respect to program extension.

Theorem 4.1. For all X-programs P, P'. Mod(P) 2 Mod(PU P').

Proof. Suppose that <7 =g P U P, for proving that .«/ = P conditions (b) and (d)
are trivial. In order to prove conditions (a) and (c), it is enough to observe that
(PUP)” = PYUP"Y, which means that, for any set of formulas ®U {¢p}, the
following holds: if FETy UPY U @ |=3 ¢ then FETx U (PUP )  Ud 3 ¢. O

Likewise in the propositional case, the ordering considered over Mod(P) is the lex-
icographical extension < over sequences ((4; .4 )},.., of the standard ordering.
As in the propositional case, we have the following theorem.

Theorem 4.2, For any X-program P there exisis a =<-least Z-model . #/p in the class
Mod(P).

Proof. Let P be any Z-program, we define . #p = {((M;*.M;}),.;, as the ranked 2-
structure such that
M, is the C-least set satisfying condition (a).

e M, is the C-greatest set satisfying condition (b).
e M, is the C-least set satisfying condition (c).
e M/, is the C-greatest set satisfying condition (d).

By definition ./, is a model of P. In order to prove that it is the least one, suppose
any o‘her ./ = Mod(P) such that .o/ < .#p. Then, there is some i/ € N such that
A} =M] and A; = M for any j < i, but one of the following iwo facts holds:

(i) there is pllc € 47 \ M

(ii) there is pUc € M;" \ A}

We will prove that both facts are not possible.

(1) Suppose that plCc € 4;. If i = 0 then for every clause p(¥): —/Ox = 7 in P, the

constraint ¢ A X = 7 is unsatisfiable, but this is a sufficient condition for plc € M; .
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For i > 0, the case plc € 4; for some j < i is trivial since 47 D A; = M, . Other-
wise, we have that for every clause p(E): =y =7 in P:

FET: UA | s (e A =1) — =)’

since M7 | = A7 |, we have that plc also belongs to M, .

(ii) Now suppose that pOc € M;". For i =0 that means FET: UP" UM |
(c — p)7, since «/ € Mod(P) and Mu Ay . this suffices to ensure that p[Jc € 45.
For i > 0 there are two cases. First, pDc € M for some j < i, but 47 D A7 =M}
and 47, D 4; | = M, |. Otherwise, we have that

FETUP UM " UM ™ k=5 (¢ — p)¥

since (i). we have lhdl A7 = M, and because of the construction of . # , we also
have that 4, 2 M7, so that we obtain plc € 4. 0O

4.3. The least model

In this section we study some interesting properties of least models. In particular,
different characterizations by logical consequence closure and its constructive defini-
tion through an immediate consequence operator.

From now on, (M, .M )),.., will denote the least model .#, of a given
program P.

Our first least model characterization is made in terms of a logical consequence
closure of the equality theory und the standard logical interpretation of the program.

Lemma 4.1. For any X-prograin P: .
) pOc € M = FETyUP | (¢ —p)Y.
(i) pOc € M., <= FET-UP' UM’ |3 (c—p)°.
(iii) pOc € M. e= FET:UP' UM’ =5 (¢ — —p)'.

Proof. Righi-io-lelt implication of (i) and (ii), as well as (iii)-left-to-right. are trivial.
We will prove the others by simultaneous induction on /.
For the converse implication of (i). we define the set

B = {¢q0d | FET< U P’ =1 (d — q)" and d is satisfiable}.
Now, using the fact that for every set of formulas ® U {i}:

PU{p|PEiopt =y = Py
it is easy to see that B satisfies Definition (a). Therefore, My C B.
The proof for the <onverse implication of (ii) is similar, but taking the set
B={¢d | FET« UP UM, }=; (d — q)" and d is satisfiable}.

For the right-to-left implication of (iii), the key idea is that the program P cannot
“add" new negative logical consequences. In particular, if we assume that a[ic is not
in M. then we can build a model of FET: U P UM which is not a model of
(¢ — -w)"': it is enough to consider the Herbrand structure (4*,4~) where 4~ con-

sists of all atoms bo such that b[0d € M, and ¢ is a (ground substitution) solution
of . and 4" includes the rest of the atoms. [J
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A trivial consequence of the previous lemma is that .#» is closed with respect to
less general constraints.

Lemma 4.2. For any Z-program P and for every i € N:
() if pOc € M and FET: &= (d — ¢)° and d is satisfiable, then pOld € M,
(i) if pOc € M - and FETs |=: (d — ¢)" and d is satisfiable, then pOd € M -

Proof. It is enough to notice that for any set of formulas & U {9},
FETs U® =3 (¢ — @)" and FETs =3 (d — ¢)", then FETy Ud 3 (d — ¢)°. O

Now, we are going to characterize the least model in the usual constructive way:
as the least fixpoint of a monotonic and continuous immediate consequence opera-
tor. For that purpose we order ranked structures by the triviai extension of Fitting’s
ordering

o < BIUFAT CTBF and 4; CB forallieN.

It is easy to see that ranked structures are a cpo with respect to <, whose bottom is
the infinite sequence of pairs of empty sets and the least upper bound, for every in-
finite increasing chain of ranked strrctures, is the level-by-level union of positive and
negative parts of all of them. We define an immediate consequence operator in the
following way.

Definiticn 4.5. Let P be a 2-program and .7 a ranked X-structure, 7p|.%) = # where
2 is the ranked structure defined for each i € N by:

B = Vp(4],4,.,) and B =Rp(4,,47)),

where A*, = A-, = (), by convention, and V» and Rp are the following two operators
over pairs of sets of constrained atoms:
Ve(C, D) = {p(*)Tc(x) |For some n = 1,
some satisfiable constraints ¢y,..., s,
and some subset of properly renamed clauses of P
{p(x): PO |1 <k < n, free(I* Ady) =%, 7}
FET k=3 (¢ = VI_, 37 (di A t))" and
FETs UC'UD" |=; (¢ — F) forall k= 1,...,n},
Rp(C, D) = {p(x)Jc(x) |For every properly renamed clause p(x):~I0d € P:
FETs UC’ U DY k=3 ((e Ad) — =D}
The powers (or iterations) of 7p are defined by

()= and T3"'(/) = Tp(TE()).

The monotonicity of logical consequence trivially implies that ¥ and Kp are
monotonic with respect to C, hence 7 is monotonic with respect to <r. Mureover,
we will prove that it is continuous and, therefose, we will obtain Mp at the w ileration
of Tp over the always empty ranked structure.



P. Lucio et al. | J. Logic Programming 40 (1999) 89123 109

Lemma 4.3. For any XZ-program P, Tp is continuous.

Proof. Consider any infinite chain of ranked structures
/0 jp-ﬂl '_<p N jp.ﬂﬂ jp ez
By monotonicity of Tp it is enough to prove that 7p(L.e/n) < UTp(=#n). Consider,

firstly, p(%)Jc(®) € (Tp(Ls7/n)), , then there exists # = 1, constraints ¢, ...,¢,, and a
subset {p(x) : —*0d;|1 <k < n} of P, such that

. v
FETs b= (C -\ I (e A Ck))

k=1

and

FET: U (Un)y" =3 (o — %)Y forallk=1,...,n.
Hence, by compactness of the logic, there exists some .o/~ (in the chain) such that

FET: U (7)) 3 (e — £%)° forallk=1,...,n.

Thereforz #{x)0c(x) € (Te(</r)),, and so, it belongs to (LTp(.n)); .
Similarly, by considering that p(#)0c(x) € (7p(Us/n))",, we have that:

i+
. v
FETs =3 (c — 3)7"(d,;. A .’.‘,,-))

k=t
and
FET: U(Zr) U ()] s (e — TF)Y forallk=1,...,n.
so that p(®)0c(®) € (Tp(/r))},-
The proof for the inclusion of negative parts is similar and easier. O

The following lemma provides a useful induction principle for reasoning about
the least model. In particular, it is the basis for the least modcl:characterization in
terms of least fixpoints and for comparing 7, with Fitting’s operator.

Lemma 4.4. For any X-program P:
() My = V(0,0),
(i) My = Rp(0,0),
(i) M, = Vo (M, M),
(V) M7, = Rp(M, M),
where VP(C,D) = C and Vi*'(C, D) = Vp(Vi(C, D), D).

Proof. Facts (iij and (iv) are trivial since My and Af, are, respectively, the C-
greatest sets satisfying conditions (b) and (d) in Definition 4. The right-to-left
inclusions of (i) and (iii) are also trivial from the fact thut .#p» is a model of P. Since
.#p is the least mode! of P, we will prove the left-to-right inclusions of (i) and (iii) by
proving that ¥°(0,0) and V2 (M;", M) satisfy, respectively, Definition 4(a) and (c),
that is, for any satisfiable constraint ¢:
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(1) FET: U PY U V5(0, 0 3 (c —p) = e € Ve (9, 0).
(2) FETs UPY U V(M7 M7 UM 3 (¢~ p)’
=> plc € V(M M),

In order to p:ove (1), let us consider a constrained atom p(X)0c(x) & Vi (0, 0) with
¢ satisfiable, we will prove the existence of a three-vaiued X-model of FET: U PY
U(¥(0.0))” which is a counter-model of Yi(c(3) — p(X)).

Let ® be the following set of formulas over the signature 2"

® = FET: U {ca/3]} U {~dla/3| | pOd € V' (0.9)}.

where X’ is the extension of X by the new constant symbols a.
Now, let .«/ be the least 3-valued Herbrand X'-model of @ satisfying, in addition:

47 (5) = t if P (XT=5—e) forsome ¢(x)Cle(¥) € V(0. 0},
u otherwise,

frr each 1-ary predicate symboi ¢ € PS5, and cach § € (Hu)"

It is trivial, by construction, that ..’ is a model of FET. U (1(0. $))". and a count-
er-model of Vx(c(x¥) — p(X}).

To prove that o/ is also a model of P7, let ¢(x):—/,..... /,0g be a clause in P
{with ¥. ¥ as free variables in the body). and let § € (Hv)" and r € (H+)", such that
o = (I Ag)[5. 7/%.7]. Then, Iy..... /x must be atoms (becauze our model does not
satisfy any negated atom) such that for all i=1..... k there cxists a constraint d,
such that /;(¥.7)0Od;(x,7) € ¥2(0.0) and

& ¥
D (i‘ =§ — I (g(X. 7)) A /\(I,»(.E._f'))) .

iz

Moreover, by logical compaciness and the definition of I, the following constrained
atom belongs to V7 ((). 0):

k
g(®)037 (g(i‘.f) AN d,(x._r»)) .
il

So that, ¢”/(s) = t.

Finally. the X'-structure ./ must be transformed into a X-structure, by interpre-
ting (over the same universe) only function symbols in £S5, (but not the new constant
symbols).

The proof for (2) is very similar. For a constrained atom pOc & V' (M, M,”) with
¢ satisfiable, we obtain the initial X’-model </ of

® = FET: U {cla/x]} U {~dla/x] | pOd € ¥’ (M, .M, )}

with interpretaticn for predicate symbols given by:
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if @ (¥ =25 e)’ for some glde € V(M , M),
if @k (x=5— ¢)’ forsome glle € M.
otherwise.

q7(5) =

RN

Proving that .</ is a model of P is very similar to the previous case. T[]

From now on, we will denote by 7p T &k thc ith power (or iteration) of 7» over the
ranked structure ((0,V),(0,9),...}. Now it can be shown that ./, coincides with
T» T w, which is the least fixpoint of Tp.

Lemma 4.5. For any X-program P: Tp { @@ = .4/ p.

Proof. It is trivial that for all j &€ N: Tp 1 j <p . #p, hence Tp | 0 < . #p. We will
prove the opposite inclusion, that is, for all i € N:

M S (Trtw), and M; C (T w)

by induction on i. Using Lemma 4.4, for all ; € N (where M, = M, = ), we know
that:

MP = V(M M7,) and M = Rp(M, .M ,).

For i = 9 it is trivial by definition of 7». In the inductive step for i + 1. the inclusion
of niegative parts is trivial. For the positive ones, it is easy to prove that for all j € N:
Vi(M M) C (Tp | w);,,, using induction on j and the induction hypothesis about
M} and M. Hence, .#p X Tp Tw. Il

4.4. Equivalence with the Clark—Kunen semantics

In Ref. [25] was proved that the finite powers of Fitting’s operator coincide with
the three-valued logical consequences of Clark’s completion (the Clark-Kunen se-
mantics). This result was adapted to the Constraint Logic Programming framework
in Ref. {32]. Here we are going to show that the finite powers of our continuous op-
erator Tp essentially coincide with those of Fitting’s operator. Hence, our model-the-
oretic semantics s equivalent to the Clark—Kunen semantics. In particular, the least
model of every program P is a three-valued model of Comp(P) and is typical in the
class of all three-valued models of Comp(P). Firstly, ve recall the definition of Fit-
ting’s operator @p and show its relationship with our 7, by means of one example.

Definition 4.6 ([20,25,32]). Let P be a normal Z-program, the immediate consequence
operator ®p, ranging over Herbrand three-valued X-structures (or standard three-
valued interpretations) % = (H*,H™). is given by:

&p(#)" = {p(7) € Bx | There exizis a clause p(x): ~/0d in P with fiee variables
%.v ana a tuple ¥ of closed ¥ — terms such that:

Ak (d ADJi/%,5/5]).

P@p(H) = {p(f) € Bsx | For every clause p(3): —I[Jd in P with free variables
X.7 and every tuple § of closed X — terms:
H B ~dADijx.5/7}-
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@p is not continucus and obtains information without taking into account the
negative dependences, whereas 7 is continuous and ranges over ranked structuses
placing information at layers. Finite powers of both operators obtain essentially
(in spite of layers) the same information. In order to illustrate the relationship be-
tween both operators let us consider the following example (extending the usual pro-
zram to show the non-continuity of Fitting’s operator with two more clauses).

Example 4.2. Let P be the following program of the signature with constant 0, 1-ary
function s, 0-ary predicate g and l-ary predicates p,a, b:

plx): — p(y)Cx = s(y)
q:— p(x)
a(x) : — —p(x)
b(x): — a(y)Ox = s(y)
For this program P, the iterations @p | k over the {§. @) three-valued interpretsiion
can be described as follows: '
Pp 1 hk=((Pr 1K), (Pr1k))
(@, %)
12 {£00),p(0)})
({a{0)}, {£(0;. p(0), p(s(0))})
({a(0), 5(s(0)), a(s(0))}, {6(0), p(0). p(s(0)), p(s*(ON})

WO = DA

o  ({a(s'(0)) | i =0} u{b(s'(0)) | i = 1}. {6(0)} U {p(s'(0)) | i = O})
o+ 1 ({a(s'(0) i =0} U{b(s'(0)) | r= 1}, {b(0)} U {p(s'(0)) [ i =0} U {q}).

To describe the iterations Tp T £, since each layer of our fixpoint is closed with re-
spect to less general constraints, in each layer we will only write its most general con-
strained atoms.

ko TeThk=((M§ . My),....(M; M ),...)

0 ((8.0))
I {0 {b(x)0x = 0,p(x)Tx = O})
2 (@, {b(x)Tx = 0, p(x)0x = 0}),
({a(x)0Ox = 0}, {b(x)0x = 0, p(x)0x = 0 v x = 5(0}}))
3 (0. {b(x)Ox = 0, p(x)CIx = 0}),

({a(x)Ox = 0, b(x)x = <(0)}, {b(x)0x = 0, p(x)x = 0 v x = 5(0)})
({a(x)Ox = 0 v x = 5{0), b{x)0Ox = s(0)},
{b(x)h = 0, p(x)Tx = 0 Vx = s(D) Vx = s°(0)}))

' In order to make the reading casier we underline the negative parts.
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w (0, {b(x)Tix = 0, p(x)Cx = 0}),
{{a(x)Ox = 0, b(x)Ix = 5(0)}, {b(x)Tx = 0, p(x)Tx = 0 vV x = 5(0)}),

({a(x)Ox =0 \“‘4. L Vx=§0)]i=0u
{(b(x)Ix = s(0) V... Vx=s(0) | i> 1},
{b(x)Ox =0} U {p(x)x =0V ...vx=+5(0) | i = 0})

)

Notice that all positive facts b(x)Clx = s**'(0) are placed in the same layer as
a(x)0Ox = s7(0), but negative {acts p(x)Cix = s**'(0) are placed one layer after the first
occuirence of p(x)Tly == s°(0).

The operator @ given in Ref. [32] is 2 non-ground version of @, relative to a
structure ./ where the constraints are interpreted. It ranges over (non-ranked) par-
tial constrained interpretations and is neither continuous. The continuous vperator
defined in Ref. [18], to obtain a fully abstract fixpoint semantics characterizing the
operational semantics with respect to answer constraints, is in some sen.e closer to
our 7p. However, there are two differences that may be remarked. Firstly, it also
ranges over {non-ranked) partial constrained interpretations, and is defined relative
to a given structurc. Secondly. only the negative part of the resulting fixpoint is
closed with respect to finite disjunction of consiraints. Remember that in our case
both parts of every layer are closed with respect to less general constraints.

Now, we will show that our fixpoint semantics essentially coincides with cutting
off at step o the iteration of &5, in the sense that we are going to relate @, | & with
the three-valued interpretation cbtained from our (ranked) fixpoint model by forget-
ting layers. We build the positive (respectively negative) part of this interpretation as
the set all ground instances of the constrained atoms in the positive (respectively neg-
ative) part of any layer.

Definition 4.7. Let P be a X-program, [.#p] (or equivalently [Tp T w]) is the three-
valued interpretation given by (¢ € {+,—}):

[#p]" = {p(T) € Bx | p(x)0% = F € M;" for some i € N}.

It is worthwhile noting that by closure with respect to less general constraints the
above membership requirement is equivalent to ask for some p(x)Oc(%) such that
FET: k= c[t/x]. Moreover, by completeness of the theory FET:, the latter is equivalent
to satisfaction in some arbitrary fixed model of FETy, since all its models are elemen-
tary equivalent.

Lemma 4.6. For any Z-program Pand any k € N: [Tp 1 k| = ®p | k.
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Proof. The proof is made by induction on &, using the induction principle provided
in Leriima 4.4 for [Tr T k]. We also use, along the proof, the fact that a sentence is a
logical consequence of FET iff it is satisficd in some specific model of this theory.
For k& = 0 it trivially holds. For the inductive step we are going to show the four
inclusions needed for proving [Tp T (k+ 1)] = ®p T (k + 1), assuming the induction
hypothesis [7p T k] = ®p T £.
We first consider p(f) € [T» 1 (kK + 1)]". Then there exists i, j € N such that

pRIX =7 € Vi((Tp 1K) (Tp 1 k).

Now, we use induction on j. The basic case j = 0 holds simpily by induction hypoth-
esis and (®PpThk)" C(®PpT(k+1))". For the inductive case suppose that
pEx=7e VI (Tr 1 k)] .(Tp 1 k)]). Therefore for some n = 1, some satisfiable
constraints ¢y, ...,c,. some subset {p(¥): —/"d,|l <r<n} of properly renamed
clauses of P, with fiee(F A d,) =%,

v

FET: = (x =7i—\/ 35 A (',~)>
and forall r=1..... n:

FET: U (VA((Tp | 1) AT TR U(T- TR Y k= (e, — ).
It is clear thdt @p T & | FETx. Besides by the induction hypothesis:

Gp Tk (VT 1A (T 14)7))" and also &, 1 & | (Tp 1)
Then we obtain @, [ k |= (" Ad,)[{/%.5/7] for some | <r<n and some closed 5.
Hence, p(f) € (&, T (k+ 1))".

Now. consider p(f) € (p 1 (k+1))". Then @ | k |= (d A D[i/x.5/¥] for some
clause p(¥): —/Cd in P and some tuples 7.5 of closed X-terms, hence
FET: EV¥E =7 — WdAD=TAT=3§))
and also, by the induction hypothesis, there exists some / € N such that
FET- U(Tp 1 k) E((R=iAF=35) — )",
Then p(x)Ox =€ (T 1 (k+ 1))/,
For the negative parts, we first prove that [T, | (A + 1)]7 C (@ ] (kK + 1)) . Sup-
pose that p(¥)[Ax =7 € Rp((Tp T k). (Tr T £);) holds for some i € N. Then
FETs U(Tp T k), E (R =FAd) — =D)".
for each clause p(x): —/0d in P. In particular, by the induction hypothesis @, | & sat-
isfies all of these sentences. Hence @p 1 &k | (=(d A 1)[t/x.5/7] for all of these clauses
and any tuple of closed terms 5. Then p(¢) € (@p | (K +1))".
Conversely, let us suppose p(#) € (®p 1 (K + 1N)7, then
@p 1 k| —~(d AD[E/%.5/57]
for all clauses p(¥): —/1d in P and all closed terms 5. By the induction hypothesis
there exists i € N such that
FET; U(Tp 1H)] E (8 =TAd) — -0
and therefore p(3)0x =re W(Tp T (k+ 1)),.,. O
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A direct consequence of the previous lemma is the equivalence between our least
model and the finite powers of Fitting’s operator.

Theorem 4.3. For any X-program P: [.lip] = ®p T m.

It is well-known (cf. Ref. [25]) that [. #/,] could not be a model of Comp(P). There-
fore. in order to relate our least model . #/p with program completion, we have to see
it as a “‘standard™ three-valued structure rather than as the Herbrand structure given
by [ #p]. We should first define the truth-value of first-order sentences in ranked
three-value structures. For that, we begin by assigning truth-values (in .</) to con-
strained atoms with the key (and obvious) definition:

t il p(X)0c{¥) € 4, 1o1 somc i e N,
(pF0c(x) =< § il p(0)C-(x) € A, for some i € N,
u otherwise.

This definition can be extended. in a direct way to any arbitrary (constrained) for-
mula. Here. we omit this definition due to the lack of space; however a very similar
extension, to interpret goals of CLP-programs, is made in Ref. [32).

Theorem 4.4. For cvery S-program P : 4/ p = Comp(P).

Proof. One has to prove that every axiom ¢ € Comp(P)..#p(pTIT) =t holds. For
the axioms in FET. this is trivial. For the axioms of the form:

v (p(i') — \7 I (i A F‘))
Aod

we proceed by case-enalysis of the three possible truth-values (in . #p) of the con-
strained formula p(¥)Cle (for some arbitrary satisfiable constraint ¢). showing that
it coincides with the truth value of /7., 3% (d A /X)Tc in . #p. In each case. we made
use of the definition of the truth-value corresponding to constrained formulas with
the connectives involved. 3

Now, we prove that . #p is “typical™ in the class of all models of Comp(P).

Theorem 4.5. For any normal program P and any constrained literal 1Cc:
Ap = 10c = Comp(P) = iOc.

Proof. We will prove (by simultaneous induction on #) that for ail # € N:

(i) pOc e M = Comp(P) &= (¢ — p)".

(i) pOc € M, = Comp(P} | (¢ — —p)".

For n=0, if pldce M, then. by Lemma 4.1. FETxUP" = (¢ — p)°. Since
Comp(P) = FET= U P¥ (see Section 2), Comp(P) = (¢ — p)°. If p(¥)0c(¥) € M, then
¢ A dy is unsatisfiable for all p(¥) : —Fd, € P. Then, for all k = I ... m (where m is
the number of clauses with head p). FET: | Vi(e — —3i*d,). Therefore,
Comp(P) | V¥{(¢(X) — —p(X)).

For the inductive step. suppose that Comp(P) = M. In the part (i), we have that
Comp(P) |z FET- U P G M?. If pOc € M., then, by Lemma 4.1, FET: U PPUM!
(¢ — p)°. Hence. the last formula is also a logicai consequence of Comp(P). For part
(i), if p(3)0e(®) € M, |, then Vi(e(¥) — - Vi, IF¥(d A 7)) is a logical consequence
of FET= U M. Therefore Comp(P) = Vx(c(X) — —p(X)). O
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5. A specification frame for normal logic programs

In this section, we show how the model-theoretic semantics defined in Section 4
can be the basis for defining a sj-ecification frame, which has the additional proper-
ties of ensuring the existence of compositional and fully abstract semantics for most
kinds of modular units. In particular, we prove, as a consequence of these properties,
the existence of a compositional and fully abstract semantics for the standard union
of normal logic programs.

Definition 5.1. Let X = (FS;, PSy) be some prefixed signature. Let NLPs be the
category of normal logic programs over X, whose objects are the pairs (X, @), with ¢
being a set of normal clauses over X and whose morphisms are just inclusions, up io
renaming of variables, of sets of normal clauses.

We define the model functor Mod mapping every program P in NLPs into the cat-
egory Mod(P), whose obiects are ranked Z-structures satisfying P and where a mo-
rphism is just the ordering relation between two ranked structures. For every
morphism #: P — P, ¥, = Mod(hk) is just the identity.

Now, we show that the above defined pair is, in fact, a specitication frame.

Lemma 5.1. . V¥ 2y = (NLPx,Mody : NLPs"? — Cat) is a specification frame, i.e. it
satisfies:

(i) NLPs has pushouts:;

(i1) Mod transforins pushouts in NLPs into pullbacks in Cat.

Proof. The pushout of three programs (Z, #0), (X, ®1) and (2. #2), with $0 C &1
and @0 C @2 is just PLUP2, ie. (Z.P1 U P2).

On the other hand, to show existence of amalgamation, on the current context, is
trivial, since

is an obvious consequence of Definition 4 (although it does not hold for the simpli-
fication discussed in Remark 3.1). Therefore

Mod(Pl) + Mod{(P0)Mod(P2) = Mod(Pl) NMod(P2). O

Remark 5.1. It may be noted that we consider a fixed signature for all programs in
the specification frame. The main reason for this is technical, as the counter-example
below shows. In particular, in the general case we can not define a forgetful functor.
It can be argued that this is highly inconvenient with respect to modularity issues,
however we do not think that this is important insofar as visibility is treated
completely at the static semantics level. On the other hand, we believe that this
situation is in some sense related to the nature of negation-as-failure where one can
always expect to obtain (negative) answers to queries over predicates which are not
in the signature of the given program.

Example 5.1. Let X1 and X2 be two signatures with Sy = {p} and PSx> = {p,q}.
Let o = ((0,{g}). ({p}. {g})) and # = (($,¥).(0,0)). Then &/ < # in X2, but
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Z 512 & |51 in Mod(Z1,0), where o |5 (resp. & |x1) is V;(o7) (resp. V;(#), and V; is
the forgetful functor associated to the inclusion i: (X1,8) C (22,0). That is, o7 {5
(resp. & |51} is ovtained from o/ (resp. #) by deleting all atoms including symbols
not in X1, which is the most obvious definition of a forgetful functor in this context.

Before proving further “structural™ properties of this specification frame we will
show that the class of models associated to a given program forms a complete lattice.
On the other hand, this result will be used as a lemma for showing the other prop-
erties of the specification frame.

Lemma 5.2. For any program P, Mod(P) is a complete lattice.

Proof. In order to show that Mod(P) is a complete lattice we have to prove that, for
each subset & of Mod(P), we can define the join and meet of the models of &, L%
and M.

(a) The join ¥ == L1¥ can be defined as follows:
Cy = {aOc | FETz U P" U|_J[{43"|o/ € o} 3 (c — a)"}
Gy =45l € o}
where &, = &.
For all layers i > 0 such that &; # 0:
¢/ = {alc | FET: UP' u CL u| {4V € 91} ks (e — @)}
C; = WAl € &:}
where 5% = & \ {41 # Cia )}
if there is £ € N such that .%;_; # 0 but &, = ), then for all layers / with i > &:
CH = {a0c | FETs UP'UCY | =3 (¢ — a)"}
C; = {allc | For all a: —Ildd € P: FET; UC_, =3 ((c Ad) — —=1)"}.
(b) The meet 2 = M4 is defined as follows:
For all layers i/ € N such that #; # ¢:
Df = {4 € &}
where @y = & and R; = B, \ {44, # Dir}.

If there exists £ € N such that 22,_, # 0, and 2, = @, then for all layers i € N such
that i > k:

D} = {aOc| if for every alld € D] ,c A d is unsatisfiable}
Dy =D,

(a) First of all, we have to prove the consistency property: Let us suppose that
alcl € CF and alc2 € C7 for some i < k, such that cl Ac2 is satisfiable. Let
c =cl Ac2, then alJc € C} N C” because the construction guarantees that layers
are closed with respect to less general constraints. If allc € C; then allc € 4] for

all o/ € &;, what means: FETs U4, 3 (c Ad) — —I)7, for all a: —-IC0d € P. But
A._y = Ci_, holds for all- o € &;. Then, by monotonicity:
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FETs U CY, U| J{4;7]e7 € £} b3 ((e Ad) — =D)Y, forall a: —I00d € P,

contradicting aldc € CF, because (c — a)” can never be a consequence of
FET: UP U CY U U{4;Y .o € .¥;}. The consistency property is guaranteed for all
layers i = k because they are just an “if and only if”” version of the satisfzction con-
dition in Definition 4.

In order to prove that % is a model of P, it suffices to note that C;, for any layer i,
contains all the positive information that is supported as logical consequence of the
previous layers, and that C; only contains supported negative information in the
same sense. '

I'inally, we prove that ¥ is the lcast model which is greater than every model in ..
The construction of % implies that for each model .« € &, it holds either
e SLia\F, for some ieN, implying 45, € CH, and A7, 2 C7, and
Aioiy#Coyoand 4, =C, for all j<i—1; or 4 €%, for all i € N, but in this case
the definition ensures 4} C C; and 47 2 C;, for each i. Hence, &/ X €.

In order to prove that € is the least model satisfying .«/ < @ for all .o/ € ., let us
suppose that # is a model satisfying .o/ < # for all ./ € .. First, it may be noted
that, according to the definition of ¥, if the given & does not exist then, for every lay-
er i, there is an ./ € % such that for each j, 0<j < i, 4; = C;. Then, for every i,
Cr € B and C7 2 By . Hence # <X 6. If the given & exists then, similarly, there is
an &/ € .% such that for each j, 0<j <k, A4; = C;. Therefore, for every j,
0<j<k, C; C B and C; 2 37. On the other hand, the construction of ¢ ensures
that for all layers i = k, C; contains the least positive information and the greatest
negative information supported by the previous layers. This means that also for each
izk, CrC B! and C; 2 B;.

(b) In this case, the consistency of & is a trivial consequence of the consistency of
the models in &. Let us prove that & is a model of P. Firstly, suppose that

FET- UP* U DY, UD k=5 (¢ — a)’,

where i < k, if k exists, and i € N is a:bitrary, otherwise. We know that all .o/ € 4,
satisfies: 47 2 D} and A, = D7, so, by monotonicity

FET: UP' U A, UAY k=3 (¢ — a).

This means allc € 4} for all ./ € #,, so allc € D;. Now, suppose that allc € D;
for any i (i < k if the giver. k exists). Then, eOc € 47 for some ./ € #;, and
FETs UDY , i ((c Ad) — —I)" forall a: —I0ld € P, because every .o/ € #; satisfies
A, =D}, and 4, = D7_,. If there exists the given layer & then, for any layer D;
with i = £, the satisfaction condition trivially holds, since they contain more positive
information than what is supported by the previous layers, but just the negative in-
formation from D,_;.

It is not difficult to see that & is the greatest model which is smaller than all mod-
els in %, because it is trivial that ({d4;|</ € #;} is the greatest set such that
B DA/ € 4}, and that |J{(4;)].</ € #} is the least set such that
By CUU{(A; )|/ € #,;} for all :# € . If there exists the given layer & then D, for
each i = k, contains the greatest positive informaiion and the least negative informa-
tion supported by the previous layers. [
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The following example gives some hints about the constructions in the previous
proof.

Example 5.2. Let the program P = {p: —q}, the symbols PSx = {p,q,r,s} and the
following structures:

/1 ={(({p}.0). ({r}, D))

2 ={(({p}.{q}). {r}. {q}))

/3 = {({p}.0). ({p. r},0))

A4 ={(0. {g}). (0, {4}))

<5 ={(%:{g}). {p}. {g.7})
Then

A1 U203 = {({p}.0), ({p.7},0))

1N A4N./5 = ((0,{q}), (0, {q,7}). {p.s}. {q.7}))

Now, using the previous lemma we can prove that .1 %2, satisfies all the prop-
erties needed for giving adequate compositional semantics to the intended program
units.

Theorem 5.1 (Properties of .I"¥25). .\ & P5 has free constructions, free extensions
and generalized free extensions.

Preof. .V ¥ #; has free constructions, since given a morphism A: P — P, with
P = (Z.€)and P = (XZ,%’), the free construction Fj, : Mod(P) — Mod(FP’} is defined
for every .« in Mod(P) as € = F,(.+/) such that:

Cy ={alc | FETs UPY U A =3 (¢ — a)"}

C; =A; NMy

e For all lavers i > 0 such that 4,_, = C;_:
C ={a0c | FET: UP"UC! U4 =3 (¢ — a)"}
Cr =4 0M;

e [f there exists & € N such that 4,_, £ C,_,, then for all layers i with i > 4:
C/ = {alc | FET: UPYUCY | 3 (¢ — a)"}
C; = {a0c| Forall a: —I00d € P’: FET: UC} | k=3 ((c Ad) — —i)"}.

Note that if .o/ € Mod(F’), then the above construction coincides with the defini-
tion of the join model in Lemma 5.2, {or the particular case when & = {&/, . #p},
that is LI{./, .#p }. Nevertheless, it is quite easy to see that even in this case, the re-
sult is the least mode! of * greater than /. The reason is that the definition guar-
antees that, at any layer i (i <k if k exist), C; contains the least positive
information supported by the previous layers and 4}, and C; contains the greatest
negative information supported by the previous layers which belongs to A;7. When &
exists, C;, for all layers i > 4, contains the least positive information and the greatest
negative information supported by the previous layers.
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Now, we have to prove that F,(.«/) satisfies the universal property of free con-
structions: for each model «/' in Mod(P’), such that </ < V,(«/')(= .«¢’), it holds that
U{.eZ,.#p} < .o'. This property holds by definition of the join operation L.

4" £ P5 has free extensions since it has amalgamations.

To see that "% #; has generalized free extensions, according to Theorem 3.3, it
is enough to prove that for every program P, there are pushouts in Mod(P). Given
models ©70,o/1,.272 in Mod(P), with f1: .2/0 < /1 and f2: .o/0 < .&/2, the pushout
73 of o/1 and .«#2 via /1 and f2 must be the least model greater than .o/! and .«/2,
thus again /3 is just the join /1 U .o/2. O

Once proved the required properties of .4 " %% we can provide a categorical se-
mantics for programs fragments which is compositional with respect to standard un-
ion. The compositionality result is just a consequence of Theorem 3.4. However, as
we can see below, full abstraction is not a direct consequence of Theorem 3.5. Nev-
ertheless, in this case we were also able to prove full abstraction making use of the
specific properties of our semantics.

Theorem 5.2 (Compositionality). For any normal logic program P, the semantics
Sem(P) = F such that F is the free construction associated to the inclusion (,8) C P,
is compositional with respect to the standard union of programs.

Proof. Is a direct consequence of Theorems 3.4 and 5.1. O

Let us now see a counter-example showing that . 1".¥# is not algebraic:

Example 5.3. The model .« = ((0,0), ({g}.0),...) can never be a least model of any
normal logic program. In particular in .o/, the fact ¢ is not supported by the previous
layer.

Nevertheless, as said above, we can still prove full abstraction using the specific
properties of our semantic constructions.

Theorem 5.3 (Full abstraction). Given two normal programs Pl and P2, the following
three facts are equivalent:

(i) Sem(Pl) = Sem(P2).

(i1) For every program P, Sem(P U Pl) = Sem(P U P2).

(iii) For every program P, . p.py = . pop>.

Proof. It is enough to prove that (iii) implies (i), because the other implications are
direct consequences of Lemma 3.1 and Theorem 5.1.

Let us suppose that there exists a model .o/ in Mod(Z,0) such that
Fl(sf) # F2(.o/), where F1 = Sem(P1) and F2 = Sem{P2). Then, we will show that
there exists a program P such that .#p p1 # .#pupz. Let j € N ' e the least layer such
that Fl(&/); # FZ(&/);" or Fl(.s/); # F2(</);. Then we can consider two cases.
First, if there exists the given level £ € N, and F1(/) # F2(/);, for some j < k,
ther F1(%#) # F2(#) for all models # € Mod(Z,0; such that /7 =% and
/7 = @, for some layer i. This is the case for the model # such that, foralli € N:
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+ g+
Bf =47,
Bl =A;,.

In any other case, F1(2) # F2(#) for all models # ¢ Mod(X,0) such that
B; = Fl(/),_ | = F2(/),_, for some layer i. Now, we choose the model # such that,
foralli e N:

B} = FI(/)], = F2(#)]_,.
B = FI(/),., = F2(sf), ;.

It is easy to see that, in both cases, #=.#p, for P being the program:
P = (2,8 U{a: —alld/a0c € B; and ¢ A d is unsatisfiable}).
Hence, we can conclude that FI1(. #pp) = . Hpopt 7 -Mpopr = F2{ ldpp). O

6. Conclusions and related work

We have presented a new monotonic semantic framework for normal logic pro-
grams. The main characteristics of this semantics are the following ones: We do
not consider any restrictions on programs (e.g., stratification). We associate to every
program a class of models which forms a complete lattice whose least element is
shown to be typical for the class of models of the Clark—Kunen’s compietion of
the program. As a consequence, this least model can be seen as the standard seman-
tics of the given program. Finally, the models of a program are a special case of Beth
structures, where the ordering relating the “worlds™ of the structure is total. Actual-
ly, our semantics could have been defined, without any problem, in terms of general
Beth structures. In this sense, we believe that cur semantics could also be valuable
for knowledge representation considering the intuition behind Beth (and also
Kripke) structures where each world in a model represents the knowledge one has
at a given moment (see e.g. Ref. [33)).

The motivation for this new semantics was the definition of a specification frame
of normal logic programs that could be used for defining compositional semantics to
a variety of program units. In this sense, we have shown that the proposed semantics
defines indeed a specification frame with the required properties. In particular, we
have provided a categorical semantics for arbitrary program fragments which is
compositional and fully abstract with respect to standard program union. Actually,
other kind of units and composition operations can be seen just as a special case.

The kind of compositionality results obtained are quite more powerful than the
results presented in Refs. [17,19,27,35,9]. In Refs. [17,19,27] different semantic defi-
nitions are provided for certain kinds of modular units which are shown to be com-
positional. However, they all impese (at least) the restriction (not needed in our
work) that, for putting together (through the corresponding composition operation)
two units, the sets of predicates defined in each unit must be disjoint. This means
that, there can not be clauses defining the same predicate p (i.e. having p in the head
of a clause} in both units. This restriction rules out the application of those results to
approaches where the given system of modules supports the incremental definition of
predicates through some form of inheritance (e.g. Ref. [7]). In Ref. [35] a slightly
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more general framework is considered. In particular they study open programs
where the open predicatcs can be axiomatized by arbitrary first order axioms. They
provide a semantic definition based on well-founded semantics and show its compo-
sitionality under certain sufficient conditions which are quite close to the restrictions
imposed in Ref. [17]. Finally, Ref. [9] proves that Fittings’s immediate consequence
operator can be used for defining a semantics for arbitrary program fragments which
is compositional with respect to union, intersection and filtering. The main problem
here is that, if only union is considered, the given semantics is too concrete to be of
any use.

We have not directly related our approach -vith other kinds of semantics, al-
though the relation established with completion implies, by transitivity, that our se-
mantics can be considered equivalent to constructive negation approaches as Refs.
[13,32]. Actually, the relation to Ref. [13] is quite more direct, in the sense that the
construction of our least model is closely related to ranked resolution as defined
there. There is also a certain relation between the construction of our least model
and Fitting’s fix point semantics [20], or rather with the version defined in Ref.
[18], although not as close as it may seem: notice that in each layer of our least model
we add not just the immediate consequences of the previous layer, but all logical con-
sequences.
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