
T~ l o t JR ~.AL CdF
LOU__~" P I ~ C ~ A M M i N G

The Journal of Logic Programming 40 (1999) 89-123

An algebraic framework for the definition of
compositional semantics of normal logic

programs
Paqui Lucio, Fernando Orejas *, Elvira Pino

Dpto de L.S.L, l.#tiversidad Politc~cnicz.," de Catalunya. Campus Nord. ~lodul C6, Jordi Girona 1-3. 08034
Barcehma. Spain

Received 8 May 1997: accepted 27 August 1998

Abstract

The aim of our work is the definition of composit ional semantics for modula r units over the
class o f normal logic programs. In this sense, we propose a declarative semantics for
~aormal logic programs in terms of model classes that is monoton ic in the sense that
Mod(P t_J P') C Mocl(P), for any programs P and P', and we show that in the model class as-
sociated to every program there is a least model that can be seen as the semantics o f the pro-
gram, which may be built upwards as the least fix point o f a cont inuous immediate
consequence operator. In addition, it is proved that this least model is " typica l" for the class
o f models o f C l a r k - K u n e n ' s complet ion o f the program. This means that our semantics is
equivalent to C la rk -Kunen ' s completion. Moreover , following the approach defined in a pre-
vious paper, it is shown that our semantics constitutes a "'specification f rame" equipped with
the adequate categorical construct ions needed to define composit ional and fully abstract (cat-
egorical) semantics for a number o f p rogram units. In particular, we provide a categorical se-
mantics o f arbi t rary normal logic program fragments which is composit ional and fully
abstract with respect to the (standard) union. © 1999 Elsevier Science Inc. All rights re-
served.

Keywords: Normal logic programs; Model- theoret ic semantics: Composit ionali ty; Institutions;
Monotonic semantics; Constructive negation; Modu la r logic programs

1. Introduction

D e s p i t e t he a m o u n t o f p a p e r s o n the s e m a n t i c s o f n e g a t i o n (see, e.g. Ref . [3]),
t h e r e a r e severa l s e m a n t i c issues t h a t a r e insuf f ic ien t ly e x p l o r e d . O n e s u c h bas ic issue
is m o d u l a r i t y . T h e r e a s o n is t h a t a p r o p e r s e m a n t i c s fo r a n y k i n d o f m o d u l a r un i t

"Corresponding author. Tel.: +34 93 401 3018: fax: +34 93 401 3014: e-mail: orejas@lsi.upc.es

0743-1066/9915 - see front matter © 1999 Elsevier Science Inc. All rights reserved.
Pll: S 0 7 4 3 - 1 0 6 6 (9 8) 1 i) 0 3 9 - 0

90 P. Lucio et al. I J. Logic Programming 40 (1999) 89-123

must be shown to be co, 'npositional with respect to the kind of module operat ions
considered, but the non-mono ton ic nature of negat ion in Logic Programming does
not seem to fit too well with composit ionali ty. In particular, for different reasons,
none o f the various operat ional semantics [! 3, I 1,32], neither the different model-the-
oretic approaches (see e.g. Ref. [3]), nor the complet ion semantics [12,25], seems to
be adequate to be the basis for defining a composi t ional semantics for normal logic
program units. To our knowledge, only Refs. [17,19,27,35,9] provide some composi-
t ional semantic constructs for normal logic programs. In Section 6 we compare the
results presented in this paper and these approaches, it must be noted that compo-
sit ionality is a very impor tan t property for defining the semantics of a modular unit.
In particular, if the semantics of a unit is not composi t ional with respect to the given
module operat ions this means that, for reasoning about a program consisting of sev-
eral such units, we wo~,ld need to previously " f la t ten" the program (or its semantics)
"'forgetting '" the modula r structure of the program. Also, when dealing with modular
units, ano ther impor tan t pyoperty is full abstract ion with respect to composit ion,
which holds if the semantics o f two modules coincide if and only if the two modules
"behave" equ;~lly in every context. In particular, if a semantics is Ikllly abstract thi/s
guarantees that our not ion of program equivalence is the right one for ~:-ast,--nmg
about implementat ion, i.e., a program unit could be substituted by another unit im-
plementing the same abstract ion if :rod only if they have the same sem~,ntics.

In Ref. [29], a methodology is presented for the semantic definition of modular
logic programs ensuring composi t ional i ty and full abstract ion, and it is applied to
study several kinds of program units for the class of definite logic programs. The ap-
proach is based on the fact that most modula r construct ions can be defined and stud-
ied independently of the underlying formalism used "'inside" the modules, as far as
this formalism is an " ins t i tu t ion" [23] or a "'specification f rame" [16] (or some similar
not ion) equipped with some categorical constructions. In particular, the proposed
methodology for defining the semantics of a certain kind of ,nodular unit consists,
essentially, o f three steps. Firstly, one has to study the given unit, and the as,~,ociated
composi t ion operat ions, at the general level. This means defining the meaning of the
construct ion in terms of the categorical construct ions that the specification frames
will be assumed to provide. Secondly, one has to define the given class of logic pro-
grams as an inst i tut ion or specification frame with the needed constructions. At this
point one may already obtain a composi t ional and fully abstract semantic definition
for the given unit. The categorical construct ions obtained at this stage may be more
abstract than required. A further third step can be the definition of an equivalent,
more concrete semantics.

Even if the intermediate categorical machinery is discarded at the end, the three-
step approt,.ch is instrumental in avoiding arbi t rary and unfor tunate choices in the
concrete semantics, which then fail to have critical properties, such as monotonici ty .
Applying this methodology not only may save some work (since some results must
be proved just once, independently of the classes of logic programs considered) but,
wh.a~'ig'more important , it provides clear guidelines about how the concrete seman-
tics for the various construct ions must be defined. In particular, these guidelines were
extremely valuable for the work reported in this paper. In principle, the main prob-
lem found in order to apply this methodology to study modular i ty and composi t ion-
ality issues for , the class of normal logic programs is (the lack of) monotonici ty .
Inst i tut ions and specification frames can be seen as characterizations of monotonic

P. Lucio et al. I J. Logic Programmirtg 4¢) (1.o99) 89-123 9I

formal isms. This seems to be in con t r ad ic t ion with the non-monoton- :c na tu re o f ne-
ga t ion as fai lure and cons t ruc t ive nega t ion . Howe,¢er, if we look at the s impler case
o f the class o f defini te logic p rog rams wi th negat ive queries, then we could see one o f
the basic ideas o f our proposa l : the class o f definite logic p r o g r a m s (H o r n Clause
Logic) is, obviously , a m o n o t o n i c logic; the n o n - m o n o t o n i c i t y o f the negat ive queries
is related to the selection o f an a rb i t r a ry model (the least one) to define wha t is as-
sumed to be " fa l se" . Similar ly , in this paper we propose a dec lara t ive semant ics for
no rmal logic p rog rams in terms of model classes tha t is m o n o t o n i c in the sense tha t
M o d (P O P') _C_ i o d (P) for a n y p r o g r a m s P and P' . This is e n o ~ for def ining a
specif icat ion ~¥ame o f no rmal logic p r o g r a m s equ ipped with the ca tegor ica l cot~strut:-
1ions needed to app ly the results in Ref. [29] to the class o f no rma l logic p rograms ,
o b t a i n i n g compos i t iona l and fully abs t rac t (categorical) semant ics for a n u m b e r o f
p r o g r a m uni ts [8.21]. in par t icular , we app ly these results to provide a (categorical)
semant ics o f a rb i t r a ry p r o g r a m f ragments which is compos i t i ona l and fully abs t rac t
wi th respect to (s t andard) union. In addition~ we show tha t in the model class asso-
c ia ted to every p r o g r a m there is a least model tha t can be seen as the (non -compo-
s i t ional) semant ics o f the p rogram. This least model is " ' typica l" for the class c f
models o f the C l a r k - K u n e n ' s comple t ion o f the p rogram. In tha t sense, our seman-
tics is equ iva len t to C l a r k - K u n e n ' s comple t ion . Moreover , we provide a c o n t i n u o u s
immedia te consequence ope ra to r a n d show tha t this least model can be buil t "~up-
w a r d s " as the least f ixpoint o f tha t opera tor .

In addi t ion , in Section 5, it is proved tha t the class o f models o f a given p r o g r a m P
forms a comple te lattice. F o r this reason, we are convinced that , not on ly wi th re-
spect to compos i t i ona l i t y issues, our semant ics is jus t the "'right'" k ind o f model - the-
oret ic semant ics for no rma l logic programs, in par t icular , i f model - theore t ic
semant ics are usual ly the most adequa t e tool for recta- logical r eason ing (e.g. for
p ruv ing completenes~ of ope ra t iona l approaches) , the s t ruc ture o f ou r classes o f
models , toge ther wi th the closeness to r anked resolut ion, makes ou r semant ics ade-
qua te for the p r o o f o f such k ind o f propert ies .

Moreover , r anked s t ruc tures can be ~ e n as a special care o f (a three-valued ver-
sion of) Beth s t ructures , used to provide semant ics to hdu idon i s t i c logic (e.g., see
Ref. [33]). In this sense, our senmnt ics suggests a l ink, a l r eady men t ioned by o ther
a u t h o r s (e.g., see Ref. [31]), between logic p r o g r a m m i n g nega t ion and in tui t ionis t ic
logic that may be wor thwhi l e to study. In par t icular , it could serve as a basis for ex-
tending wi th nega t ion those app roaches to m o d u l a r i t y based on the use o f an intu-
i t ionist ic impl ica t ion (e.g., see Ref. [28]). In this line, the on ly work we k n o w is Re['.
[6] where a semant ics o f p rog rams inc luding an in tui t ionis t ic impl ica t ion and nega-
t ion as failure: is defined in terms o f Kr ipke models under some severe restrict ions. Ir~
par t icular , p r o g r a m s must be strat if ied and s ignatures m a y only con ta in predicate
symbols , i.e., func t ion symbols are not a l lowed.

T h e paper is o rganized as follows: in the next sect ion we in t roduce some basic no-
t ions and. no ta t ion : in Sect ion 3, we review the basic def in i t ions and results abou t
specification f rames and, as i l lustrat ion, their app l ica t ion ;.o the class o f defini te logic
p rograms; in Section 4, we present the declara t ive model - theore t ic semant ics for nor-
mal logic p rograms , inc luding a fix po in t cons t ruc t ion o f least models , and show its
connec t ion with C i a r k - K u t i e n ' s comple t ion ; in Sect ion 5, we discuss the results pre-
sented with respect to compos i t i ona l i t y and full abs t rac t ion issues; finally, in Sec-
t ion 6, we give some conclus ions and re la t ionships with o ther works,

92 P. L u c i o e t al. I J. L o g i c P r o g r m n m i n g 40 (1 9 9 9) 8 9 - 1 2 3

The reader is a s sumed to have cer ta in fami l ia r i ty with basic cons t ruc t s f rom cat-
egory theory. F o r detai ls one m a y consul t a n y basic text on the subject (e.g., Refs.
[5,41).

2. Pre l iminar ies

A coun tab le s igna ture Z consis ts o f a pa i r o f sets (FSr, PSz) o f f imct ion and pred-
icate symbols , respectively, wi th some ar i ty associa ted. Z- te rms a n d Z - a t o m s are
bui l t us ing func t ions and predicates f rom 27 and , also, var iables f rom a prefixed
c o u n t a b l e set X o f var iable symbols . Te rms will be deno ted by t, s and var(t) will
deno te the var iables a p p e a r i n g in t.

N o r m a l p r o g r a m s over a s igna ture Z" (or Z -p rograms) are sets o f Z-clauses

a : - - 1 1 , . • • l k ,

where a is a _r-atom, k / > 0, and each l~ is a Z-l i teral , tha t is b or -,b where b is an
a tom. F o r s impl i fy ing some technical cons t ruc t ions , we cons ider tha t any Z - p r o g r a m
is wr i t ten as its equ iva len t cons t r a in t n o r m a l p r o g r a m with flat head. T h a t is, a n y
clause

p(t l t,,) : - - 1 , , . . . lk

is wr i t t en as the cons t r a in t clause

p(x l x ,) : - - l l , . . . lk E]Xt = t l , . . . ,X'., -~ t . ;

Moreover , we suppose the ident ical tuple xl x , o f f r e s h variables occurs in all
c lauses (in a p r o g r a m) wi th predica te p in its head. We deno te by Hde(p(~)) the
set {p(~) : --ix [] ~ = ?~ I k = 1 , . . . , m} o f all clauses wi th head p a p p e a r i n g in P.

C o n s t r a i n t s a p p e a r i n g in p r o g r a m s are a special k ind o f s imple cons t ra in t s . In
general , we cons ider tha t Z-cons t ra in t s are a rb i t r a ry first o rder Z- fo rmulas over
equa l i ty a toms. T h a t is, fo rmulas c o m p o s i n g equa l i ty a t o m s with the connect ives:
--,, A, V, ---% and the quant i f iers : V, 3. F o r a fo rmula tp, in pa r t i cu la r for a cons t ra in t ,
f r e e (e) is the set o f all free var iables in tp, and q~(~) specifies t h a t f r e e (t p) c_ Yc. W e will
ident i fy the list o f cons t r a in t s in a n y p r o g r a m clause wi th the c o r r e s p o n d i n g conjunc-
t ion (i.e., a formula) . W e deno te cons t r a in t s by c, d (possibly wi th sub- or super-
scripts). F o r m u l a s tp v, tp ? s t and for the universal a n d exis tent ia l c losures o f tp,
respectively. The a tomic fo rmulas n a m i n g the two classical t ru th values are T and F.

W e will hand le cons t r a in t s in a logical way, using logical consequence o f t h e j ? e e
equal i ty theory . The free equa l i ty theory FETs for a s igna ture ,S is the fol lowing set o f
formulas :

vx(x = x)
V3¢'~',~(2 =)7 ~ f(.~) = f (f i))
w v y (~ = y ~ (p(~) ~ p (y)))
w:vy(f(.~) #- g (y))
Vx(x :A t)

for each f ~ FSr,
for each p e PSr U {=} ,
for each pai r f , g E FSr such tha t f ~ g,
for each Z- term t and var iable x such tha t
x E var(t) and x ~ t.

Besides, whenever Z is finite, FET_~ also includes the w e a k clo~ure domain ax iom:

P. Lucio et aL I J. Logic Programming 40 (1999) 89-123 93

Then FETe is a comple te theory, tha t is FETe ~ q~ or FETe ~ ~t0 for an)' Z-sentence
tp. There fo re all models o f FETe are e lementa ry equivalent .

A cons t ra in t c is satisfiable (resp. unsafisfiable) i f and ouly i f FET.~ ~ c a (resp.
bETr ~ ~(c3)). A g round subs t i tu t ion .~ = ~ (where t~ are closed terms) is called a so-
lu t ion o f a cons t ra in t c i f and on13 if FETe ~ (2 = ? ~ c) v. A cons t r a in t d is less gen-
eral than c i f f F E ~ ~= (d ~ c) v.

F r o m a logical po in t o f view, p rog rams are sets o f formulas . There are, ma[niy,
two logical ways o f in te rpre t ing a n o r m a l p r o g r a m P. The first one, deno ted by
pV, interprets every clause as the universal closure o f the fo rmu la which results f rom
subs t i tu t ing " c o m m a s " and [] (in the clause body) by logical con junc t ion , and the
symbol "':-" by logical impl ica t ion (right-to-left) . The second one is C la rk ' s p r o g r a m
comple t ion , deno ted by Comp(P). The comple t ion o f a Z - p r o g r a m P ~onsists o f the
free equal i ty theory F E ~ together with, for each p E PSi, a predicate completion for-
mula:

V~ (P(2) "-~ 'V =IY' (2 : ?"~ A]"=)) ' ,~-:t

where fik are the var iables appea r ing in ~ and /k which do no t be long to 2, and
Hdr,(p(2)) = {p(-~) : _ /k [] 2 = F I k = l m}. In bo th in te rpre ta t ions , con junc t ion
(resp. d is junct ion) o f an empty set is simplified to d-~e a tomic fo rmu la T (resp. F).

However , clauses like p : - ~ p are inconsis tent when p r o g r a m comple t ion is con-
sidered. To avo id this p rob lem [25] p roposed to in terpre t C la rk ' s p r o g r a m comple-
t ion in three-valued logic. In par t icular , in this logic the three t ru th values are t rue
(!), false (f) or undef ined (u_); the connect ives -~, A, V are in terpre ted in Kleene 's par-
tial logic [24], ~-} is in terpre ted as the ident i ty o f t ru th values, so it is two-valued: fi-
nally, existential quant i f i ca t ion can be seen as infinite d is junct ion, and universal
quant i f i ca t ion is t reated as infinite con junc t ion . Equa l i ty is two-valued. Cur ren t ly ,
this in te rpre ta t ion o f Cla rk ' s comple t ion (f rom now on the C l a r k - K u n e n comple-
t ion) is cons idered the s t anda rd declara t ive mean ing o f no rma l logic programs. Any-
how, it mus t be no ted that , in the context o f comple t ion , any three valued extension
o f classical impl ica t ion can be considered. The reason is tha t impl ica t ion does no t
appea r in predicate comple t ion fo rmulas and FETe con ta ins on ly impl ica t ion be-
tween two-valued formulas , i.e., the choice o f a three-valued semant ics for implica-
t ion becomes an i m p o r t a n t ma t t e r when the p rog ram itself is t rea ted as a logical
theory. In this sense, we will use Przymusinsk i ' s impl ica t ion [30]:

- '*lt f u

! l t f f f_ i f _ t _
. _ t g , _

whose intuit ive mean ing is "'q~ --, 0 is true i f and only if whenever ~p is true 0 is also
true and whenever 0 is false ~ is also false". Then , 0 ~ ~' is equivalent to
(q~ --" O) ^ (~ --* O) and, in par t icular , we have tha t Comp(P) j= iv. Note tha t the

94 P. Lucio et al. I J. Logic Programlning 40 (1909) 89-123

classical equivalence tp --, ~ ----- -~¢p V ff does not hold. However , in the case o f tp be-
ing two-valued (e.g. an equal i ty formula) tp ----, ~p is true iff ~ o x/~k is true, so tha t
tp ~ ~b is false iff --,~0 V ~ is false or undefined.

A three-valued Z-structure ,~ consists o f a universe o f values A and an interpr-
e ta t ion o f every funct ion symbol bv a (total) funct ion from A " to A (of adequate ar i ty
n) and of every predicate symbol by ~ part ial relation, which can be seen as a (total)
funct ion f rom ,4" to the set o f the three boolean values {t_, f, u_}. In tha t way, every
closed Z-term can be interpreted as a value belonging to the universe o f a Z-structure
(they canno t be undefined), every equal i ty g round a tom t~ : t2 is associated to one of
the classical t ru th values, but every ground a tom p(t~ , t,,) is associated to one of
the three boolean values: {t, _f, _u}.

A H e r b r a n d three-valued s t ructure .:~ is a three-valued Z-structure whose uni-
verse H 1.~ the H e r b r a n d universe for X, funct ion symbols are trivially interpreted
and the predicate in te rpre ta t ion is given by a pair of disjoint sets: H ÷ of true g round
a toms and H - o f false g round a toms, so tha t any o ther g round a tom is undefined.

"fine value o f any first order sentence tp in a three-valued s t ructure ,~-/will be de-
no ted ~y ,vj(q~). A three-valued s t ructure ,¢J is a model o f a set o f formulas ~ , denot-
ed by ~:£ ~ q~, iff ,~./(tp) ----- t_ for ai:y formula q~ E ~. Three-valued logical consequence

~ q~ means tha t for all three-valued s t ructure ,~,/if ,~ ' /~ q~ then ,~ ~ q~.

3. The algebraic framework

In this section we review some basic not ions on algebraic specification needed in
this paper (for fur ther detail see e.g. Refs. [15,36] and also Refs. [22,23,14] for more
detail on ins t i tu t ions and specification frames).

In Section 3.1, we in t roduce the no t ion of specificatio,: frame. A specification
frame can be seen as a formal descr ipt ion of a logic formal ism with certain compo-
s i t ional i ty propert ies. F r o m our point o f view, this not ion providcz an adequate the-
oretical f ramework for s tudying s t ruc tur ing issues in logic p rogramming . In the
fol lowing section, we in t roduce some algebraic propert ies o f specification frames
which are specially interest ing for our work. In par t icular , these propert ies al low
us to s tudy different s t ruc tur ing constructs at the abs t rac t level, tha t means, indepen-
dent ly o f the concrete class o f logic p rograms used to build modu la r or s t ructured
logic programs. In order to show the gains o f using this f ramework , we present, in
Section 3.3, a compos i t iona l and fully abst ract semant ics with respect to the union
of logic program:, [29]. These results are ob ta ined independent ly from the concrete
class of logic p rog rams considered as long as the required algebraic propert ies are
satisfied. T h r o u g h o u t the section, we i l lustrate the in t roduced not ions with the re-
suits ob ta ined in Ref. [29] for Horn Clause Logic.

3.1 . S p e c i f i c a t i o n f r a m e s

The not ion of specification frame was in t roduced in Ref. [16] to axiomat ize for-
mal isms with cer tain basic compos i t iona l i ty propert ies, in order to s tudy the struc-
tur ing and modula r i za t ion of specifications with independence of any logic
formalism. The not ion was defined as a " 'sl ight" abs t rac t ion of the not ion of inst i tu-

P. Lucio et aL 1 J. Logh" Programming 40 (1999) 89-123 95

t ion [22] defined, some years before, by G o g u e n and Burstali with s imilar aims. T h a t
idea was connec ted wi th the design o f the Clear specification language [16]. In par-
t icular, Clear was defined as p rov id ing opera t ions for s t ruc tur ing specifications inde-
penden t ly o f the under ly ing logic.

Specif icat ion frames are indexed categories tha t satisfy some add i t iona l struct .ral
propert ies:

Definition 3.1 A . w e c ~ ' c a t i o n f r a m e . ~ . ~ is a pai r (S p e e , M o d) , where
o S p o e is a ca tegory o f abs t rac t specifications (or programs) , and
® Mod : S p e e "p ~ C a t is a func toL fl,at asxociates to every specif icat ion S P in

S p e e its ca tegory o f models l~od(SP), and to every sp_.cification m o r p h i s m
f : S P ! --~ S P 2 a func tor Mod(f) : Mod(SP2) -~ Mod(SPI) , usually deno ted by ~-,

such that the fol lowing two proper t ies are satisfied:
(a) Spee has pushou ts
(b) Mod t rans fo rms pushou t s in S p e e in to pui lbacks in C a t (i.e., ,~,~- has amal-

gamat ions) .

Remark 3.1. (I) Pushou ts are the opera t ions tha t a l low us to combine specifications,
while a m a l g a m a t i o n is the semant ic coun te rpa r t to pushouts .

In par t icular , pushou ts in the ca tegory o f specifications correct ly cap ture the re-
qui red no t i on o f c o m b i n a t i o n o f specifications with a c o m m o n sub-specificat ion,
in a general way. Pushou ts are d iagrams in the ca tegory o f specifications. Essential ly,
if we want to put toge ther two specifications S P I and S P 2 , having a c o m m o n sub-
specification SP0, the pushou t S P 3 (of SP1 and S P 2 , with respect to SP0) would
provide the right combina t i on . Almost all logics o f pract ical interest have pushouts
(see Ref. [151 for more detail).

A m a l g a m a t i o n al lows us to define the semantics of a combined specif icat ion pure-
ly on the semant ic level as the a m a l g a m a t i o n o f the model classes o f the specifica-
t ions which are combined . The reason is that , as we show below, given a pushou t
o f specif icat ions as in the d iagram o f Fig. I, a m a l g a m a t i o n can be character ized
as an ope ra t ion for " 'bui ld ing" the models o f S P 3 in terms o f the models o f SP0,
S P I and S P 2 .

Most logics have ama lgama t ion . This is the case, for instance, o f Horn Clause
Logic (,~fz~__g-), Equa t iona l Logic (~ ~,a), Cond i t i ona l Equa t iona l Logic ('." ,7 9 ~77),
Clausal Logic (c~L~'), and First Orde r Logic (.~-C ~') .

(2} It must be no ted tha t the functor ia l charac te r o f Mod, usually, implies that
specification frames are m o n o t o n i c formalisms. In par t icular , if we consider a

S P O f I ,. S P 1

S P 2 g2 ,, S P 3

Fig. I. Pushou~ diagram.

96 P. Lucio et al. I J. Logic Programming 40 (1999) 89-123

specification frm-.~ where specifications are pairs (L ~) (where Z is some kind of sig-
na ture and to is a set o f axioms over that signature), I~. ~n for any sets o f formulas to
and to' over 27:

Mod(S, to t.J to') C_ Mod(2.', to)

when specification inclusions, as (Z, ~) C_ ~X, to 0 to'), are considered morph i sms in
S p e c .

Theorem 3.1 [16]. Given .~' .~ = (S p e e , Mod), Mod transJbrms pushouts in S p e c into
pullbacks in C a t 6~for every pushout diagram in S p e c , given in Fig. 1, the fol lowing
three Jacts hold:

(i) For every ._~li ~ Mod(SPi) (i = 0, i, 2) such that ~,(o~/1) = .rd0 = Vr_,(.eY2) there
is a tmique .~/3 E Mod(SP3), coiled amalgamation o f ~11 and .e,/2 via .~/0, written
~Y/3 = ~/1 +,.co ~/2. stwh that we have:

V~, (.~ '3)= .~ ' I and ~2(.o13)=.~,/2.

(ii) Conversely. ever)' ,~/3 E Mod(SP3) !:as a unique decomposition

~ 3 = ~., (.~/3) +,~,~,, ~ , ~ z~_,(.~/3).

(iii) Similar properties to 1 and 2 above hoM i f we replace objects oq/i by morphisms
hi in Mocl(SPi) (['or 0 ~ i <~ 3), leading to a unique amalgamated ston o f morphisms
h3 = hi +ho h2 with Vgt(h3) = hi and ~.,(h3) = h2.

The next example defines a specification frame for Horn Clause Logic over a pre-
defined (universal) s ignature o f functions. After defining it, we will analyze its prop-
erties.

Example 3 . i . H o r n Clause Logic over the funct ions s ignature FS can be defined as
the specification frame, .ggce£_~ = (HCL, Mo cl), where:
- Specifications are pairs (P S, to) formed by a s ignature o f predicates and a

set o f H o r n clauses over FS and PS, and specification morph isms
h : (PS , to) --. (PS ' , ~ ') , are mappings , h : P S ~ P S ' such that (1) arities are pre-
served and (2) h # (~) C ~ ' , up to r eaaming of variables, where h # denotes the
t rans la t ion induced by h.

• (P S, to)-models, in ~¢~Ae are H e r b r a n d structures, i.e. sets o f a toms over FS and
PS, tha t satisfy the axioms in • (according to the s t andard not ion of satisfaction).
A (PS , q ,) -homomorph i sm between (PS , to)-models, f : ~41 --* ~/2, is jus t an in-
clusion, ,all c_ d 2 . Then , Mocl:HCL "p --. C a t maps every specification (PS , q~)
in ~¢~cg.W into the ca tegory of all (PS , to)-models and (PS , to) -homomorphisms.
and every specification morph i sm h: (PS , to) --. (PS ' , to') into the cor responding
forgetful functor Vh : Mod(PS ' , tO') --, Mod(PS, q,) defined as usual, i.e. for every
P S ' - m o d e l ,~ ' we define Vh(.~') as the set o f a toms whose t rans la t ion via h is in
A', i.e.:

Vh(~') = {a E A toms (PS) /h# (a) E .~ '}

• Also, i f f ' : .~" 1' --* .~2 ' is a h o m o m o r p h i s m in Mod(PS' , to'), i.e. ~e/l' is included in
~/2 ' , then Vh(f') is the inclusion Vh(.~'l') C_ Vh(~'2').

P. Lucio et al. ! Z Logic Progranvning .10 (1999) 89-123 97

Let P0 = (PS0, Cg0), P I = (P S I , ~ I) and P2 = (PS2,C~2) be p r o g r a m s in H C L ,
with h i : P 0 - - ~ P 1 and h 2 : P 0 ~ P 2 . I f h l and h2 are inclus ions and
P S I M P S 2 = P S O then the pushou t o f P l and P2 is jus t P3 : P I u P 2 , i.e.
(P S I U P S 2 , C ~ I u ~ 2) . In the general case, a pushou t is a k ind o f dis joint un ion
where the symbols in P S 2 , but not in P SO, are r enamed adequa te ly and the mo-
rph i sms g l and g2 m a p each symbol in P I and P2, respectively, in to the co r respond-
ing symbol in P3.

Given the pushou t d i ag ram o f Fig. 2, for every ~o/i c Mod(Pi) (0 < i ~< 2), wi th
Vh~(.~/1) = I ~ , 2 (~ 2) - ~ - ~ ' 0 , the a m a l g a m a t i o n of .~/1 a n d .~]2 via ~c/0, t ha t is
~e/3=.~/1+.~,0.~-,/2, is defined jus t as ,~,/ILI.c/2, whenever hl and h2 are
inclus ions and P S I r i P S 2 = P SO. In the general case, .~13 would be ~ ' 3 =
g l# (~¢ / i) U g2#(.q/2).

H o r n Clause Logic, ~ , ~ r/, ~eems to be the mos t obv ious choice for a specifica-
t ion f rame for def ining the (declarat ive) semant ics o f definite logic p rograms . Actu-
ally, this is (implici t ly) done by mos t au thors . In par t icular , the " s t anda rd ' "
declara t ive mean ing o f a logic p r o g r a m P is defined as the least H e r b r a n d model
o f F (see, for instance, Refs. [26,1]). In a lgebraic terms, this is equiva len t to def in ing
the semant ics o f P as the least (init ial) model in MoR(P). However , if we are interest-
ed in logic p r o g r a m m i n g languages as p r o g r a m m i n g languages , then a r easonab le
choice would be one in which the inpu t /ou tpu t behav iou r o f p r o g r a m s were bet ter
captured . In tha t sense, Ref. [29] provides the defini t ion o f a n o t h e r specif icat ion
frame, ~£~o~ for Defini te Logic P rograms , which, obvious ly , shares the syn tax with
j ~ A a , i.e., it hhs the same ca tegory o f p rograms , but it is based on different no t ions
o f mode l and sat isfact ion.

3.2. O t h e r p r o p e r i i e s o f spec i f i ca t ion frame>.

In this subsect ion, we present some o ther proper t ies o f specif icat ion f rames tha t
m a y be requi red w h e n s tudy ing specific s t ruc tur ing or m o d u l a r const ructs . As we
have a l r eady men t ioned , the sa t i s fac t ion o f these proper t ies provides the adequa t e
se t t ing for p rov ing some usual ly desired scmant ic proper t ies for these const ructs .
Moreover , tha t can be made independen t ly o f the under ly ing logic fo rmal i sm (used
to bui ld specif icat ions or p rograms) whenever this tbrrna! ism is a specif icat ion [i-ame.
In wha t follows, we also sketch, as an example , tha t these p r o p e ~ i e s hold for the
specif icat ion f rame . ~ ~¢.

Definition 3.2. A specif icat ion f rame c j . ~ = (S p e e , M o d : S p e c °p --~ Cat .) has f r e e
cons t ruc t i ons iff for every specif icat ion m o r p h i s m f : S P I --, S P 2 in .Slaec there is a

h l PO - P 1

P 2 g 2 • P 3

Fig. 2..~-~2"-pushout diagram.

98 P. Luch~ et al. I J. Logic Programming 40 (1999) 89-123

free func tor F f : M o c l (S P 1) ~ Mod(SP2) which is left ad jo in t to Vr. Ff (and, in
general , a n y func tor F : Mod(SPI) ~ Mod(SP2)) is strongly persistent iff ~ .oFf = rD.

The in tu i t ion o f the free cons t ruc t ion , in this context , is qui te simple. Cons ide r the
case where f is an inclusion o f p r o g r a m s (specifications): P C P'. The free cons t ruc-
t ion assoc ia ted to this inc lus ion would build, for each model . ~ / o f P, the least P '-
model tha t can be buil t over ~¢t, i.e., i f P and P ' are definite logic p r o g r a m s F(zzl)
is the least model assoc ia ted to P' u .~,", where .~-/" deno tes the p r o g r a m consi,; t ing
o f all the a t o m s in .c/. I f the m o r p h i s m is more general t han an inclusion (i.e., it de-
fines some form of t r ans l a t ion between ti~e s igna tures o f P and P ') then, s imilar ly,
F'(,¢/) could also be defined as the least model associa ted to P ' u .¢1", where .¢/*
would mean here the p r o g r a m cons is t ing o f the co r r e spond ing t rans la t ion o f all at-
oms in .z/.

It m a y be not iced tha t the existence o f free cons t ruc t ions in a given specif icat ion
frame, in general , implies the exis tence o f " ini t ia i '" models (least models) . Since the
least model o f a p r o g r a m P can be defineO as F(¢) where O denotes the e m p t y model
and F is the free cons t ruc t ion associa ted to the inclusion d C P where ~' deno tes the
e m p t y p rog ram.

Converse ly , it can be shown tha t for mos t specif icat ion f rames the existence o f ini-
tial (least) models assoc ia ted to every specif icat ion (or p rog ram) ensures the existence
of free cons t ruc t ions .

Example 3.2 (Properties o f ~ ' ~ 6 ~ , [29]). ~ C ~ ' has free cons t ruc t ions .

It is easy to see that , given a p r o g r a m P = (PS, c6~) o f ,~Ic$Y[~, the ca tegory Moci(P)
is closed unde r intersect ion. Th is means tha t there is a least model . l /p in ~Iod(P)
which h a p p e n s to be tr ivial ly initial , acco rd ing to the no t ion o f h o m o m o r p h i s , u used
(inclusions) in t~e categor ies o f models . Therefore , in the case o f)~t~c6'r~', the exis-
tence o f free cons t ruc t ions is a consequence o f the existence o f ini t ial objects. In par-
t icular , given a m o r p h i s m h : P ~ P ' , wi th P : (PS, crY) and P' : (PS', ~ ') , the free
cons t ruc t ion Fh : Mod(P) ~ Mod(P') can be defined for every ~o/in l~iod(F) as the ini-
tial mode l o f the p r o g r a m (PS',5,~" t_Jh#(~)) , deno ted ,/[pc~/~, w h e r e h#(,¢/) is the
p r o g r a m cons is t ing o f the t r ans la t ion t h r o u g h h o f all the a toms in ,e/.

Free cons t ruc t ions have been used at the model level to give semant ics to F: . ram-
eter ized specific;~t~ons. In Ref. [29] free cons t ruc t ions are cons idered as the semant ics
of the different k inds o f open (or modu la r) logic p rograms . H o r n Clause Logic
(,~~ 'Z#) , E q u a t i o n a l Logic (e~~ ~SP) and C o n d i t i o n a l Equa t i ona l Logic (c K ~ . "~) have

. .

free cons t ruc t ions (see Ref. [15]). In con t ra s t C lausa l Logic ('6' ~.9 °) and Firs t Orde r
Logic (.~-t~'i~e), in general , do not .

Definition 3.3. A specif icat ion f rame .g).7 = (Spe¢. , Mod) has fi 'ee extensions iff for
every p u s h o u t d i a g r a m in S p e c as Fig. 1, i f F : M o d (S P 0) ---, M o d (S P I) is a s t rongly
persis tent free func tor wi th respect to f l , then there is a s t rongly persis tent func tor
F * : M o d (S P 2) ~ Mod(SP3) , called the extension o f F t, ia f 2 , such that :

(a) F" is free with respect to g2.
(b) The d i a g r a m o f Fig. 3 commutes .
Extens ion m a y be,, in some cases, a key cons t ruc t ion tor p roving compos i t i ona l i t y

and full abs t rac t ion results. Th i s is the case, in par t icular , when the semant ics o f the

P. Lucio et al. I Jr. Log&" Pr,~qrammblg 40 (1999) 89-123 99

Mod(SPO)

vz2

M od(S P 2)
F"

,, M o d (S P 1)

• M o d (S P 3)

Fig. 3. Free extension diagram.

given cons t ruc t ion is expressed as a persis tent free |;unctor. Every logic hav ing amal -
g a m a t i o n s has also free extensions.

Theorem 3.2 [16]. Specification fi'ames t~ave l'ree extensions.

This result is a consequence o f the existence o f a m a l g a m a t i o n . Being more con-
crete, i f F : Mod(SPO) --~ M o d (S P I) is a s t rong ly persis tent free func tor wi th respect
to f l then the extens ion o f F via f 2 is the s t rongly pers is tent free func tor
F* : Mod(SP2) - -~ Mod(SP3) , such tha t for each model .~/2 in Mod(SP2) , F*(.¢/2)
is the a m a l g a m a t e d sum ,~-/2 +r;_,c~2) 1:(Vf2(0~2)).

Example 3.3 (Properties o f Wq;,'~ ~, /29]). ,Y/'g'Z,a has fi'ee extensions , since it has
a m a l g a m a t i o n s .

T h e existence o f extens ions for s t rong ly persis tent free functors can be genera l ized
to the non-pers i s ten t case under cer ta in c i rcumstances :

Definit ion 3.4. A specif icat ion f rame ~ .3a -= (S p e e , M o d) has generalized free
extensions iff for every p u s h o u t d i a g r a m as in Fig. 1, if F : M o d (S P 0) - - +
M o d (S P I) is a tYee func tor with respect to f l , then there is a func tor
F* : Mod(SP2) ~ l~od(S P3), called the generaliced extension o f F via f 2 , such tha t :

(a) F" is free with respect to g2.
(b) There is a na tu ra l t r a n s f o r m a t i o n v : F o ~ 2 --, ~ o F * such ti iat the d i a g r a m o f

na tu ra l t r a n s f o r m a t i o n s in Fig. 4 commutes , where_/ '3 = g l o f l = g 2 o f 2 and u and
u* are, respectively, the universal t r a n s f o r m a t i o n s associa ted to z and F*.

Theorem 3.3 [23]. I r a .~pecification f rame ~/'.~ has j?ee constructions and pushouts &
all model categ~Jries Mod(SP),Jbr all abstrt:,.ct spec~[ications S P in S p e e , then 5 a ~ has
generalized free e.x'tensions.

1/]2 V.f2 0 u * D V f3 0 F *

Vj l o F o ~')2
Fig. 4. l~Jatural transformations associated to a generalized free vnt.~'nsion.

100 P. Lucio et al. I J. Logic Programming 40 (1999) 89-123

Example 3.4 (Properties o f , ~ Z ~ ' , i2~:q). ~¢t,~Ae has generalized free extensions
because, according to Defini t ion 4, it is enough to check tha t for every p rog ram P,
there are pushou t s in Moa(P)" Given models . . 4 0 , , ~ / 1 , ~ 2 in Mod(P), with
f l : ~¢0 C_ ~ 1 and f 2 : d 0 c d 2 , we can define the pushou t o f o41 and .~2 a long
f l and f 2 as jus t the jo in ~ 1 u ~¢2.

3.3. Standard union of logic programs

In this section, we present compos i t iona l i ty and full abs t rac t ion results [29] for a
semant ics o f the s t andard un ion o f logic programs, which are general in the sense
tha t they are independent of the class of logic p rograms conzidered, as long as it
is a specification f rame with the propert ies in t roduced in Section 3.2.

As is well known, the least model semantics o f logic p rograms is nei ther compo-
si t ional nor fully abs t rac t (in a compos i t iona l way). As a result, some form of more
complex semant ics mus t be considered if we intend to capture a compos i t iona l be-
haviour . F o r instance, Ref. [21] studies the (s tandard) union of logic p rograms
and the compos i t ion o f logic modules, where a logic module can be seen as a logic
p r o g r a m including an add i t iona l importlexport interface, with the restr ict ion tha t
clauses in the module do not include impor ted predicates in their heads. In bo th
cases, the mean ing o f these cons t ruc t ions is defined in terms of sets o f minimal claus-
es, tha t are logical consequences o f the given program. In our context, we can see
these meanings as concrete representat ives o f our general algebraic construct ions .
In this sense, t~ie full abs t rac t ion results in Ref. [21] can be seen jus t as ad hoc ver-
sions o f var ia t ions o f the results ob ta ined in Ref. [29].

lu our approach , for s tudy ing the opera t ion of union, we consider tha t a logic
p r o g r a m P = (PS, cg) m a y be seen as a special k ind of open p rogram where all
predicates are par t ia l ly defined, in the sense tha t more in fo rmat ion abou t the pred-
icates in P Ses, can be added by union with o ther programs. In our context , this im-
plies tha t the mean ing of a p r o g r a m P can be seen as a mapp ing tha t given a PS-
s t ructure d (that can be seen as including the "mis s ing" definit ions o f the predi-
cates in P), yields as result the "comple t e " in te rpre ta t ion of P, i.e. we may consider
tha t the mean ing of P is the free cons t ruc t ion associated to the p rogram inclusion:
(P S, ~) C_ P.

Definition 3.5. The semantics of a program P = (PS, c~), noted by Sem(P), is the free
functor F : Mod(PS, 0) --~ Mod(P), associated to the inclusion (PS, O) c_ P.

I t may be noted that , in this case, the semantics o f P is never a persistent functor~
since given a p r o g r a m P and a PS-mode l d , F (~) is in general different f rom ,~/.

Definition 3.6. Let P l = (PS l ,C~ l) and P2 = (PS2,C~2) be programs, the s t andard
union of P t and P2, P I U P2, is the p rogram (PSI U PS2, ~,1 U ~2).

It must be noted tha t P1 U P2 coincides with the result o f the pushout d iagram, in
the ca tegory of p rograms o f the under ly ing specification frame, given by Fig. 5.
Fig. 6

P. Lucio et al. I J. Logic Programming 40 (1999) 89-123 IOl

(PS1 N PS2 , 0) ,, P1

P2 • P1 u P2
Fig. 5. Standard union of programs.

Mod(PS2 , ~) ,

Sere(P2)

M o d (P 2) -

M o d PS1, ¢J) Sere(P1) : Mod(P1)

l
M o d P S , ~) S e m ' (P 1) = M o d (P S 2 U P S i , e l)

I
Sem' (P2) i F 2

M o d (P S 1 U PS2,C2) f l~ Mod(P1 U Pz)

Fig. 6. Union compositionality.

Dea l ing wi th p r o g r a m s whose semant ics is persis tent , compos i t i ona l i t y o f ou r se-
mant ics , wi th respect to s t anda rd union , is a direct consequence o f the existence o f
free extens ions in the specif icat ion frame. However , in the general case, we have to
use the more complex cons t ruc t ion o f general ized free extension.

Theorem 3.4 (Compos i t iona l i ty , [29]). The semantics o f Pl U P2 can be obtained as:
Sem(P1 U P2) = FloSem'(P2) = F2oSem' (e l), where

(i) P S = P S I U PS2.
(ii) Sem'(Pl) and Sem'(P2) are the generalized extensions o f Sem(Pl) and Sere(P2)
via the inclusions (P S I , 0) c (PS, 0) a n d (PS2, ~) c_ (PS, 0), respectively.
(iii) FI and F2 are the generali=ed extensions o f Sem'(P!) and Sem'(P2) via the in-
chtsions (P S, 0) c (P S, ~1) and (P S, 0) C (P S, ~2) , respectively.

It mus t be no ted tha t T h e o r e m 3.4 really proves the compos i t i ona l i t y o f Sere with
respect to s t anda rd un ion , in the sense tha t the m e a n i n g o f P I u P2 is defined in
te rms o f the m e a n i n g o f P I and P2, since the general ized extens ion o f free func tor
F via an inc lus ion i, is un ique ly de te rmined by F and i.

On the o ther hand , the fo l lowing l emma is a consequence o f the fact tha t free con-
s t ruc t ions are un ique up to na tu ra l i somorph i sm:

Lemma 3.1 [29]. Given two programs P I and P2,

Sere(el) = Sem(e2) i f f f o r every e : Sem(PLIPI) ---- Sere(PUP2).

This l emma can be used to prove full abs t rac t ion o f the given semantics . In par-
t icular, a semant ic defini t ion o f a p r o g r a m uni t is fully abs t rac t wi th respect to a

102 P. Lttcit~ et al. I J. Lt~gic PrograOltllitlg 40 (1990) 89 123

given compos i t ion opera t ion , for instance t_J, and a given observat ion criteri~l Ohs if
and only if for all p rograms PI and P2

S e m (P l) --=- S e m (P 2) iff for every P : O b s (P t3 PI) = O h s (P t_~ P2).

Now, there are several observat ion criteria that may be used in the context o f logic
p rogramming . The most obv;,ous one is to consider two programs PI and P2 obser-
va t ional iy equivalent if and only if the ground consequences of the two programs co-.
incide, or equivalent ly if and only if their associated least models coincide (in Ref.
[29] it is also considered observat ions associated to the computed answers of the giv-
en programs) . In this sense, full abs t rac t ion can be reformulated as:

S e m (P I) = Sere(P2) iff for every P : Ta~,pl = Tp~ e,_.

where Te, denotes the initial model of P in the cor responding specification frame, for
example, if the under ly ing specification frame is . ~ c ¢ ~ , then 7"/, is the minimal Her-
b rand model o f P, tha t is, Tp ~- . / / e .

The abst ract result of full abs t rac t ion works for all "a lgebra ic" specification
frames (in par t icular .~c¢, c-ka is algebraic).

Definition 3.7. A specification frame yf.~v _- (Spee. Mod) is algebraic if for each
specification S P in Spe e and for each model ..~/in l~Iod(P) there exists a specification
SP0 such tha t . ~ / = Tse0, where T.s.Pr~ denotes the initial model of S P0.

Theorem 3.5 (Full abst ract ion, [29]). Le t .¢/ ' .T---(~'og, Moct) be an algebreric
speci f ica t ion f r a m e . Then, given two progrc t , t s P ! a,,:rl P2 #//~-og,

S e m (P l) = S e m (P 2) i['[" . for e re rv P : Tt,, Jel = Tt,,j:,2.

In Ref. [29], these results are used to analyze and improve previous ones. More
specifically, with respect to s tandard union, it is proved that the semantics proposed
in Ref. [21] is equivalent to the above ~abstract '" semantics: this allows us to con-
clude tha t their semantics is not only fully abstract , as they prove, but also compo-
sit ional. Being more concretely, the semantics of a logic progra.,n P = (P S , ~¢;), as
defined in Ref. [21], can be seen as a specific representat ive o f the free cons t ruc t ion
~issociated to the inclusion (P S , O) c (P S , ~¢,) in the specification frame .~¢~ 7~. Then,
the full abs t rac t ion results o f Ref. [21] are jus t a consequence of the results in Sec-
t ion 3.2 applied to the specification frame . ~ 6 . ~ . On the o ther hand, according to
these results, the compos i t iona l i ty o f the semantics, with respect to the union, is a
consequence of Theorem 3.4.

4. A model-theoretic semantics for normal logic programs

As said in Section 1, our aim is to define a model- theoret ic semantics for normal
logic p rograms (i.e., the mean ing of a p rogram P is the set Mod.(P) o f all models of P,
for a given not ion of model) , such that the following monoton ic i ty proper ty holds

Mod.(P) _D Mocl(P U P') for all P, P ' .

P. Lucio et aL I J. Logic Programming 40 (1999) 89-123 103

In addi t ion , we also wan t this semant ics to be adequa t e for app ly ing the general
results presented in the previous section. This means tha t it mus t be possible, based
on this semantics , to define a spec.;fication f rame sa t is fying all the proper t ies needed
for def ining the mean ing o f the k ind of p r o g r a m s units considered. In par t icular ,
this means tha t ' ~ s spc,Afication f rame must have free cons t ruc t ions and , as a con-
sequence, every p r o g r a m P mus t have a least model , deno ted . / l e , t ha t could be
cons idered its s t anda rd meaning . O n the o ther hand , obvious ly , this semant ics
should be proved equiva lent to the s t anda rd mean ing associa ted to no rma l logic
p rograms .

An obv ious choice is to cons ider tha t the models o f a p r o g r a m P are three-valued
structures. Then , one would t ry to find some order ing -< a m o n g models sa t is fying
tha t there is a least e lement tha t can be proved equiva len t to the in tended m e a n i n g
o f P. U n f o r t u n a t e l y , as the fol lowing coun te r -example shows, this is no t possible.

Example 4.1. Let us cons ider the no rma l p r o g r a m PI _= { a : - ~ b } , its least model
~//el shou ld be the pa i r ({a} ,{b}) , and cons ider PI ' = : { b : - } , then - / /Pluel ' =--
({b}, {a}). Then we mus t have ({a}, {b}) -< ({b}, {a}).

Now, by cons ider ing the p r o g r a m P2 ---- {b : - ~ a } and ex tend ing it with the clause
{a : - -} we ob ta in tha t ({b}, {a}) _ ({a}, {b}) shou ld hold.

F r o m our poin t o f view, the p rob lem in this coun te r -example is tha t ,//PtuPl' and
~Z/p2 should no t be ident ical and should reflect, in some sense, the " 'dependences f rom
negat ive i n f o r m a t i o n " which m a k e a given a t o m be in the model . F o r instance, ~.//e2_
includes b ~s a consequence" o f the negat ive in fo rma t ion prov ided by a, while -//eluel,
includes b wi thou t any dependency o f negat ive in fo rma t ion . Th i s cons ide ra t ion has
led us to cons ider models hav ing "'layers" tha t reflect these dependencies . W e call
these models r a n k e d s t ruc tures because o f their re la t ion with r anked resolut ion.
F o r instance, if we cons ider aga in the a b c ve Example 4.1, the " ' in tended" model
for P I has a first layer given by (O, {b}) and a second layer ({a}, {b}). H o w e v e r
for P I U P I ' the first layer is ({b},0) , and the second layer ({b}, {a}). Similar ly,
for P2 the first layer is (0, {a}) and the second layer is ({b}, {a}). N o w the in tended
models associa ted to P I t3 P I ' and to P2 are different, since their first layers differ.

In what follows, first we sketch the p ropos i t iona l case to provide some intui t ion.
In Sect ion 4.2 we extend the a l ready presented semant ica l no t ions to the class o f all
no rma l logic programs. Then , in Sect ion 4.3 we prove the existence o f a leas~, model
and we provide a c o n t i n u o u s immedia te consequence o p e r a t o r for ob ta in ing it in a
b o t t o m - u p cons t ruc t ive way. Final ly , we show the equiva lence o f ou r semant ics with
C l a r k - K u n e n semant ics , p rov ing tha t our least model is a " t y p i c a l " elemer,,t in .,'~:
class o f all models o f p r o g r a m comple t ion .

4. !. A f i r s t approach: The propos i t ional case

In the p ropos i t iona l case, it is enough to cons ider sequences o f H e r b r a n d three-
valued E-structures . In the next section we extend this no t ion o f semant ica l s t ruc ture
to deal wi th no rma l p r o g r a m s with variables.

Definition 4.1 (Propos i t iona l case). A r a n k e d three-vah~ed E-s t ruc ture ~e/ is an infinite
sequence o f pairs ((A~-,A,:))i~ ~ such tha t for a n y i E ~"

104 P. Lucio et aL I J. Logic Programming 40 (1999) 89 -123

t, A + C A,++l and A,.- C A~i
• A + n A i = O.

We will just write a finite n u m b e r n o f layers, whenever the rest o f the layers are
equal to the nth layer.

The layers of our structures could also be related to the not ion of stratification
[2,34], but stratification is a syntactic restriction on the class o f p rograms for ensur-
ing the existence o f certain semantic construct ions, whereas ranked structures are
models . Actually, as it can be seen below, we do not impose any restriction on the
kind o f p rograms we deal with (they do not have to be stratified in any sense).

Now, we define when one o f these structures is a model o f a program. In order to
dist inguish the satisfaction relat ion between ranked structures and programs and the
logical consequence relat ion in the three-valued logic, the former will be denoted by
~R and the latter by ~3.

Definition 4.2. A ranked three-valued Z-structure .~/ is a model of a propositio~lal
normal Z-program P (denoted by .~-/ ~R P) iff the fol lowing four condi t ions are
satisfied:

(a) If pv U Ad ~3 a then a E A~ (in part icular if a : - ~ P).
(b) If a E A o then there is not any clause a : - [ia P.
(c) If pV t_~A++~ U--,AT ~3 a then a E A,++l, where --,A, means{--,a]a E AT}.
(d) I f a E A£+ l then for every a : - [E P one o f the fol lowing two facts holds:

• there exists b E [such that b E Ai-,
• there exists -~b E [s u c h that b E A +.

Not ice that for the p rogram PI _ { c : - - , b } o f Example 4.1, the following are
some of its models:

. .a l = ((0, {t,}), ({a}, {b}))

..//2 = {({a}, {b}))

. , z 3 = (({a, b}, 0))

. / /4 = ((0,0))

.... ,,/5 = (({b},O), ({b}, {,,}))

but . # 6 = (({b}, {a})) is not a mode l o f P.
Our model no t ion allows us to include (in any layer) more positive in format ion

than what is suppor ted as logical consequence o f the previous layers, but the nega-
tive in format ion o f each layer must be suppor ted (in that sense). Thus, if we want to
define an order ing ~ on ranked structures such that the least model is the one hav-
ing, at each layer, the least a m o u n t o f pesi t ive in format ion and .the greatest a m o u n t
o f negative in format ion suppor ted by the previous layer, it suffices to take -< to be
the lexicographic extension over sequences ((A+,AT))~ of the s tandard order ing
over three-valued structures:

(A+,A -)--<(B+,B -) i f fA + C B + and A- _~B-.

It is easy to see that , for the above p rogram P1, .//1 is the ___-least model in
Mod(Pl) . Now, consider the case where we add the clause b : - b to PI , then ~.#i
and d[2 are not models o f the new program. In this case, the least model is J/4. Fur-
thermore , by adding a third clause b : - , ..It'4 is not a model o f the new program
{a:---,b, b : - b , b : - } , and the least model would now be . / /5.

P, Lucio et al. I J. Log&" Programming 40 (1999) 89-123

4.2. N o r m a l logic p r o g r a m s

105

In this section, we extend the mode l - theore t i c semant ics to the general case o f nor-
mal p rog rams with variables. Firstly, it mus t be not iced that this extens ion can no t
jus t be based on seeing no rma l p rog rams with variables as abbrev ia t ions for pro-
grams inc luding all possible g r o u n d instances o f the given ;;iauses. For instance,
the p r o g r a m s

P ! =_ { n a t (O) : - , n a t (s (x)) : - n a t (x) } and P2 ~ {,,_-.~t(_r) • - }

have exactly the same instances (cons ider ing the s ignature including, as un ique furic-
t ion symbols , the cons tan t 0 and the unary funct ion symbol s), but they have a com-
pletely different behavior . In part icular , the query

" -- -ma t (x)

would be undef ined for P1 and false for P2, The solu t ion p roposed is ra ther t- ban .
die the f i rs t-order case in a s imilar m a n n e r to the p ropos i t iona l case, by cons ider ing
r anked structures inc luding not just g r o u n d a toms but cor s t ra ined a toms with vari-
ables.

Definition 4.3. A r a n k e d three-t'ah~ed Z-st ructure is an infinite sequence

. ~ . j = ((A T , A T)) , ~

such that for any i E I~:

e A~ and A 7 are sets of pairs p(~)Dc(.~, where p E ~ and c(.~) is a satisfiable Z-
constra int .

o A~ and A 7 are closed unde r r e n a m i n g of variables.
• A? C_ AI.~_ I and A , C_ AT~ ~.
• (Cons is tency Proper ty) For any p E PSi, if there exists Z-cons t ra in ts c and d such

that p(yc)l-qc E A [and p(Yc)[S]d E A [, then c A d is unsatisfiable.

We will no t m a k e explicit the free variables o f a cons t ra ined a t o m vchenever they
are not relevant and we will just write a finite n u m b e r n o f layers wheneve r rest o f the
layers are identical te the nth layer.

A pair pE]c E A, ~ is logically in terpre ted as the formula (c - ~ p)V, and a pair
p n c E d ; has the logical m e a n i n g o f (c --~ __,p)V. Consequen t ly , we define the sets:

A T v _ {(~. v ÷ ---* p) Ip[-qc E A, },

A/-v ~ {(c p)V[pVlc E A 7 },

A~ - - A 7 ~' U AJ.
Definition 4.4. A ranked three-valued Z-s t ructure .~/ is a m o d e l o f a n o r m a l Z-pro-
g r a m P (deno ted by .~" ~e P) iff the fol lowing four cond i t ions are satisfied:

(a) If FETe U pv O A~ -v ~3 (c --~ p)V and c is satisfiable, then pD]c E A6 ~.
(b) If p(yc)l-lc(Yc) E A o then c/~ c' is unsatisfiable for every (proper ly r enamed)

clause p(~) : - IVlc ' E P. "

I 0 6 P. Lucio et al. I J. Log&" Programmi,~g 40 (1999) 89-123

(c) I f FET_~ U pv U A~-~ U Af v h (c ~ p)V and c is satisfiable, then pUJc E Ai?+l.
(d) I f p(X')U]c E A,.-.l then FETx UA v ~s ((c A c ') - - . ~ i)) v for every (proper ly re-

named) clause p(5:) : - f f - lc ' E P.

Remark 4.1. C o n d i t i o n s (a) and (c) can be slightly simplified to:
(a ') I f FETs U pV ~s (c --~ p)V and c is satisfiable, then pf-lc E AO ~
(c') I f FET_~ U pv U A, -v ~3 (c ---, p)V and c is satisfiable, then pf-]c E Ai~ t

if we would no t have the aim o f p rov ing tha t this semant ics defines a specif icat ion
frame. Unfo r tuna t e ly , proper t ies (a) and (c) are needed for p rov ing the so-called
a m a l g a m a t i o n p roper ty o f specification frames.

N o ~ , we can define a model theoret ic semantics for no rma l p rograms , in terms o f
the class o f models , for a prod;ram P"

Mo~t(p) = { o / I . o / ~ p}.

This semant ics is m o n o t o n i c with respect to p r o g r a m extension.

Theorem 4.1. For all Z-programs P, P'. Mod(P) ~ Mod(P U P').

Proof . Suppose tha t ,r./ ~n P U P', for p rov ing that ,o/ ~n P cond i t ions (b) and (d)
are trivial. In order to prove cond i t ions (a) and (c), it is enough to observe tha t
(p u p ,) V = pV U p , v which means that , for any set o f fo rmulas ~ U {to}, the
fol lowing holds: if FETz- U pV U ¢~ ~3 tp then FET,,: U (P U p,)V U • ~3 tp. []

Likewise in the p ropos i t iona l case, the order ing cons idered over Mocl(P) is the lex-
icographica l extension _ over sequences ((Aj~,A,:-))j~ o f the s t anda rd order ing.

As in the p ropos i t i ona l case, we have the fol lowing theorem.

Theorem 4.2. For all)' S-program P there exists a ~-Ieast Z-model .//p #~ the class
Mod(P).

i + Proof. Let P be any _r-program, we define . / / e = ~(Mi ,M[k))iE~ as the r anked S-
s t ructure such that
* M d is the C-least set sat isfying cond i t ion (a).
• M~7 is the C-greatest set sat isfying cond i t ion (b).
o M + is the C-least set sat isfying cond i t ion (c). i + !

• M ~ is the C-greatest set sat isfying cond i t ion (d).
By def ini t ion -//p is a model o f P. In order to prove tha t it is the least one, suppose

any o ' h e r ,~1 7 Mod(P) such tha t ,~,/--< .f ie . Then , there is some i c I~1 such tha t
A; = M S and A i = M 7 for any j < i, but one o f the fol lowing two facts holds:

(i) there is pDc c A[\ M/-
(ii) there is pDc E M, + \ A?.

We will prove tha t bo th facts are not possible.
(i) Suppose tha t pDc E A:,. I f i = 0 then for every clause p(,~) • -]U],~ = ~-in P, the

cons t ra in t c A,~ = ~ is unsatisfiable, but this is a sufficient cond i t ion for pE]c E M o.

P. Luch~ et a L I ,L Logh' Progrommhtg 40 (1999) 89-123 1 0 7

F o r i > O, the case p[]c E A; for some j < i is trivial since A 7 ~_ A f = &If . Other -
wise, we have that for every clause p(,~) : -[tLlv = i in P:

FET~U 'J-I ~3 ((c A.~- ~ ~,/)v

_ ~ A V since M,~I~ ~_ ~, we have that plZc also belongs to Mi-.
(ii) Now. suppose tha t pDc E M,*. Fo r i --- 0 tha t means FET~ UPV OM~- ~3

(c --~ p)V, since -~/E Moct(P) and M~; ~ C_ .4~-;. this suffices to ensure tha t p O c E Aft.
F o r i > 0 there are two cases. First, pF-lc ~_ M~ ~ for some j < i, but Ai + _D A j- = Mj +
and A,-~ D AiL I = M, I. Otherwise , we have tha t

bET,- U pV U M, 'v U M,~'~ ~3 (c ~ p)~'

since (i). we have that Ai-~ I ~- 1~'Ii-- t , and because o f the cons t ruc t ion o f . a t , we also
have that A,: v _~ M, v , ~o tha t we ob ta in p D c E A, ~. []

4.3. The least model

In this section we s tudy some interest ing proper t ies of least models . In par t icular ,
different c laaracter izat ioqs by logical consequence closure and its cons t ruc t ive defini-
t ion th rough an immedia te consequence opera tor .

F r o m now on. ((M~',It~)1~.~. will denote the least model . / /p of a given
p rog ram P.

O u r first least model charac te r iza t ion is made in terms o f a logical consequence
closure o f the equa l i ty theory and the s t anda rd logical in te rpre ta t ion o f the p rogram.

Lemma 4.1. For an i' L'-progrtm~ P:
(i) p[]c E M,; ¢=~ FET_, u P~' , ~ (c --~ p)V.
(ii) p[]c E M~ ~'. ~ ¢==~ FET,_- U pv U M~" ~3 (c ---, p)V.
(iii) plSlc ~ M,- ~ FEZ,_ U pv U M; ~' ~3 (c --~ _,p)V.

Proof. Righ~:-to-left impl ica t ion o f (i) and (ii), as well as (i i i)-left-to-right. are trivial.
We will prove the o thers by s imul taneous induc t ion on i.

F o r the converse impl ica t ion o f (i). we define the set

B -- {q[-qd J FETz U pV ~.~ (d --~ q)V and d is sat isfiable}.

Now. using the fact tha t for every set o f formulas • U {~b}:

a , u { , p l , t , b ; , p } b , ~ , ~ , t , b , q ,
it is easy to see that B satisfies Def ini t ion (a). Therefore , M~ C B.

The p r o o f for the converse impl ica t ion of (ii) is similar, but t ak ing the set

B ~ {qff3d J FET,= U P v U M~ fv ~3 (d ~ q)V and d is satisfiable}.

For the r ight-to-left impl ica t ion of(i i i) , the key idea is tha t the p rog ram P c a n n o t
" ' add" new negative logical consequences . In par t icular , i f we assume that aff]c is not
in Mi-, then we can build a model o f FETz UPV U M ~ which is not a model o f
(c ~ -,a)V: it is enough to cons ider the ~qerbrand s t ruc ture (A ~, A-) where A- con-
sists o f all a toms ba such that bOd E M~- and a is a (ground subs t i tu t ion) so lu t ion
o f d. and ,4 +- includes the rest of the a toms. []

108 P. Lucio et al. ! J. Logic Programming 40 (1999) 89-123

A trivial consequence o f the previous l emma is tha t Jf/~, is closed with respect to
less general constraints .

Lemma 4.2. For any Z-program P and for every i E ~:
(i) i f p[:]c E M~ + and FETr ~3 (d --~ c) v and d is satisfiable, then prJd E M~+;
(ii) i f pU]c E M 7 and FET~ ~3 (d ~ c) v and d is satisfiable, then pU]d E Mi-.

Proof. I t is enough to notice tha t for any set o f formulas ,PU{q~}, if
FETz U • ~3 (c ~ q~)v and FETz ~3 (d --+ c) v, then FETz- U rp ~3 (d --* tp) ~ . []

Now, we are going to character ize the least model in the usual construct ive way:
as the least f ixpoint o f a m o n o t o n i c and con t inuous immedia te consequence opera-
tor. F o r that purpose we order ranked structures by the trivial extension o f Fi t t ing 's
order ing

~ _ _ _ p ~ i f f A +C_B + and A~-C_B/- for a l l i ~ .

It is easy to see tha t ranked structures are a cpo with respect to ___e, whose bo t tom is
the infinite sequence o f pairs o f empty sets and the least upper bound , for evcr) ~n-
finite increasing chain o f r anked str,:~tures, is the level-by-level un ion o f posit ive and
negative par ts o f all o f them. We define an immedia te consequence ope ra to r in the
fc, I lowing way.

Definitio~ 4.5. Let P be a Z-p rogram and . 4 a ranked Z-structure, Te(~/) = ~ wilere
:~ is the ranked s tructure defined for each i E [~ by:

B + --- Vp(A~,Ai,,) and B~- = Rp(Ai~,,AT,_t) ,

where A+I ~ AZI --= ~, by convent ion , and Vp and Rp are the fol lowing two opera tors
over pairs o f sets o f cons t ra ined a toms:

Ve(C, D) = {p(£)Dc(~) IFor some n > / I ,

some satisfiable cons t ra in ts e t , . . . , e, ,

and some subset o f proper ly renamed clauses o f P

{p(~) : - P O d ~ l 1 <. k <. n , f ree (~ A dk) = -~,.~ }:

FETe: ~3 (c ---} V~,=13~k(d~ A ck)) v and

FETr U C v U D v 1=3 (c~. --~/k)v for all k = 1 n},

Re(C, D) = {p(Yc)Dc(~) lFor every proper ly renamed c l a u s e p(Yc):-[Dd E P:
F E r , : u C v u D v t=3 ((c A d) ~ 9[)) }.

The powers (or i terat ions) o f Te are defined by

T ~ p (d) = d and Tfi+'(~)=Te(T~(~4)) .

The mono ton ic i ty o f logical consequence trivially implies tha t Vp and //p a=e
m o n o t o n i c with respect to C, hence Te is m o n o t o n i c with respect to -%. Mc, reover,
we will prove tha t it is con t inuous and, therefore, we will ob ta in Me at the ~ i terat ion
o f Te over the always empty ranked s t ructme.

P. Lucio et al. I J. Logic Programming 40 (1999) 89-123 109

Lemma 4.3. For any T.-program P, Tp is continuous.

ProoL Cons ider any infinite cha in o f r anked s t ructures

~¢0 ----_r ~ '1 -'<r - - - " < F JTg/ll " g F ° ~ -

By m o n o t o n i c i t y o f Te it is enough to p rove tha t Te(U.~n) -<F LtTe(o'dn). Consider ,
firstly, p(~)~c(~) E (Tp(U~Cn)) o, then there exists n >f 1, cons t ra in t s ci , c,,, a n d a
subset {p(~) : --/kE]d~-i I <~ k < n} o f P, such tha t

FET~ ~3 c --* 3fi~(d~- A ck)
k = t

and

FETr U (U,~n)o v ~3 (ck --~ [k)V for all k = I , n.

Hence, by compac tness o f the logic, there exists some ~ ' r (in the chain) such tha t

FETz U (..~'r)o v ~3 (ok ~ :~-)v for all k = 1 n.

The re fo r . ~ ,r-(~)LTc(~) C (Te(~e/r))i~, and so, it belongs to (t_lTe(.~/n)) o.
Similarly, by cons ider ing tha t p(Yc)Dc(~) ~ (Tp(u,~'n)),++j, we have that :

k = !

and

FETe U (.~r)+i v U (~e/r),; -v ~3 (ck ~ ~-~-)v for all k : : l n.
+

so tha t p(~)l-qc(~) E (Te(~lr)),+!.
The p r o o f for the inclusion o f negat ive par ts is s imilar and easier. []

Tile fo l lowing l emma provides a useful induc t ion pr inciple for reason ing abou t
the least model . In par t icular , it is the basis for tbe least mod~:l-:charaeterization in
terms o f least f ixpoints a n d for c o m p a r i n g Tp with Fi t t ing ' s opera to r .

Lemma 4.4. For any Z-program P:
(i) M g = VI."(~), 0),
(ii) M0- = Re(O, 0),
(iii) M +, = V~°(M~, M.),
(iv) M,.Z ! = Re(M?, M 7) ,

w/,e,~, v ° (c , o) = c a , d v : + ' (c , o) = v p (v : (c , o) , D) .

Proof. Facts (i0 and (iv) are tr ivial since M o and M~I are, respectively, the C-
greatest sets sat isfying cond i t ions (b) a n d (d) in Def in i t ion 4. The r ight- to- lef t
inclusions o f (i) and (iii) are also trivial t¥om the fact tha t ~:g:o is a model o f P. Since
,Atp is the least model o f P, we will prove the lef t- to-r ight inclusions o f (i) and (iii) by
p rov ing tha t V~(0, ¢) and V~,°(Mi~,Mi -) satisfy, respectively, Def in i t ion 4(a) and (c),
tha t is, for any satisfiable cons t ra in t c:

!10 P. Lucio et a L i J. Logic Programming 40 (1999) ,~9-123

(1) FETzU.pv U V;,"(O,O) v 1=:3 (c __,p)V ~ p D c E I%"(0,0).
(2) R~.Tz- U pv U Yt;"(MT, M i-)v U Mi -v ~.~ ((,., _ - . p)V

pr~c~ v/,'(,w,', ~ -).
In o rde r to p : o v e (I), let us cons ide r a c o n s t r a i n e d a t o m p(.~)r-qc(.-r) ~/V/"(O, O) wi th

c sat isf iable , we will p rove the exis tence o f a th ree -va lued X-mode l o f FET,-U pV
U(V~"(O, 0)) v wh ich is a c o u n t e r - m o d e l o f V.~-(c(~) --~ p(5.-)).

Let 4) be the fo l lowing set o f f o r m u l a s over the s igna tu re S ' :

q~ =- FETz U {c[a/.~]} U {.-~d[#/Yc] l p[~d C V/,"(I}5, 0)}.

where Z" is the ex t ens ion o f Z by the new c o n s t a n t s y m b o l s a.
N o w , let ,e.,/be the least 3-va lued H e r b r a n d U - m o d e l o f tb sa t i s fy ing , in add i t i on :

q.,,(g) = [.t_ if eb ~ (.~ = .~ - - e) v for some a(.V)~e(.i) E ~5;"(~, W j,

t u o therwise ,

fi-r each t , -ary p red ica l e symbo l q E I-'S, a n d each .~ E (tt,_:,)".
It is t r ivial , by c o n s t r u c t i o n , tha t .-~," is a mode l of['ET, g (f~;"(0, (I))) v. a n d a cot tn t -

e r -mode l o f V~(c(,~) ~ p(.~)).
To p rove tha t ~./ is a lso a mode l o f pv, let q(Y¢) : -11 IkDg be a c lause in P

{with i¢.9 as free va r iab les in the body) , and let .~ ~_ (H_,,)" a n d r E (H,_.-,)", such tha t
.¢./ ~- (] A g)[g. ~/.~, ¢]. Then , /~ h. mus t be a t o m s (becauz, e o u r mode l does no t
sa t is fy a n y nega t ed a t o m) such tha t for all i = 1 k there cxists a c o n s t r a i n t d;
such t ha t l~(~',j")~d~(S',y) E ~;"(O. 0) a n d

() ,/~ ~ _rr = ,~ -~ 9p(gU-,.e) A d~(:L2)) .
i.:1

M o r e o v e r , by logical c o m p a c t n e s s a n d the de t in i t ion o f l},, the fo l lowing c o n s t r a i n e d
a t o m be longs to I,~,"(0.0):

q(~')~3Y(g(k, fi) A ~A d~(-~, f ')) •

So tha t , q ~ (, ~) = It.
Fina l ly , the Z ' - s t ruc tu re ,,~'/ mus t be t r a n s f o r m e d in to a Z-s t ruc ture , by in terpre-

t ing {over the same universe) on ly func t ion s y m b o l s in FSz. (but no t the new c o n s t a n t
symbols) .

T h e p r o o f for (2) is very s imilar . F o r a c o n s t r a i n e d a t o m p D c ¢ l~"'(Mi ~ , M,) wi th
c sat isf iable , we o b t a i n the ini t ial X ' -model ,rJ o f

q, ~ FET,- W {¢[a/xl} U {~d[a/Scllp~d ~ ;5';' (M/ . M/)}

wi th i n t e r p r e t a t i c n for p red ica t e s y m b o l s given by:

P. Lucio et al. I J. Logic Programming 40 (!999) 89-123

_t
q'~/(g) :

U

if q~ ~ (.~ = g --~ e) v for some q[S]e E I'~,"(M, ~ , M F),

i f q~ ~ (~- = g ~ e) v for some q[]e E M~-.

otherwise.

P rov ing tha t ~e,/is a model o f P is very s imi lar to the previous case. []

F r o m now on, we will deno te by Te r k thc k th power (or i tera t ion) o f Tp over the
r anked s t ruc ture ((0, 0)), (0 ,0) ). N o w it can be shown tha t . l ip coincides with
T,, ~" to, which is the least f ixpoint o f Tp.

Lemma 4.5. For at O, S-program P: Tp t to ~ - . / / p.

Proof. It is trivial tha t for all j E ~ : Tp]" j -<r -///", hence 7~, [~,~ -<~-. l/t,. W e will
p rove the oppos i te inclusion, tha t is, for all i E I~:

i~¢ + C (Tp [oJ){ a n d M;-- C (7~., ,~ ~o),.-

by induc t ion on i. Us ing L e m m a 4.4, Ibr all i E ~ (where M~_~ : MS, : 0), we k n o w
that :

M~+=V~"(M,~ , ,M, - ,) and M Z = R p (M / , , M T _ I) .

F o r i : : 9 it is trivial by def ini t ion o f Tp. In the induct ive step for i + i. the inclusion
o f negat ive par ts is trivial. Fo r the posi t ive ones, it is easy to prove tha t for all j E ~1:
V~(M.+,Mi -) C (Te 1" ~o)i+~ I, using induc t ion o n] and the induc t ion hypo thes i s abou t
/14.* and M/-. Hence, ,.l/t, -'<~ Tp T tO.

4.4. Equivalence with she Clarlc-Kuw.'n ,+'emantics

In Ref. [25] was proved tha t the finite powers o f F i t t ing ' s ope ra to r coincide wi th
the three-valued logical consequences o f C l a r k ' s comple t ion (the C l a r k - K u n e n se-
mant ics) . This result was adap ted to the C o n s t r a i n t Logic P r o g r a m m i n g f r amework
in Ref. [32]. Here we are go ing to show that the finite powers o f ou r c o n t i n u o u s op-
e ra to r Tp essential ly coincide wi th those o f F i t t ing ' s opera tor . Hence, our model - the-
oretic semant ics "s equiva len t to the C l a r k - K u n e n semantics , in par t icular , the least
model o f every p r o g r a m P is a three-valued model o f c%~mp(P) a n d is typical in the
class o f all three-valued models o f Comp(P). Firs t ly , we recall the def ini t ion o f Fit-
t ing 's ope ra to r Re and show its re la t ionsh ip with our Tp by means o f one example.

Definition 4.6 ([20,25,32]). Let P be a normal Z-program, the immedia te consequence
ope ra to r q~r, r ang ing over H e r b r a n d three-valued Z-s t ruc tures (or s t anda rd three-
valued in te rpre ta t ions) . ~ ---- (H +, H-) . is given by:

~e(J¢~) + : {p(t-) E Bz i There e×k~ts a clause p(.~): - [D d in P with flee ~ariables
x ,y an0 a tup!e g of closed S - terms such that:
./e ~ (d A l)[ilx',Sly]},

~/,e(.~)- : {p(t--) E Bz I For every clause p(X-): - [l i d in P with tree variables
x , y and every tuple g of closed Z - terms:

112 P. Lucio et al. I J. Logic Programming 40 (1999) 89-123

qJe is no t c o n t i n u o u s and ob ta ins i n fo rma t ion wi thou t t ak ing in to accoun t the
negat ive dependences , whereas Tp is c o n t i n u o u s a n d ranges over r anked s t ructures
p lac ing i n fo rma t ion at layers. F in i te powers o f bo th ope ra to r s ob ta in essential ly
(in spite o f layers) the same in fo rmat ion . In o rde r to i l lus t ra te the re la t ionsh ip be-
tween bo th ope ra to r s let us cons ider the fol lowing example (.extending the usual pro-
g ram to show the n o n - c o n t i n u i t y o f F i t t ing ' s ope ra to r wi th two more clauses).

Example 4.2. Let P be the fo l lowing p r o g r a m o f the s igna ture wi th c o n s t a n t 0, l - a ry
func t ion s, 0-ary predica te q and 1-ary predicates p, a, b:

p(x) : - p (y)Dx = s(y)

q : - p(x)
a(x) : - -w(x)
b(x) : -- a o ') [~ ' - ~ sO')

F o r this p r o g r a m P, the i te ra t ions top Y k over the (@, O) three-valued in te rp re ta t ion
can be descr ibed as follows: J

k to~ T k = ((to~ T k) +, (to~ T k) -)
(0 ,~)

~ f t , (o) , p (0) })

({a(O)}, {b(O),p(O),p(s(O))})

({a(O), b(~(O)),a(s(O)) }, {b(O),p(O),p(s(O)),p(s2(O)) })

to

t o + 1

({a(s'(O)) l i >1 O} U {b(d(O)) l i 1> 1}. {b(O)} U {p (s ' (O)) [i >i 0})

({a(s'(O)) I i /> O} U {b(s i (O)) I t ~ 1 }, {b(O)} U {p(s'(O)) l i i> O} U {q}).

To describe the i te ra t ions Tp T k , since each layer o f our f ixpoint is closed wi th re-
spect to less general cons t ra in t s , in each layer we will only write tt~ mos t general con-
s t ra ined a toms.

k Tp T A = < (M d , M o) , . . . , (M + , M /) >

((0,_¢.)>

((@, {b(x)Elx = O , p (x) D x = 0})>

((•, {b(x)[_qx = O,p(x)[Dx = 0}),

({a(x)E2r = o}, {b (x)Ox = O, p (x) ~ = 0 v x = ,~(0) })>

((0, {b(x)[Dx = O,p(x)Dlx = 0}),

({a(x)E]x = O, b(x)[Dx ~- s(O) }, { b(x)D]x == O,p(x)[Dx = 0 V x ---- s(O) })

({a(x)ff]x = O v x = s(O), b(x)[ZLr ---- s(O)},

{b(x)D, ---- O , p (x) D x --- 0 v x ---- s(O) V x = s2(O)}))

! in order to make the reading easier we underline the negative parts.

P. Lu~'io et a.l. i J. Log&' Programming 40 (1999) 89-123 113

~, (tO, { b (x) ~ = 0 , p (x) r a ~ = 0 }) ,

({a(x)E2x = O,b(x)Elx = s(0)}, {b(x)l-L~ ----- 0 , p (x) ~ x ----- 0 V x ----- s(0)}),

({ a (x) C ~ : - 0 v . . . v ~ = ~ (0~ I i > / 0 } u

{b(x)[S]x = s(0) V . . . Vx = s '(0) [i /> 1},

{ b (x) n r = 0} U {p(x)t:2x = 0 v . . . v x = s '(0) l i ~> 0})

Not ice tha t all posit ive facts b(x)ELr-----si+t(0) are placed in the same layer as
a(x)Dr = si(O), but negat ive facts p(x)Eix = s'+t(0) are placed one layer af ter the first
occurrence o f p(x)~x =: s i(O).

The ope ra to r ~ff given in Ret\ [32] is a n o n - g r o u n d version o f ~e relative to a
s t ructure ~ ' where the cons t ra in t s are interpreted. It ranges over (non- ranked) par-
tial cons t ra ined in te rpre ta t ions and is ne i ther cont inuous . The con t i nuous o p e r a t o r
defined in Ref. [18], to ob ta in a fully abs t rac t f ixpoint semant ics charac te r iz ing the
ope ra t iona l semant ics with respect to answer cons t ra in ts , is in some sense closer to
ou r Tp. However , there are two differences tha t may be remarked . Firstly, it also)
ranges over (non- ranked) par t ia l cons t ra ined in terpre ta t ions , and is defined relat ive
to a given structure. Secondly, only the negat ive par t o f the resul t ing f ixpoint is
closed wi th respect to finite d i s junc t ion o f const ra in ts . R e m e m b e r tha t in o u r case
bo th par ts o f every layer are closed with respect to less general const ra ints .

Now, we will show that ou r f ixpoint semant ics essential ly coincldes with cu t t ing
off at step o~ the i te ra t ion o f q~e, in the sense tha t we are going to relate 4,p T ~o with
the three-valued in te rp re ta t ion ob ta ined f rom ~,ur (ranked) f ixpoint model by foraet-
t ing layers. We build the posi t ive (respectively negative) par t o f this in te rpre ta t ion as
the set all g round instances o f the cons t ra ined a toms in the posi t ive (respectively neg-
ative) par t o f any layer.

Definit ion 4.7. Let P be a Z-p rogram, [,//p] (or equiva lent ly ITs,]" to]) is the three-
valued in te rpre ta t ion given by (@ E { + , - }) :

[..I/e] ~ : {p(t-) E n ~ I r (~) c-L~ : i ~ g i ~ f o r s o m e i E ~ } .

It is wor thwhi le no t ing tha t by closure with respect to less general cons t ra in t s the
above membersh ip requi rement is equivalent to ask for some p(~)f-qc(~) such tha t
FET~ ~ c[-i/Yc]. Moreover , by completeness o f the theory FETr, the lat ter is equivalent
to sat isfact ion in some a rb i t r a ry fixed model o f FETr, since all its models are elemen-
ta ry equivalent .

Lemma 4.6. For any Z-program P and an), k E [%1: [Tp "f k] = ~p T k.

i 14 P. Lucio et al. I J. Logic Programmh~g 40 (1999) 89-123

Proof. The p roo f is made by induct ion on k, using the induct ion principle provided
in Lerilma 4.4 for [Tp T k]. We also use, a long the proof, the fact that a sentence is a
logical consequence of FETz iff it is satisfied in some stvecific model o f this theory.

For k = 0 it tr ivially holds. For the inductive step we are going to show the four
inclusions needed for proving [Tp T (k + 1)] -- ~ e ~ (k + 1), assuming the induct ion
hypothes is [Te T k] = ~p T k.

We first consider p(t-) ~ [Te T (k + 1)] +. Then there exists L j E ~ such that

p(.~)a~ = i ~ v i ((r e T k)~. (re r k)/~.

Now, we use induct ion on j . The basic case j = 0 holds s imply by induct ion hypoth-
esis and (~e T k) + c_ (~p I (k + l)) r . For the inductive case suppose that
p(Yc)E~ = t E Vd+I((Tp T k) / . (T e T k) i -) -There fo re for some n /> !, some satisfiable
cons t ra in ts cl c , , some subset { p (Y) : - ~ U d ,] l ~< r ~ n} of properly renamed
clauses o f P, with .fi-ee([~ A dr) --- ~ , y :

r I

and for all r = 1 n"

FET:,U(Vi~((Tp [I.'):+.(TP T k) .) v U (Tr 1" k)~ -v k (c, --> i ') v.

It is clear that t/,~ T k ~ FETe. Besides by the: induct ion hypothesis :

• ,~ ~ k ~ (V,.:((Tp ~ 1,.)~", (Te ~ k)7)) v and also <b,. [k ~ (Tp r k)~ '~.

Then we obta in ~e r k ~ t/" Ad,)[-t-/~,g/P] for some i ~<r<~n and some closed g.
Hence, p(t-') E (,/~z, 1" (k + 1))+.

Now. consider p(t-) c (4~p T (k + !)) ' . Then 4~e r k ~ (dA [)[U.t,g/i~] for some
clause p (. ~) : - f D d in P and some tuples L g of closed Z-terms, hence

FET, p- v.i-(.~ = i - - , 3y (d A ~ . = i A i ' = .~))

and also, by the induct ion hypothesis , there exists some i ~ r~ such that

FET,. U (Te T k) v ~ ((.i" = t -Aft = .~) --, /) v

Then p(2)E2i - : i E (Tp l" (k + 1))~ ~.
Fo r the negative parts , we first prove tha t [Te [(k + 1)]- C (~p T (k + 1)) -. Sup-

pose tha t p(.V)l:li- = i E Rp((Tp T k)/~, (Tp ~ k)i-) holds for some i E ~ . Then

F e ~ u (r, , t k) [~ ((.~ = i A d) - - -4) " .

for each clause p(~): - f ~ d in P. In part icular , by the induct ion hypothesis q~, l" k sat-
isfies all o f these sentences. Hence ~e 1" k ~ (~(d A D [t/-~. ~/Y] for all o f these clauses
and any tuple o f closed terms .~. Then p(t~ E (q~e T (k + I)) - .

Conversely, let us suppose p(t-) ~ (~e T (k + I)) - , then

qb#> T k I:: ~(d A hT/.~,UY]
tbr all clauses p(.~): -[U]d in P and all closed terms .~, By the induct ion hypothesis
there exists i ~ ~d such that

r ~ T z U (rp r k) [I = ((2 = #A d) --~ -1i) v

and therefore p(.~)Fq~- = ~ ~ U(Tp T (k + l)) i . l . []

P. Lucio et al. I J. Logic Programming 40 (1999) 89-123 115

A di rec t c o n s e q u e n c e o f the p r ev ious l e m m a is t he e q u i v a l e n c e b e t w e e n o u r least
m o d e l a n d the finite p o w e r s o f F i t t i ng ' s o p e r a t o r .

T h e o r e m 4.3. For any S-program P: [.//e] = ~ e]" ¢o.
. . ,

It is w e l l - k n o w n (cf. Ref. [25]) tha t [- / /e] c o u l d no t be a m o d e l o f Comp(P). T h e r e -
fore, in o r d e r to relt~te o u r least m o d e l -//t, wi th p r o g r a m c o m p l e t i o n , we h a v e to see
it as a " ' s t a n d a r d " t h r e e - w d u e d s t ruc tu re r a t h e r t h a n as the H e r b r a n d s t ruc tu r e g iven
by [.//e]. W e s h o u l d first de f ine the t r u t h - v a l u e o f f i r s t -o rder s en t ences in r a n k e d
t h r ee -va lue s t ruc tures . F o r that , we beg in by a s s ign ing t r u t h - v a l u e s (in ..~t) to c o n -
s t r a ined a t o m s will1 the key (a n d o b v i o u s) de f in i t ion :

.¢-/(p(.~-)1--¥(.i-)) = t'_ if p(X)r-?-(.~) c A j for s o m e i C M.
u o the rwise .

Th i s de f in i t i on can be e x t e n d e d , in a d i rec t way to any a r b i t r a r y (c o n s t r a i n e d) for-
mula . Here , we o m i t this de t i n i t i on d u e to the lack o f space; h o w e v e r a very s imi la r
ex t ens ion , to in t e rp re t goa l s o f C L P - p r o g r a m s , is m a d e in Refi [32].

T h e o r e m 4.4, For every S-program P : ./,it, ~ Comp(P).

Proof . O n e has to p r o v e tha t every a x i o m ~p E Comp(P).- / /e(~pE]T) -----_t ho lds . F o r
the ax iom~ in bET,: this is tr ivial . F o r the a x i o m s o f the form:

we p r o c e e d by case-~nalys is o f the th ree poss ib le t r u t h - v a l u e s (in . / / e) o f the c o n -
s t r a ined f o r m u l a p(;¢)~c (for s o m e a rb i t r a ry sa t is f iable c o n s t r a i n t c). s h o w i n g t h a t
it co inc ide s wi th the t ru th va lue o f V~ ' ~ ~-~-'¢ (d~ A l ~)E3c i n . / / e . In each case. we m a d e
use o f the de f in i t ion o f the I ru th -va lue c o r r e s p o n d i n g to c o n s t r a i n e d f o r m u l a s wi th
the c o n n e c t i v e s invo lved .

N o w . we p r o v e tha t . / /p is " ' typ ica l" in t he class o f all m o d e l s o f Comp(P).

T h e o r e m 4.5. For till v Itorlllct] progrtttll P ~otd tlttl ' cot~strahted literal lFTc.:

/de F IE3c --~ Comp(P) ~ IRe'.

Proof . W e will p r o v e (by s i m u l t a n e o u s i n d u c t i o n on n) tha t for till n E ~ :
(i) pDc E M I ~ ~ Chnnp(P) ~ (c --~ p)V
(ii) p~c" E M,; ~ Comp(P) ~ (c ---, --,p)':.

F o r n = 0, if pIZlcE M,~" then . by L e m m a 4.1, FET,_-UpV~-(c ___,p)V. Since
Comp(P) ~ FET,_ U pv (see Sec t ion 2), Comp(P) ,~ (c ---* p)V. I f p(.~)f-lc(.~) ~_ ~10- t h e n
c / \ dk is unsa t i s f iab le for all p(.~-) : -f 'V-/dt E P. T h e n . for all k = I . . . m (w h e r e m is
the n u m b e r o f c lauses wi th h e a d p): FET,_ ~ ~ V.~(c --, -,3f'~da). T h e r e f o r e ,
Comp(P) ~ VX'(c(X') --* ~p(X)).

F o r the i nduc t ive step, s u p p o s e tha t Comp(P) [= M~. In the par t (i). we h a v e tha t
Comp(P) ~ FET,_ '0 pv UM~. If plZ]c E M~:~ then , by L e m m a 4.1, FETz U pv U M v
(c ~ p)V. Hence . the last f o r m u l a is a lso a logical c o n s e q u e n c e o f Comp(P). F o r pa r t
OiL ifp(.rc)[--lc(.i-) E ,~//2 ,, t hen V5,'(c~2) ~ ~ V~'~:, 3Y't"(dk A ~k)) is a logical c o n s e q u e n c e
o f FETz U M v. T h e r e f o r e Comp(e) ~ ~x(c(.~)-- , -~p(:~)).

116 P. Lucio et al. I J. Logic Programming 40 (1990) 89-123

5. A specification frame for normal logic programs

In this section, we show how the model - theore t ic semantics defined in Section 4
can be the basis for defiuing a sl~ecification frame, which has the addi t ional proper-
ties o f ensur ing the existence o f composi t ional and fully abstract semantics for most
kinds o f modu la r units. In particular, we prove, as a consequence of these properties,
the existence o f a compos i t iona l and fully abstract semantics for the s tandard union
o f no rmal logic programs.

Definition 5.1. Let _r = (FSz, PSz) be some prefixed signature. Let NLPz be the
category o f normal logic p rograms over S, whose objects are the pairs (L', ~) , with ¢,
being a set o f normal clauses over S and whose morph i sms are just inclusions, up to
renaming of variables, o f sets o f normal clauses.

We define the model fnnctor Mod mapp ing every p rogram P in NLPz into the cat-
egory Mod(P), whose objects are ranked S-structures satisfying P and where a mo-
rphism is just the order ing relation between two ranked structures. For every
m o r p h i s m h: P --. P', Vh = Mod(h) is just the identity.

Now, we show that the above defined pair is, in fact, a specilication frame.

Lemma 5.1. , 1 "L,a.~z = (NLPz, Modz. : NLPz .'p ---. C a t) is a specification frame, i.e. it
satisfies:

(i) NLPz has pushouts;
(ii) Morl trans]'orms pushouts in NLPz into pullbacks in C a t .

Proof. The pushout o f three programs (_r, qr~0), (2~, ~1) and (X, ~2), with ¢~0 c q~l
and qr~0 C 4)2 is just PI u P2, i.e. (S, q~l u ~2).

On the o ther hand, to show existence of amalgamat ion , on the current context, is
trivial, since

• rJ ~ R P ! and ~ ~ R P 2 ~ .~/ ~ R P I U P 2

is an obvious con:~equence o f Definit ion 4 (a l though it does not hold for the simpli-
fication discussed in R e m a r k 3.1). Therefore

Mod(P1) + Mo~(P0)Mod(P2) = Mod(PI) fq Mod(P2). []

Remark 5.1. It may be no ted that we consider a fixed signature for all p rograms in
the specification frame. The main reason for this is technical, as the counter -example
below shows. In particular, in the general case we can not define a forgetful functor.
It can be argued that this is highly inconvenient with respect to modular i ty issues,
however we do not th ink that this is impor tan t insofar as visibility is t reated
complete ly at the static semantics level. On the o ther hand, we believe that this
s i tuat ion is in some sense related to the ~aature o f negation-as-fai lure where one can
always expect to obta in (negative) answers to queries over predicates which are not
in the signature o f the given program.

Example 5.1. Let S! and Z2 be two signatures with PSzt = {p} and PSz2 = {p,q}.
Let . q / = ((O, {q }) , ({p } , {q})) and ~ - : ~(0, ¢), (O, O)). Then L 4 _ ~ in ~'2, but

P. Lucio et al. I J. Logic Programming 40 (1999) 89-123 117

Iz~--- zz/Iz~ in g o d (Z l , O) , where ~¢ lz~ (resp. ~ Izt) is V~(~¢) (resp. V/(g~'), and/6i is
the forgetful func tor associated to the inclusion i: (ZI , 0) c (Z2, 0). T h a t is, .~' l~t
(resp. ~ 1~) is ob ta ined f rom z~' (r e sp . .~) by dele t ing all a t o m s inc luding symbols
not in E 1, which is the mos t obvious defini t ion o f a forgetful func tor in this context .

Before p rov ing fl tr ther " s t ruc tu ra l " proper t ies o f this specif icat ion f rame we will
show that the class o f mode l s associated to a given p r o g r a m forms a comple t e lattice.
On the o the r hand, this result will be used as a l e m m a for showing the o the r prop-
erties o f the specification frame.

L e m m a 5.2. For any p r o g r a m P, Mod(P) is a comple t e lattice.

Proof . In o rder to show tha t Mod(P) is a comple t e latt ice we have to p rove that , for
each subset 6 ~ o f Mod(P) , we can define the jo in and mee t o f the mode l s o f .SP, u,Se
and r-16~.

(a) The jo in ~' = u6~ can be def ined as follows:

C~ = {aE]c I FETz, uP v u U{A~Vl~Z e ,¢o} ~3 (c -- a) v}

Co = n{Aol-~ ~ se0}

where 6Co = 6e.
For all layers i > 0 such that cj~ # 0:

c;- = {a~c 1 FETe- u P~ u CL, u U{A; -V l~" e .Sq} 1=3 (c --,. ' : 'F}

q- = N{A21 / sq}
where A"i = 6ei_! \ {~c/[Ai-i # Ci-t }.

If there is k e N such that .Sek_l # (b but .9°4 = 0, then for all layers i wi th i /> k:

c + = {amc I FEr~ u e" u c7_, b3 (c -+ a) ~}
c; = {~mc I For all a: - l r - l a ~ P: FETz U C~_, ~3 ((c A d) - - --,l)u}.

(b) The mee t ~ ----- 1"3S, a is def ined as follows:
F o r all layers i e IM such tha t ~ # ¢:

D;- = U{A,:-I.~ e ~ ,}

where ~0 = c j and ~ i = ~ i - l \ {~/IA,-! # D i - l } .
If there exists k E N such that ~ _ ~ # 0, and ~k = 0, then for all layers i E ~ such

that i >/k:

D~" = {ar-lc I if for every ar-ld E D~, c A d is unsatisf iable}

D f = DT_ ~ .

(a) First o f all, we have to prove the consis tency proper ty: Let us suppose that
al"lcl E C~ and aF-Ic2 E C 7 for some i < k, such that c l A c2 is satisfiable. Let
c = c l A c2, then al--lc e C + n Cf- because the cons t ruc t ion guaran tees that layers
are closed with respect to less general constraints . I f a D c E C i then ar-lc E A f for
a!! z~/E Aa~, what means: FET~ U A~_~ ~3 (c A d) --, _~]-)v for all a: --l-13d ~ P. But
A~_~ = C~_ ~ holds for a ! t - ~ ~ 6e,. Then , by monoton ic i ty :

118 P. Lucio el al. 1 J. Logic Programming 40 (1999) 89-123

F~V= u C7_, u U { , t U I ~ o . / e .9°;} I=~ ((~ An) ~ - 4) ~, for all a: - i E l d e P,

contradict.i,~g aFqcE C] , because (c - + a) v can never be a consequence o f
FETs U pV U C~_ ~ U U{A+Vl.e /c . ~ } . The consis tency proper ty is gua ran teed for all
layers i ~ k becavse they are just an " i f and only if" version o f the satisfe.ction con-
d i t ion in Def in i t ion 4.

In o rde r to prove tha t ~ is a mode l o f P, it suffices to no te that C~, for any layer i,
con ta ins all the posit ive in fo rma t ion that is suppor t ed as logical consequence o f the
previous layers, and that C 7 only con ta ins suppor ted negat ive in fo rma t ion in the
same sense.

I ' inally, we p rove tha t ~, is the least mode l which is greater than every mode l in ~ .
The cons t ruc t ion o f ~ implies that for each mode l .e/ E of, it holds ei ther
.~ /E ,~ , ' - i \ o f . for some i ~ I%1, imply ing A~_~ C_ C~Lt and ,,t7_ ~ D_C,_~ and
A,_~ ¢ C,_~ and Aj = C~ for all j < i - - 1; or A ~ ,gai, for all i ~ [~, but in this case
the def ini t ion ensures A + _c Ci ~ and A 7 D C7, for each i. Hence, ~/--< ~6 ~.

In o rde r to p rove tha t ~6" is the least mode l sat isfying .~" _--< c6' for all . ~ / a ,~, let us
suppose that .~ is a mode l satisfying .e/_~ ,~ for all .e,/~ .~/~. First, it may be no ted
that , accord ing to the def in i t ion o f c6', if the given k does not exist then, for every lay-
er i, there is an .~,,' a ,9 "~ such that for each j , 0 <~ j < i, Aj = C~. Then, for every i,
Ci ~ c_ B + and C , _D B 7. Hence ;~ _-5_ ~:. If the given k exists then, similarly, there is
an .~,/~ .~ such that for each j , 0 <~ j < k, A j = C). Therefore , for every j ,
0 ~ j < k, C) ~ c Bf and Cf _~ B~. On the o the r hand , the cons t ruc t ion o f ~" ensures
that for all layers i >t k, C; con ta ins the least posi t ive i n fo rma t ion and the greatest
negat ive i n fo rma t ion suppor t ed by the previous layers. This means that also for each
i > ~ k , C ~ - c B ; a n d C ~ @B,.-.

(b) In this case, the consis tency o f ~ is a trivial consequence o f the consis tency o f
the mode l s in .~. Let us prove that ~ is a mode l o f P. Firstly, suppose that

FETz- U P~ U DT~ U D/~v ks (c --, a) v,

where i < k, if k exists, and i ~ ~1 is a, bitrary, otherwise. We k n o w that all ~:¢ e . ~
satisfies: A { D D + and Ag_t = D/-_~ so, by m o n o t o n i c i t y

FET~ U P" U "~7-~ U ,4i ~ 1=3 (c --, ,~)".

This means a d o E A] for all ,& E ,~,, so aDc E D~. Now, suppose that aVlc E D 7
for any i (i < k if the giver; k exists). Then , aVlcE A,:- for some .~'l E .~';, and
FET~ U D~_~ ~3 ((c ,'~ d) ~ ._,l-)V for all a: - [D d E P, because every . e / E . ~ satisfies
ALl --- D+l and A,C~ = DT_ i. I f there exists the given layer k then, for any layer D,
with i /> k, the sat isfact ion cond i t ion trivially holds, since they con ta in more posit ive
i n fo rma t ion than wha t is suppor t ed by the previous layers, but just the negat ive in-
f o rma t ion f rom Di-I.

It is not difficult to see that ~ is the greatest mode l which is smaller than all mod-
els in ~ge because it is trivial that f-){A i [.el E .~,} is the greatest set such that
B, + _ ~ N { A i ~ [, ~ . l ~ } , and that U{(A,) I .e I~ .~¢ ,} is the least set such that
B; C U{(A/-)[.~.,/~ .~i} for all .~3 E .~'. It" there exists the given layer k then D~, for
each i /> k, con ta ins the greatest posi t ive in fo rmat ion and the least negat ive informa-
t ion suppor t ed by the previous layers. []

P. Lucio et air. I J. Logic Programming 40 (1999) 89-123 119

The fol lowing example gives some hints abou t the cons t ruc t ions in the previous
proof.

Example 5.2. Let the p rog ram P = { p : - q } , the symbols P S x : { p , q , r , s } and the
fol lowing structures:

~,,~ : (({p},~), ({p},0)>

,c/2 : (({p}, {q}), ({p}, {q}))

: / 3 = (({p}, q}), ({p, r}, O))

,.e]4 = ((0, {q}), ({/}, {q}))

.~,5 : ((~: (q}), ({p}, {q,~}))

T h e n

..Jl u .~/2 u .~J3 : (({p}, ~), ({p, d , 0))

.r./l i-1 o~'4 i-1 .&5 = (CO, {q}) , (O, { q , r }) . ({p. s} , {q,r}))

Now, using the previous l emma we can prove t h a t . l '--~'~z satisfies all the prop-
erties needed for giving a d e q u a t e compos i t iona l semant ics to the in t ended p r o g r a m
units.

T h e o r e m 5.1 (Propert ies of I "~,C#~).. l "dL/':#z: has f r e e construct ions, j r e e ex t ens ions
a n d generali-_ed f i 'ee extensions.

Proof . . . t :LP :#x has free cons t ruc t ions , since given a m o r p h i s m h : P---, P' , with
P = (X, c~) and P~ = (S, c6~'), the free cons t ruc t ion b3, : Mod(P) ~ Mod(P') is def ined
for every .¢J in Mod(P) as ~6' -- Fjz(.¢/) such that:

G : {aG,: I FET~ U P'~' U A;" t=3 (c --, a) v }

Co = Ao n Mo
• Fo r all layers i > 0 such that A~_l : Ci-l:

c / = {,,a~ I FET,: U P'~ U Cy_, U A~ -~' I=~ (¢ ~ a) v}

C 7 = Aj n M , -

• If there exists k E I%1 such that 4,_t ~ Ca _~, then for all layers i with i >t k:

c7 = { a a c I ~Tr~ u p,v u c,L, ~3 (c --, ~)v}

c; : { a p e I For all a : - i C e d E r~: r E ~ u cL, ~3 ((c ^ a) - ~ ~t)~}.

Note tha t i f -& E Mod(P') . then the above cons t ruc t ion coincides with the defini-
t ion o f the jo in mode l in L e m m a 5.2, ibr the par t icular case when ~ = {~' , .-gt, ,},
that is El{.&, J /p , }. Nevertheless , it is qui te easy to see that even in this case, the re-
sult is the least mode l o f I" greater than .&. The reason is that the defini t ion guar-
antees that , at any layer i (i < k if k exist), C~ + con ta ins the least posit ive
in fo rmat ion suppor t ed by the previous layers and A,. +. and C 7 con ta ins the greatest
negat ive in fo rma t ion suppor t ed by the previoas layers which belongs to A 7. W h e n k
exists, C~, for all layers i ~ k, conta ins the least posit ive in fo rma t ion and the greatest
negat ive in fo rmat ion suppor ted by the previous layers.

!20 P. Lucio et al. I Z Logic Programming 40 (1999) 89-123

N o w , we h a v e t o p r o v e t h a t F h (d) satisfies the un iversa l p r o p e r t y o f free c o n -
s t ruc t ions : for e a c h m o d e l ~," in Mod(P ') , such tha t ~ , / ~ V h (~ ") (= .~"), it ho !ds t h a t
I__!{.~/, ..[[p,} -< .~". This p r o p e r t y h o l d s by de f in i t i on o f t he j o i n o p e r a t i o n I__1.

..t" c~¢'~0"z has free e x t e n s i o n s s ince it has a m a l g a m a t i o n s .
T o see t ha t . . t :L~'~z - has gene ra l i z ed free ex tens ions , a c c o r d i n g to T h e o r e m 3.3, it

is e n o u g h to p r o v e t h a t fo r every p r o g r a m P, t h e r e are p u s h o u t s in Mod(P) . G i v e n
m o d e l s ~ 0 , ~ . t l , ~ t 2 in Mod(P) , w i th f l : .~/0 _---< .c,,/1 a n d f 2 : . ~ 0 -< .~2 , the p u s h o u t
.~¢3 o f . ~ l a n d .r.12 via f ' l a n d f 2 m u s t be t he least m o d e l g r ea t e r t h a n .~'1 a n d .~2 ,
t hus aga in s',,'3 is j u s t t he j o i n .~11 1._1 ~ 2 . []

O n c e p r o v e d the r e q u i r e d p rope r t i e s o f . A ~ we can p r o v i d e a ca t egor i ca l se-
m a n t i c s fo r p r o g r a m s f r a g m e n t s w h i c h is c o m p o s i t i o n a l w i th respect_ to s t a n d a r d un-
ion. T h e c o m p o s i t i o n a l i t y resu l t is j u s t a c o n s e q u e n c e o f T h e o r e m 3.4. H o w e v e r , as
w e can see b e l o w , full a b s t r a c t i o n is no t a d i rec t c o n s e q u e n c e o f T h e o r e m 3.5. N e v -
e r the less , in this case we w e r e a lso ab le to p r o v e full a b s t r a c t i o n m a k i n g use o f the
specific p r o p e r t i e s o f o u r s eman t i c s .

Theorem 5.2 (C o m p o s i t i o n a l i t y) . For an)" n o r m a l logic p r o g r a m P, the semant ics
Sere(P) = F such that F is the f r e e construct ion assoc ia ted to the inclusion (Z, 0) c_ P,
is compos i t iona l with respect to the s t amlard union o f programs .

Proof . Is a d i rec t c o n s e q u e n c e o f T h e o r e m s 3.4 a n d 5.1. []

Let us n o w see a c o u n t e r - e x a m p l e s h o w i n g t h a t . I :L/-':~ is n o t a lgebra ic :

E x a m p l e 5.3. T h e m o d e l , ~ = ((0, ~), ({q}, 0)) c an n e v e r be a least m o d e l o f any
n o r m a l logic p r o g r a m . In p a r t i c u l a r in .e/, the fact q is no t s u p p o r t e d by the p r e v i o u s
layer .

N e v e r t h e l e s s , as said a b o v e , we can still p r o v e full a b s t r a c t i o n us ing the specific
p r o p e r t i e s o f o u r s e m a n t i c c o n s t r u c t i o n s .

Theorem 5.3 (Ful l a b s t r a c t i o n) . Given two n o r m a l p r o g r a m s P I a n d P2, the Jo i lowing
three f a c t s are equivalent:

(i) S e m (P l) :- S e m (e 2) .
(ii) For every p r o g r a m P, S e m (P U P1) : S e m (P U P2) .
(iii) For every p r o g r a m P, ,/ /r~Pl Z/~j , , .

Proof . It is e n o u g h to p r o v e tha t (iii) impl ies (i), because the o t h e r i m p l i c a t i o n s are
d i rec t c o n s e q u e n c e s o f L e m m a 3.1 a n d T h e o r e m 5.1.

Le t us s u p p o s e t h a t t he re exists a m o d e l .& in Mod(2f, 0) such t h a t
F I (~ /) ~- F2(.q /) , w h e r e F l ----- S e m (P l) a n d F2 = Sere(P2) . T h e n , we will s h o w tha t
t he r e exis ts a p r o g r a m P such tha t .,/,¢t,~m ~ •//t~p2. Let j E ~ ~e the least layer such
tha t F l (, &) j - ~ FE(,~ ') f o r F l (, r /) f ~ F 2 (. c /) i . T h e n we can cons: ,der t w o cases.

4- Firs t , i f the re exis ts t he g iven level k E [~, a n d F l (d) ~ # F 2 (. &) / , for s o m e j < k,
t h e n F l (. ~) :/: F 2 (. ~) for all m o d e l s ~ E Mod(27,[3) such tha t .~'+ = :J~+ a n d
~c,/~- i = ~,:-- i for s o m e layer i. T h i s is the case fo r the m o d e l .~ such tha t , fo r all i E N:

P. Lucio et al. I J. Logic Programming 40 (1999) 8 9 - 1 2 3 121

= A ; . ,

B 7 = A~- z .

In any o the r case, F I (. ~) ~ F2(,~) for all mode l s ,~ E Mod(2~,0) such that
B~ = F I (.~)j_ i = F2(.~/)j_ t for some layer i. Now, we choose the mode l .~ such that ,
for all i E ~ :

B + ---- F I (~'1);_, = Fe(,q/)7_ , ,

B~7 = F1 (,e/)]_! = F2(,~/)i_ I .

It is easy to see that , in bo th cases, .~ //p, for P being the p rogram:
P = (Z, B +v U {a: - a C] d / a D ¢ E B~ and c A d is unsatisfiable}).

Hence, we can conc lude that F1 (. / /~ , , e) = - / / ~ , m # , l /Put"2 = F 2 (- I I ~ p) . D

6. Conclusions and related work

Wc have presented a new m o n o t o n i c semant ic f r amework for no rma l logic pro-
grams; The ma in character is t ics o f this semant ics are the fol lowing ones: W e do
not cons ider any restr ict ions on p rograms (e.g., stratification). We associate to every
p r o g r a m a class o f mode l s which forms a comple t e lattice whose least e lement is
shown to be typical for the class o f mode l s o f the C l a r k - K u n e n ' s comple t ion o f
the p rogram. As a consequence , this least mode l can be seen as the s t anda rd seman-
tics o f the given p rogram. Finally, the mode ls o f a p r o g r a m are a special case o f Beth
structures, where the o rde r ing relat ing the " 'worlds" o f the s t ructure is total. Actual -
ly, ou r semant ics could have been defined, wi thou t any p rob lem, in terms o f general
Beth structures. In this sense, we believe that our semant ics cou ld also be valuable
for knowledge r ep resema t ion cons ider ing the in tu i t ion beh ind Beth (and also
Kr ipke) s tructures where each wor ld in a mode l represents the k n o w l e d g e one has
at a given m o m e n t (see e.g. Ref. [33]).

The mo t iva t ion for this new semant ics was the def ini t ion o f a specification f rame
o f no rma l logic p rog rams that cou ld be used for def ining compos i t i ona l semant ics to
a variety o f p rog ram units. In this sense, we have shown that the p roposed semant ics
defines indeed a specification f rame with the requi red propert ies , in part icular , we
have prov ided a categorical semant ics for arbi t rary p rog ram f ragments which is
compos i t i ona l and fully abstract with respect to s tandard p rog ram union. Actually,
o the r k ind o f units and compos i t i on opera t ions can be seen just as a special case.

The k ind o f compos i t iona l i ty results ob ta ined are qui te m o r e powerful than the
results presented in Refs. [17,19,27,35,9]. In Refs. [17,19,27] different semant ic defi-
n i t ions are p rov ided for cer tain k inds o f m o d u l a r units which are shown to be com-
posi t ional . However , they all impose (at least) the restr ict ion (not needed in our
work) that , for put t ing toge ther (th rough the co r r e spond ing compos i t i on opera t ion)
two units, the sets o f predicates def ined in each unit must be disjoint. This means
that , there can not be clauses def ining the same predicate p (i.e. hav ing p in the head
o f a clause) in bo th units. This restriction rules out the appl ica t ion o f those results to
approaches where the given system o f modu le s support~ the incrementa l def ini t ion o f
predicates th rough some form o f inher i tance (e.g. Ref. [7]). In Ref. [35] a slightly

122 P. Lucio et al. I J. Logic Programming 40 (1999) 89-123

m o r e g e n e r a l f r a m e w o r k is c o n s i d e r e d . In p a r t i c u l a r t h e y s t u d y o p e n p r o g r a m s
w h e r e t h e o p e n p r e d i c a t e g ca~ b e a x i o m a t i z e d by a r b i t r a r y f irst o r d e r a x i o m s . T h e y
p r o v i d e a s e m a n t i c d e f i n i t i o n b a s e d o n w e l l - f o u n d e d s e m a n t i c s a n d s h o w its c o m p o -
s i t i o n a l i t y u n d e r c e r t a i n suf f ic ien t c o n d i t i o n s w h i c h a r e q u i t e c l o s e t o t h e r e s t r i c t i o n s
i m p o s e d in Re f . [17]. F i n a l l y , Re f . [9] p r o v e s t h a t F i t t i n g s ' s i m m e d i a t e c o n s e q u e n c e
o p e r a t o r c a n be u s e d f o r d e f i n i n g a s e m a n t i c s f o r a r b i t r a r y p r o g r a m f r a g m e n t s w h i c h
is c o m p o s i t i o n a l w i t h r e s p e c t t o u n i o n , i n t e r s e c t i o n a n d f i l te r ing. T h e m a i n p r o b l e m
h e r e is t h a t , i f o n l y u n i o n is c o n s i d e r e d , t h e g i v e n s e m a n t i c s is t o o c o n c r e t e t o b e o f
a n y use .

W e h a v e n o t d i r e c t l y r e l a t e d o u r a p p r o a c h w i t h o t h e r k i n d s o f s e m a n t i c s , al-
t h o u g h t h e r e l a t i o n e s t a b l i s h e d w i t h c o m p l e t i o n i m p l i e s , b y t r a n s i t i v i t y , t h a t o u r se-
m a n t i c s c a n be c o n s i d e r e d e q u i v a l e n t t o c o n s t r u c t i v e n e g a t i o n a p p r o a c h e s as Refs .
[13,32]. A c t u a l l y , t h e r e l a t i o n t o R e f . [13] is q u i t e m o r e d i r e c t , in t h e s ense t h a t t h e
c o n s t r u c t i o n o f o u r l eas t m o d e l is c lose ly r e l a t e d to r a n k e d r e s o l u t i o n as d e f i n e d
t he r e . T h e r e is a l s o a c e r t a i n r e l a t i o n b e t w e e n t h e c o n s t r u c t i o n o f o u r leas t m o d e l
a n d F i t t i n g ' s fix p o i n t s e m a n t i c s [20], o r r a t h e r w i t h t h e v e r s i o n d e f i n e d in Ref .
[l 8], a l t h o u g h n o t as c l o se as it m a y s eem: n o t i c e t h a t in e a c h l a y e r o f o u r leas t m o d e l
w e a d d n o t j u s t t h e i m m e d i a t e c o n s e q u e n c e s o f t h e p r e v i o u s l ayer , b u t all l og ica l c o n -
s e q u e n c e s .

Acknowledgements

T h e a u t h o r s w o u l d l ike t o t h a n k t h e r e f e rees f o r t h e i r d e t a i l e d c o m m e n t s t h a t h a v e
g r e a t l y c o n t r i b u t e d to i m p r o v e the f ina l v e r s i o n o f th i s p a p e r . T h i s w o r k ha s b e e n
p a r t i a l l y s u p p o r t e d by t h e S p a n i s h C I C Y T p r o j e c t C O S M O S (ref. T I C 9 5 - 1 0 1 6 -
C 0 2 - 0 1) a n d t h e U P V - p r o j e c t 1 4 1 . 2 2 6 - E A 2 0 9 / 9 4 T I C .

References

[1] K.R. Apt. Logic programming, in: t tandbook of Theoretical Computer Science, Vol. B: Formal
Models and Semantics, Ch. 10, Elsevier. Amsterdam, 1990.

[2] K.R. Apt, H. Blair, A. Walker. Towards a theory of declarative Knowledge, in: J. Minker (Ed.),
Foundations of Deductive Databases and Logic Programs. Morgan Kaufmann, Los Altos, CA, ! 988.

[3] K.R. Apt, R.N. Bol, Logic programming and negation: a survey, Journal of Logic Programming 19
(1994) 9-7.,'.

[4] A. Asperti, G. Longo, Categories, Types and Structures, MIT Press, Cambridge, MA, 1091.
[5] M. Barr, C. Wells, Category Theory for Computing Science, Prentice-Hall, Englewood Cliffs, NJ.

1990.
[6] A.J. Bonner, L.T. McCarty, Adding negation-as-failure to intuitionistic logic programming, ill: Proc.

of NAC! P'90, 1990.
[7l A. Bossi, M. Bugliesi, M. Gabbrielli, G. Levi, M.C. Meo, Differential logic programming, in: Proc.

ACM SIGPLAN-SIGACT S~mp. , n Princ. of Programming Languages POPL'93, ACM, 1993.
[8] A. Bossi, M. Gabrielli, G. Levi, M.C. Meo, Contribations to the semantics of open logics programs,

in: Proc. Fifth Gen. Comp. Systems, 1992.
[9l A. Brogi, S. Contiero, F. Turini, Programming by combining general logic programs, Technical

Report 97/02, Dept. of Comp. Science, Univ. of Pisa, 1997.
[10] R.M. Burstall, J.A. Goguen, The semantics of Clear, a specification language, in: Proc. Copenhagen

Winter School on Abstract Software Specification. Springer LNCS 86, 1980, pp. 292-332.

P. Lucio et al. / J. Logic Programming 40 (1999) 89-123 123

[11] D. Chang, Constructive negation based on the completed database, in: R.A. Kowalski. K.A. Bowel:
(Eds.), Proc. Fifth Int. Conf. and Symp. on Logic Programmming, M1T Press, Cambridge, MA.
1988.

[12] K.L. Clark, Negation as failure, in: H. Gallaire, J. Minker (Eds.), Logic and Databases, Plehum
Press. New York, 1978.

[13] W. Drabent, What is failure? An approach to constructive negation, Acta Informatica 32 (1995) 27-
59.

[14] H. Ehrig. M. Baldamus, F. Orejas, New concepts for amalgamation and extension in the framework
o f specification logics, in: G. Rozenberg. A. Salomaa (Eds.), Current Trends in Theoretical Computer
Science. World Scientific, Singapore, 1993.

[15] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification !, Springer. Berlin, 1985,
[16] H. Ehrig, P. Pepper. F. Orejas, On recent trends in algebraic specifications, in: Prec. ICALP'89,

LNCS 372, Springer, Berl_in, 1989.
[17] S. Etalle. F. Teusink, A compositiona! semantics for norm:,i open programs, in: Froc. Int. Conf. and

Symp. on Logic Programming'96, MIT Press, Cambridge, MA, 1996.
[18] F. Fages, Constructive negation by pruning, Jourilal ~"f Logic Programming 32 (1997) ! i-85.
[19] G. Ferrand, A. LaUouet, A compositional proof method of partial correctness for normal logic

programs, in: J. Lloyd (EdA, Proc. Int. Logic Programming Symp., 1995.
[20] M. Fitting, A Kripke-Kle~,ne semantics for logic programs, Journal o f Logic Programming 4 (1985)

295-3 ! 2.
[21] H. Gaifman, E. Shapiro, Fully abstract compositional semantics for logic programs, in: Pro,=. 16th

Annual ACM Syrup. on Principles o f Programming Languages. 1989.
[22] J.A. Goguen, R.M. Burstail, Introducing it, stitutions, in: Proc. Logics of Programming Workshop.

Carnegie-Mellon University, LNCS 164, Springer, Berlin, 1984.
[23] J.A. Goguen, R.M, Burstall, Institution: abstract model theory for specification and programming.

Journal of the ACM 39 (1992) 95-146.
[24] S.C. Kleene, Introduction to Metamathematics. North-Holland, Amsterdam. 1952.
[25] K. Kunen. Negation in logic programming, Journal o f Logic Programming 4 (1987) 289-308.
[26] J.W. Lloyd, Foundations of Logic Programming. Springer, Berlin. 1987.
[27] M. Maher, A logic programming view of CLP, in: D.S. Warren (Ed.), Proe. Tenth Int. Conf. on

Logic Programming, !993.
[28] D. Miller. A logical analysis of modules in logic programming, Journal of Logic Programming 6

(t 989) 7 9 - 1 0 8 .
[29] F. Orejas, E. Pino, H. Ehrig, Institutions for logic programmming, Theoretical Computer Science ! 73

(1997) 485-511.
[30] T.C. Przymusinski, On the declarative semantics o f deductive databases and logic programs, in: J.

Minker (Ed.), Foundations of Deductive Databases and Logic Programs, Morgan Kaufmann, Los
Altos, CA, 1988.

[31] J.C. Shepherdson, Negation in logic programming, in: J. Minker (Ed.), Foundations o f Deductive
Databases and Logic Programs, Morgan Kaufmann, Los Altos, CA, 1988.

[32] P.J. Stuckey, Negation and constraint logic programmming, Information and Computation 1 I8
(1995) 12-23.

[33] O. van Daien, A.S. Troelstra, Constructivism in Mathematics: An Introduction, vols. I and 2,
Elsevier, Amsterdam, 1988.

[34] A. van Gelder, Negation as failure using tight derivations for general logic programs, in: J. Minker
(Ed.), Foundations of Deductive Databases and Logic Programs, Morgan Kaufmann, Los Altos,
CA. 1988.

[35] S. Verbaeten, M. Denecker, D. De Schreye, Compositionality of normal open logic programs, to
appear in Proc. of ILPS'97.

[36] M. Wirsing. Algebraic specification, in: Handbook o f Theoretical Computer Science. Vol. B: Formal
Models and Semantics. Elsevier. Amsterdam. t990.

