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Abstract 

The aim of  our  work is the definition of  composit ional  semantics for modula r  units over  the 
class o f  normal  logic programs. In this sense, we propose a declarative semantics for 
~aormal logic programs in terms of  model classes that is monoton ic  in the sense that  
Mod(P t_J P') C Mocl(P), for any programs P and P', and we show that in the model  class as- 
sociated to every program there is a least model  that can be seen as the semantics o f  the pro- 
gram, which may  be built upwards  as the least fix point o f  a cont inuous  immediate  
consequence operator.  In addition,  it is proved that  this least model  is " typica l"  for the class 
o f  models o f  C l a r k - K u n e n ' s  complet ion o f  the program. This means that our  semantics is 
equivalent to C la rk -Kunen ' s  completion.  Moreover ,  following the approach defined in a pre- 
vious paper, it is shown that our  semantics constitutes a "'specification f rame"  equipped with 
the adequate  categorical construct ions needed to define composit ional  and fully abstract  (cat- 
egorical) semantics for a number  o f  p rogram units. In particular, we provide a categorical se- 
mantics o f  arbi t rary normal  logic program fragments which is composit ional  and fully 
abstract  with respect to the (standard) union. © 1999 Elsevier Science Inc. All rights re- 
served. 

Keywords:  Normal  logic programs; Model- theoret ic  semantics: Composit ionali ty;  Institutions; 
Monotonic  semantics; Constructive negation; Modu la r  logic programs 

1. Introduction 

D e s p i t e  t he  a m o u n t  o f  p a p e r s  o n  the  s e m a n t i c s  o f  n e g a t i o n  (see,  e.g. Ref .  [3]), 
t h e r e  a r e  severa l  s e m a n t i c  issues t h a t  a r e  insuf f ic ien t ly  e x p l o r e d .  O n e  s u c h  bas ic  issue 
is m o d u l a r i t y .  T h e  r e a s o n  is t h a t  a p r o p e r  s e m a n t i c s  fo r  a n y  k i n d  o f  m o d u l a r  un i t  
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must be shown to be co, 'npositional with respect to the kind of  module operat ions  
considered, but the non-mono ton ic  nature of  negat ion in Logic Programming does 
not  seem to fit too well with composit ionali ty.  In particular,  for different reasons, 
none o f  the various operat ional  semantics [! 3, I 1,32], neither the different model-the- 
oretic approaches  (see e.g. Ref. [3]), nor  the complet ion semantics [12,25], seems to 
be adequate  to be the basis for defining a composi t ional  semantics for normal  logic 
program units. To our  knowledge, only Refs. [17,19,27,35,9] provide some composi-  
t ional semantic constructs for normal  logic programs. In Section 6 we compare  the 
results presented in this paper and these approaches,  it must be noted that  compo- 
sit ionality is a very impor tan t  property for defining the semantics of  a modular  unit. 
In particular,  if the semantics of  a unit is not  composi t ional  with respect to the given 
module operat ions  this means that,  for reasoning about  a program consisting of  sev- 
eral such units, we wo~,ld need to previously " f la t ten"  the program (or its semantics) 
"'forgetting '" the modula r  structure of  the program. Also, when dealing with modular  
units, ano ther  impor tan t  pyoperty is full abstract ion with respect to composit ion,  
which holds if the semantics o f  two modules coincide if and only if the two modules 
"behave"  equ;~lly in every context. In particular,  if a semantics is Ikllly abstract thi/s 
guarantees that  our  not ion  of  program equivalence is the right one for ~:-ast,--nmg 
about  implementat ion,  i.e., a program unit could be substituted by another  unit im- 
plementing the same abstract ion if :rod only if they have the same sem~,ntics. 

In Ref. [29], a methodology is presented for the semantic definition of  modular  
logic programs ensuring composi t ional i ty  and full abstract ion,  and it is applied to 
study several kinds of  program units for the class of  definite logic programs. The ap- 
proach is based on the fact that most modula r  construct ions can be defined and stud- 
ied independently of  the underlying formalism used "'inside" the modules, as far as 
this formalism is an " ins t i tu t ion"  [23] or a "'specification f rame" [16] (or some similar 
not ion)  equipped with some categorical constructions.  In particular,  the proposed 
methodology for defining the semantics of  a certain kind of  ,nodular  unit consists, 
essentially, o f  three steps. Firstly, one has to study the given unit, and the as,~,ociated 
composi t ion operat ions,  at the general level. This  means defining the meaning of  the 
construct ion in terms of  the categorical construct ions that  the specification frames 
will be assumed to provide. Secondly, one has to define the given class of  logic pro- 
grams as an inst i tut ion or  specification frame with the needed constructions.  At this 
point  one may already obtain a composi t ional  and fully abstract  semantic definition 
for the given unit. The categorical construct ions obtained at this stage may be more 
abstract than required. A further third step can be the definition of  an equivalent, 
more concrete semantics. 

Even if the intermediate categorical machinery is discarded at the end, the three- 
step approt,.ch is instrumental  in avoiding arbi t rary and unfor tunate  choices in the 
concrete semantics, which then fail to have critical properties, such as monotonici ty .  
Applying this methodology not  only may save some work (since some results must 
be proved just  once, independently of  the classes of  logic programs considered) but, 
wh.a~'ig'more important ,  it provides clear guidelines about  how the concrete seman- 
tics for the various construct ions must be defined. In particular,  these guidelines were 
extremely valuable for the work reported in this paper. In principle, the main prob- 
lem found in order to apply this methodology to study modular i ty  and composi t ion-  
ality issues for , the  class of  normal  logic programs is (the lack of) monotonici ty .  
Inst i tut ions and specification frames can be seen as characterizations of  monotonic  
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formal isms.  This  seems to be in con t r ad ic t ion  with  the non-monoton- :c  na tu re  o f  ne- 
ga t ion  as fai lure and  cons t ruc t ive  nega t ion .  Howe,¢er, if  we look at the s impler  case 
o f  the class o f  defini te  logic p rog rams  wi th  negat ive  queries,  then we could  see one  o f  
the basic ideas o f  our  proposa l :  the class o f  definite logic p r o g r a m s  ( H o r n  Clause  
Logic)  is, obviously ,  a m o n o t o n i c  logic; the n o n - m o n o t o n i c i t y  o f  the negat ive  queries  
is related to the selection o f  an  a rb i t r a ry  model  ( the least one)  to define wha t  is as- 
sumed to be " fa l se" .  Similar ly ,  in this paper  we propose  a dec lara t ive  semant ics  for 
no rmal  logic p rog rams  in terms of  model  classes tha t  is m o n o t o n i c  in the sense tha t  
M o d ( P O  P' )  _C_ i o d ( P )  for  a n y  p r o g r a m s  P and  P' .  This  is e n o ~  for  def ining a 
specif icat ion ~¥ame o f  no rmal  logic p r o g r a m s  equ ipped  with  the ca tegor ica l  cot~strut:- 
1ions needed to app ly  the results in Ref. [29] to the class o f  no rma l  logic p rograms ,  
o b t a i n i n g  compos i t iona l  and  fully abs t rac t  (categorical)  semant ics  for a n u m b e r  o f  
p r o g r a m  uni ts  [8.21]. in  par t icular ,  we app ly  these results  to provide  a (categorical)  
semant ics  o f  a rb i t r a ry  p r o g r a m  f ragments  which  is compos i t i ona l  and  fully abs t rac t  
wi th  respect to ( s t andard)  union.  In addition~ we show tha t  in the model  class asso- 
c ia ted to every p r o g r a m  there is a least model  tha t  can  be seen as the (non -compo-  
s i t ional)  semant ics  o f  the p rogram.  This  least model  is " ' typica l"  for the class c f  
models  o f  the C l a r k - K u n e n ' s  comple t ion  o f  the p rogram.  In tha t  sense, our  seman-  
tics is equ iva len t  to C l a r k - K u n e n ' s  comple t ion .  Moreover ,  we provide  a c o n t i n u o u s  
immedia te  consequence  ope ra to r  a n d  show tha t  this least model  can  be buil t  "~up- 
w a r d s "  as the least f ixpoint  o f  tha t  opera tor .  

In addi t ion ,  in Section 5, it is proved tha t  the class o f  models  o f  a given p r o g r a m  P 
forms a comple te  lattice. F o r  this reason,  we are  convinced  that ,  not  on ly  wi th  re- 
spect to compos i t i ona l i t y  issues, our  semant ics  is jus t  the "'right'" k ind  o f  model - the-  
oret ic  semant ics  for  no rma l  logic programs,  in par t icular ,  i f  model - theore t ic  
semant ics  are usual ly  the most  adequa t e  tool for recta- logical  r eason ing  (e.g. for  
p ruv ing  completenes~ of  ope ra t iona l  approaches) ,  the s t ruc ture  o f  ou r  classes o f  
models ,  toge ther  wi th  the closeness to r anked  resolut ion,  makes  ou r  semant ics  ade-  
qua te  for the p r o o f  o f  such k ind  o f  propert ies .  

Moreover ,  r anked  s t ruc tures  can  be ~ e n  as a special care o f  (a three-valued ver- 
sion of) Beth s t ructures ,  used to provide  semant ics  to hdu idon i s t i c  logic (e.g., see 
Ref. [33]). In this sense, our  senmnt ics  suggests  a l ink, a l r eady  men t ioned  by o ther  
a u t h o r s  (e.g., see Ref. [31]), between logic p r o g r a m m i n g  nega t ion  and  in tui t ionis t ic  
logic that  may  be wor thwhi l e  to study.  In par t icular ,  it could  serve as a basis for  ex- 
tending  wi th  nega t ion  those app roaches  to m o d u l a r i t y  based on the use o f  an  intu-  
i t ionist ic  impl ica t ion  (e.g., see Ref. [28]). In this line, the on ly  work  we k n o w  is Re['. 
[6] where  a semant ics  o f  p rog rams  inc luding  an  in tui t ionis t ic  impl ica t ion  and  nega-  
t ion as failure: is defined in terms o f  Kr ipke  models  under  some severe restrict ions.  Ir~ 
par t icular ,  p r o g r a m s  must  be strat if ied and  s ignatures  m a y  only  con ta in  predicate  
symbols ,  i.e., func t ion  symbols  are not  a l lowed.  

T h e  paper  is o rganized  as follows: in the next  sect ion we in t roduce  some basic no-  
t ions and. no ta t ion :  in Sect ion 3, we review the basic def in i t ions  and  results  abou t  
specification f rames and,  as i l lustrat ion,  their  app l ica t ion  ;.o the class o f  defini te  logic 
p rograms;  in Section 4, we present  the declara t ive  model - theore t ic  semant ics  for  nor-  
mal  logic p rograms ,  inc luding  a fix po in t  cons t ruc t ion  o f  least models ,  and  show its 
connec t ion  with  C i a r k - K u t i e n ' s  comple t ion ;  in Sect ion 5, we discuss the results pre- 
sented with  respect to compos i t i ona l i t y  and  full abs t rac t ion  issues; finally, in Sec- 
t ion 6, we give some conclus ions  and  re la t ionships  with  o ther  works,  
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The  reader  is a s sumed  to have  cer ta in  fami l ia r i ty  with  basic cons t ruc t s  f rom cat-  
egory  theory.  F o r  detai ls  one  m a y  consul t  a n y  basic text on  the subject  (e.g., Refs. 
[5,41). 

2. Pre l iminar ies  

A coun tab le  s igna ture  Z consis ts  o f  a pa i r  o f  sets (FSr, PSz) o f  f imct ion  and  pred-  
icate symbols ,  respectively,  wi th  some ar i ty  associa ted.  Z- te rms  a n d  Z - a t o m s  are 
bui l t  us ing  func t ions  and  predicates  f rom 27 and ,  also, var iables  f rom a prefixed 
c o u n t a b l e  set X o f  var iable  symbols .  Te rms  will be deno ted  by t, s . . . . .  and  var(t)  will 
deno te  the var iables  a p p e a r i n g  in t. 

N o r m a l  p r o g r a m s  over  a s igna ture  Z" (or Z -p rograms)  are sets o f  Z-clauses 

a : - - 1 1 ,  . • • l k ,  

where  a is a _r-atom, k / >  0, and  each l~ is a Z-l i teral ,  tha t  is b or -,b where  b is an  
a tom.  F o r  s impl i fy ing  some technical  cons t ruc t ions ,  we cons ider  tha t  any  Z - p r o g r a m  
is wr i t ten  as its equ iva len t  cons t r a in t  n o r m a l  p r o g r a m  with  flat head.  T h a t  is, a n y  
clause 

p(t l  . . . . .  t,,) : - - 1 , , . . .  lk 

is wr i t t en  as the cons t r a in t  clause 

p(x l  . . . . .  x , )  : - - l l , . . .  lk  E]Xt  = t l , . . .  ,X'., -~ t . ;  

Moreover ,  we suppose  the ident ical  tuple xl . . . . .  x ,  o f  f r e s h  variables occurs  in all 
c lauses (in a p r o g r a m )  wi th  predica te  p in its head.  We deno te  by Hde(p(~) )  the 
set {p(~) : --ix [] ~ = ?~ I k = 1 , . . . ,  m} o f  all clauses wi th  head  p a p p e a r i n g  in P.  

C o n s t r a i n t s  a p p e a r i n g  in p r o g r a m s  are a special k ind  o f  s imple cons t ra in t s .  In 
general ,  we cons ider  tha t  Z-cons t ra in t s  are a rb i t r a ry  first o rder  Z- fo rmulas  over  
equa l i ty  a toms.  T h a t  is, fo rmulas  c o m p o s i n g  equa l i ty  a t o m s  with the connect ives:  
--,, A, V, ---% and  the quant i f iers :  V, 3. F o r  a fo rmula  tp, in pa r t i cu la r  for  a cons t ra in t ,  
f r e e ( e )  is the  set o f  all free var iables  in tp, and  q~(~) specifies t h a t f r e e ( t p )  c_ Yc. W e  will 
ident i fy  the list o f  cons t r a in t s  in a n y  p r o g r a m  clause wi th  the c o r r e s p o n d i n g  conjunc-  
t ion  (i.e., a formula) .  W e  deno te  cons t r a in t s  by  c, d . . . .  (possibly  wi th  sub- or  super-  
scripts). F o r m u l a s  tp v, tp ? s t and  for  the universal  a n d  exis tent ia l  c losures  o f  tp, 
respectively.  The  a tomic  fo rmulas  n a m i n g  the two classical  t ru th  values are T and  F. 

W e  will hand le  cons t r a in t s  in a logical  way,  using logical  consequence  o f  t h e j ? e e  
equal i ty  theory .  The  free equa l i ty  theory  FETs for a s igna ture  ,S is the fol lowing set o f  
formulas :  

vx(x  = x) 
V3¢'~',~(2 = )7 ~ f(.~) = f ( f i ) )  
w v y ( ~  = y ~ (p(~) ~ p ( y ) ) )  
w:vy(f(.~) #- g ( y ) )  
Vx(x :A t) 

for each f ~ FSr, 
for each p e PSr U {=} ,  
for each pai r  f ,  g E FSr such tha t  f ~ g, 
for each Z- term t and  var iable  x such tha t  
x E var(t)  and  x ~ t. 

Besides, whenever  Z is finite, FET_~ also includes the w e a k  clo~ure domain  ax iom:  
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Then  FETe is a comple te  theory,  tha t  is FETe ~ q~ or  FETe ~ ~t0 for  an)'  Z-sentence 
tp. There fo re  all models  o f  FETe are e lementa ry  equivalent .  

A cons t ra in t  c is satisfiable (resp. unsafisfiable) i f  and  ouly  i f  FET.~ ~ c a (resp. 
bETr ~ ~(c3)). A g round  subs t i tu t ion  .~ = ~ (where t~ are closed terms)  is called a so- 
lu t ion o f  a cons t ra in t  c i f  and  on13 if  FETe ~ (2 = ? ~ c) v. A cons t r a in t  d is less gen- 
eral than  c i f f  F E ~  ~= (d ~ c) v. 

F r o m  a logical po in t  o f  view, p rog rams  are sets o f  formulas .  There  are, ma[niy,  
two logical  ways o f  in te rpre t ing  a n o r m a l  p r o g r a m  P. The  first one,  deno ted  by 
pV, interprets  every clause as the universal  closure o f  the fo rmu la  which results f rom 
subs t i tu t ing  " c o m m a s "  and  [] (in the clause body)  by logical con junc t ion ,  and  the 
symbol  "':-" by logical impl ica t ion  (right-to-left) .  The  second one  is C la rk ' s  p r o g r a m  
comple t ion ,  deno ted  by Comp(P). The  comple t ion  o f  a Z - p r o g r a m  P ~onsists o f  the 
free equal i ty  theory  F E ~  together  with, for  each p E PSi,  a predicate completion for- 
mula: 

V~ (P(2) "-~ 'V =IY' ( 2 :  ?"~ A ]"=)) ' ,~-:t 

where fik are the var iables  appea r ing  in ~ and  /k which do  no t  be long  to 2, and  
Hdr,(p(2)) = {p(-~) : _ /k  [] 2 = F I k = l . . . . .  m}. In bo th  in te rpre ta t ions ,  con junc t ion  
(resp. d is junct ion)  o f  an  empty  set is simplified to d-~e a tomic  fo rmu la  T (resp. F). 

However ,  clauses like p :  - ~ p  are inconsis tent  when  p r o g r a m  comple t ion  is con-  
sidered. To  avo id  this p rob lem [25] p roposed  to  in terpre t  C la rk ' s  p r o g r a m  comple-  
t ion  in three-valued logic. In par t icular ,  in this logic the three t ru th  values are  t rue 
(!), false (f) or  undef ined (u_); the connect ives  -~, A, V are in terpre ted  in Kleene 's  par-  
tial logic [24], ~-} is in terpre ted  as the ident i ty  o f  t ru th  values, so it is two-valued:  fi- 
nally,  existential  quant i f i ca t ion  can  be seen as infinite d is junct ion,  and  universal  
quant i f i ca t ion  is t reated as infinite con junc t ion .  Equa l i ty  is two-valued.  Cur ren t ly ,  
this in te rpre ta t ion  o f  Cla rk ' s  comple t ion  ( f rom now on  the C l a r k - K u n e n  comple-  
t ion)  is cons idered  the s t anda rd  declara t ive  mean ing  o f  no rma l  logic programs.  Any-  
how, it mus t  be no ted  that ,  in the context  o f  comple t ion ,  any  three valued extension 
o f  classical impl ica t ion  can  be considered.  The  reason  is tha t  impl ica t ion  does  no t  
appea r  in predicate  comple t ion  fo rmulas  and  FETe con ta ins  on ly  impl ica t ion  be- 
tween two-valued formulas ,  i.e., the choice o f  a three-valued semant ics  for  implica-  
t ion becomes  an i m p o r t a n t  ma t t e r  when  the p rog ram itself is t rea ted as a logical 
theory.  In this sense, we will use Przymusinsk i ' s  impl ica t ion  [30]: 

- '*lt  f u 

! l t  f f f_ i f _ t _  
. _ t g , _  

whose intuit ive mean ing  is "'q~ --, 0 is true i f  and  only  if  whenever  ~p is true 0 is also 
true and  whenever  0 is false ~ is also false". Then ,  0 ~ ~' is equivalent  to  
(q~ --" O) ^ (~ --* O) and,  in par t icular ,  we have  tha t  Comp(P) j= iv. Note  tha t  the  
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classical equivalence tp --, ~ ----- -~¢p V ff does not  hold. However ,  in the case o f  tp be- 
ing two-valued (e.g. an  equal i ty  formula)  tp ----, ~p is true iff ~ o  x/~k is true, so tha t  
tp ~ ~b is false iff --,~0 V ~ is false or undefined. 

A three-valued Z-structure  ,~  consists  o f  a universe o f  values A and an  interpr-  
e ta t ion  o f  every funct ion symbol  bv a ( total)  funct ion from A "  to A (of  adequate  ar i ty  
n) and  of  every predicate  symbol  by ~ part ial  relation,  which can be seen as a ( total)  
funct ion f rom ,4" to the set o f  the three boolean values {t_, f, u_}. In tha t  way,  every 
closed Z-term can be interpreted as a value belonging to the universe o f  a Z-structure 
( they canno t  be undefined),  every equal i ty  g round  a tom t~ : t2 is associated to one of  
the classical t ru th  values, but  every ground a tom p(t~ . . . .  , t,,) is associated to one of  
the three boolean  values: {t, _f, _u}. 

A H e r b r a n d  three-valued s t ructure  .:~ is a three-valued Z-structure  whose uni- 
verse H 1.~ the H e r b r a n d  universe for X, funct ion symbols  are trivially interpreted 
and the predicate in te rpre ta t ion  is given by a pair  of  disjoint  sets: H ÷ of  true g round  
a toms  and H -  o f  false g round  a toms,  so tha t  any  o ther  g round  a tom is undefined. 

"fine value o f  any  first order  sentence tp in a three-valued s t ructure  ,~-/will be de- 
no ted  ~y ,vj(q~). A three-valued s t ructure  ,¢J is a model  o f  a set o f  formulas  ~ ,  denot-  
ed by ~:£ ~ q~, iff ,~./(tp) ----- t_ for ai:y formula  q~ E ~. Three-valued logical consequence 

~ q~ means  tha t  for all three-valued s t ructure  ,~,/if ,~ ' /~  q~ then ,~  ~ q~. 

3. The algebraic framework 

In this section we review some basic not ions  on algebraic  specification needed in 
this paper  (for fur ther  detail  see e.g. Refs. [15,36] and also Refs. [22,23,14] for more 
detail  on ins t i tu t ions  and  specification frames). 

In Section 3.1, we in t roduce  the no t ion  of  specificatio,: frame. A specification 
frame can be seen as a formal  descr ipt ion of  a logic formal ism with certain compo-  
s i t ional i ty  propert ies.  F r o m  our  point  o f  view, this not ion  providcz an  adequate  the- 
oretical f ramework  for s tudying  s t ruc tur ing  issues in logic p rogramming .  In the 
fol lowing section, we in t roduce  some algebraic propert ies  o f  specification frames 
which are specially interest ing for our  work.  In par t icular ,  these propert ies al low 
us to s tudy different s t ruc tur ing  constructs  at the abs t rac t  level, tha t  means,  indepen- 
dent ly  o f  the concrete class o f  logic p rograms  used to build modu la r  or s t ructured 
logic programs.  In order  to show the gains o f  using this f ramework ,  we present,  in 
Section 3.3, a compos i t iona l  and  fully abst ract  semant ics  with respect to the union  
of  logic program:,  [29]. These  results are ob ta ined  independent ly  from the concrete  
class of  logic p rog rams  considered as long as the required algebraic propert ies  are 
satisfied. T h r o u g h o u t  the section, we i l lustrate the in t roduced not ions  with  the re- 
suits ob ta ined  in Ref. [29] for Horn  Clause  Logic. 

3.1 .  S p e c i f i c a t i o n  f r a m e s  

The  not ion  of  specification frame was in t roduced in Ref. [16] to axiomat ize  for- 
mal isms with  cer tain basic compos i t iona l i ty  propert ies,  in order  to s tudy the struc- 
tur ing  and  modula r i za t ion  of  specifications with independence of  any  logic 
formalism. The  not ion  was defined as a " 'sl ight" abs t rac t ion  of  the not ion  of  inst i tu-  
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t ion [22] defined, some years before,  by G o g u e n  and Burstali  with s imilar  aims. T h a t  
idea was connec ted  wi th  the design o f  the Clear  specification language  [16]. In par-  
t icular,  Clear  was defined as p rov id ing  opera t ions  for s t ruc tur ing  specifications inde- 
penden t ly  o f  the under ly ing  logic. 

Specif icat ion frames are indexed categories tha t  satisfy some add i t iona l  struct  .ral 
propert ies:  

Definition 3.1 A . w e c ~ ' c a t i o n f r a m e  . ~ . ~  is a pai r  ( S p e e , M o d ) ,  where 
o S p o e  is a ca tegory  o f  abs t rac t  specifications (or programs) ,  and  
® Mod : S p e e  "p ~ C a t  is a func toL  fl,at asxociates to every specif icat ion S P  in 

S p e e  its ca tegory  o f  models  l~od(SP),  and  to  every sp_.cification m o r p h i s m  
f : S P !  --~ S P 2  a func tor  Mod( f )  : Mod(SP2) -~ Mod(SPI) ,  usually deno ted  by ~-, 

such that  the fol lowing two proper t ies  are satisfied: 
(a) Spee has pushou ts  
(b) Mod t rans fo rms  pushou t s  in S p e e  in to  pui lbacks  in C a t  (i.e., ,~,~- has amal-  

gamat ions) .  

Remark  3.1. ( I )  Pushou ts  are the opera t ions  tha t  a l low us to combine  specifications,  
while a m a l g a m a t i o n  is the semant ic  coun te rpa r t  to pushouts .  

In par t icular ,  pushou ts  in the ca tegory  o f  specifications correct ly  cap ture  the re- 
qui red  no t i on  o f  c o m b i n a t i o n  o f  specifications with a c o m m o n  sub-specificat ion,  
in a general  way. Pushou ts  are d iagrams  in the ca tegory  o f  specifications. Essential ly,  
if  we want  to put  toge ther  two specifications S P I  and  S P 2 ,  having  a c o m m o n  sub- 
specification SP0,  the pushou t  S P 3  (of  SP1  and  S P 2 ,  with respect to  SP0) would  
provide  the right combina t i on .  Almost  all logics o f  pract ical  interest have  pushouts  
(see Ref. [151 for  more  detail).  

A m a l g a m a t i o n  al lows us to define the semantics  of  a combined  specif icat ion pure-  
ly on  the semant ic  level as the a m a l g a m a t i o n  o f  the model  classes o f  the specifica- 
t ions which are combined .  The reason is that ,  as we show below, given a pushou t  
o f  specif icat ions as in the d iagram o f  Fig. I, a m a l g a m a t i o n  can  be character ized 
as an  ope ra t ion  for " 'bui ld ing"  the models  o f  S P 3  in terms o f  the models  o f  SP0,  
S P I  and  S P 2 .  

Most  logics have ama lgama t ion .  This  is the case, for instance,  o f  Horn  Clause  
Logic (,~fz~__g-), Equa t iona l  Logic ( ~  ~,a), Cond i t i ona l  Equa t iona l  Logic ('." ,7 9 ~77), 
Clausal  Logic (c~L~'), and  First  Orde r  Logic (.~-C ~') .  

(2} It must  be no ted  tha t  the functor ia l  charac te r  o f  Mod, usually,  implies that  
specification frames are m o n o t o n i c  formalisms.  In par t icular ,  if we consider  a 

S P O  f I  ,. S P 1  

S P 2  g2  ,, S P 3  

Fig. I. Pushou~ diagram. 
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specification frm-.~ where specifications are pairs ( L  ~) (where Z is some kind of  sig- 
na ture  and  to is a set o f  axioms over that  signature),  I~. ~n for any  sets o f  formulas  to 
and  to' over  27: 

Mod(S, to t.J to') C_ Mod(2.', to) 

when specification inclusions,  as (Z, ~)  C_ ~X, to 0 to'), are considered morph i sms  in 
S p e c .  

Theorem 3.1 [16]. Given .~' .~ = ( S p e e ,  Mod), Mod transJbrms pushouts in S p e c  into 
pullbacks in C a t  6~for every pushout diagram in S p e c ,  given in Fig. 1, the fol lowing 
three Jacts hold: 

(i) For every ._~li ~ Mod(SPi) (i = 0, i, 2) such that ~,(o~/1) = .rd0 = Vr_,(.eY2) there 
is a tmique .~/3 E Mod(SP3),  coiled amalgamation o f  ~11 and .e,/2 via .~/0, written 
~Y/3 = ~/1 +,.co ~/2.  stwh that we have: 

V~, ( .~ '3 )= .~ ' I  and ~2(.o13)=.~,/2.  

(ii) Conversely. ever)' ,~/3 E Mod(SP3) !:as a unique decomposition 

~ 3  = ~., ( .~/3)  +,~,~,, ~ , ~  z~_,(.~/3). 

(iii) Similar properties to 1 and 2 above hoM i f  we replace objects oq/i by morphisms 
hi in Mocl(SPi) (['or 0 ~ i <~ 3), leading to a unique amalgamated ston o f  morphisms 
h3 = hi +ho h2 with Vgt(h3) = hi  and ~.,(h3) = h2. 

The  next example  defines a specification frame for Horn  Clause Logic over a pre- 
defined (universal)  s ignature  o f  functions.  After  defining it, we will analyze its prop-  
erties. 

Example  3 . i .  H o r n  Clause  Logic over the funct ions  s ignature  FS  can be defined as 
the specification frame, .ggce£_~ = (HCL, Mo cl), where: 
- Specifications are pairs  (P S, to) formed by a s ignature  o f  predicates and  a 

set o f  H o r n  clauses over FS and  PS,  and specification morph isms  
h : (PS ,  to) --. (PS ' ,  ~ ') ,  are mappings ,  h : P S  ~ P S '  such that  (1) arities are pre- 
served and  (2) h # ( ~ )  C ~ ' ,  up to r eaaming  of  variables,  where h # denotes  the 
t rans la t ion  induced by h. 

• (P S, to)-models, in ~¢~Ae are H e r b r a n d  structures,  i.e. sets o f  a toms  over FS and  
PS, tha t  satisfy the axioms in • (according to the s t andard  not ion  of  satisfaction).  
A (PS ,  q , ) -homomorph i sm between (PS ,  to)-models, f :  ~41 --* ~/2,  is jus t  an in- 
clusion,  ,all c_ d 2 .  Then ,  Mocl:HCL "p --. C a t  maps  every specification (PS ,  q~) 
in ~¢~cg.W into  the ca tegory  of  all (PS ,  to)-models and  (PS ,  to) -homomorphisms.  
and  every specification morph i sm h: (PS ,  to) --. (PS ' ,  to') into the cor responding  
forgetful  functor  Vh : Mod(PS ' ,  tO') --, Mod(PS,  q,) defined as usual, i.e. for every 
P S ' - m o d e l  ,~ '  we define Vh(.~') as the set o f  a toms  whose t rans la t ion  via h is in 
A', i.e.: 

Vh(~')  = {a E A toms (PS) /h# (a )  E .~ '}  

• Also, i f f ' :  .~" 1' --* .~2 '  is a h o m o m o r p h i s m  in Mod(PS' ,  to'), i.e. ~e/l' is included in 
~/2 ' ,  then Vh(f') is the inclusion Vh(.~'l') C_ Vh(~'2'). 
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Let  P0  = (PS0, Cg0), P I  = ( P S I , ~ I )  and  P2 = (PS2,C~2) be p r o g r a m s  in H C L ,  
with h i  : P 0 - - ~ P 1  and  h 2 :  P 0 ~ P 2 .  I f  h l  and  h2 are  inclus ions  and  
P S I  M P S 2  = P S O  then  the pushou t  o f  P l  and  P2  is jus t  P3 : P I  u P 2 ,  i.e. 
( P S I  U P S 2 , C ~ I  u ~ 2 ) .  In the general  case, a pushou t  is a k ind  o f  dis joint  un ion  
where  the symbols  in P S 2 ,  but  not  in P SO, are  r enamed  adequa te ly  and  the  mo-  
rph i sms  g l  and  g2 m a p  each symbol  in P I  and  P2,  respectively,  in to  the co r respond-  
ing symbol  in P3.  

Given  the pushou t  d i ag ram o f  Fig. 2, for  every ~o/i c Mod(Pi) (0 < i ~< 2), wi th  
Vh~(.~/1) = I ~ , 2 ( ~ 2 ) - ~ - ~ ' 0 ,  the a m a l g a m a t i o n  of  .~/1 a n d  .~]2 via ~c/0, t ha t  is 
~e/3=.~/1+.~,0.~-,/2, is defined jus t  as ,~,/ILI.c/2, whenever  hl  and  h2 are  
inclus ions  and  P S I  r i P S 2  = P SO. In the general  case, .~13 would  be ~ ' 3  = 
g l# (~¢ / i )  U g2#(.q/2).  

H o r n  Clause  Logic,  ~ , ~  r/, ~eems to be the mos t  obv ious  choice for  a specifica- 
t ion f rame for  def ining the (declarat ive)  semant ics  o f  definite logic p rograms .  Actu-  
ally, this is ( implici t ly)  done  by  mos t  au thors .  In par t icular ,  the  " s t anda rd ' "  
declara t ive  mean ing  o f  a logic p r o g r a m  P is defined as the least  H e r b r a n d  model  
o f  F (see, for  instance,  Refs. [26,1 ]). In a lgebraic  terms,  this is equiva len t  to def in ing 
the semant ics  o f  P as the least  ( init ial)  model  in MoR(P). However ,  if  we are interest-  
ed in logic p r o g r a m m i n g  languages  as  p r o g r a m m i n g  languages ,  then  a r easonab le  
choice  would  be one  in which  the inpu t /ou tpu t  behav iou r  o f  p r o g r a m s  were bet ter  
captured .  In tha t  sense, Ref. [29] provides  the defini t ion o f  a n o t h e r  specif icat ion 
frame,  ~£~o~ for  Defini te  Logic  P rograms ,  which,  obvious ly ,  shares  the syn tax  with  
j ~ A a ,  i.e., it hhs  the same ca tegory  o f  p rograms ,  but  it is based on different no t ions  
o f  mode l  and  sat isfact ion.  

3.2. O t h e r  p r o p e r i i e s  o f  spec i f i ca t ion  frame>. 

In this subsect ion,  we present  some o ther  proper t ies  o f  specif icat ion f rames  tha t  
m a y  be requi red  w h e n  s tudy ing  specific s t ruc tur ing  or m o d u l a r  const ructs .  As  we 
have  a l r eady  men t ioned ,  the sa t i s fac t ion o f  these proper t ies  provides  the adequa t e  
se t t ing for  p rov ing  some usual ly  desired scmant ic  proper t ies  for these const ructs .  
Moreover ,  tha t  can  be made  independen t ly  o f  the under ly ing  logic fo rmal i sm (used 
to bui ld  specif icat ions or  p rograms)  whenever  this tbrrna! ism is a specif icat ion [i-ame. 
In wha t  follows, we also sketch,  as an  example ,  tha t  these p r o p e ~ i e s  hold  for  the 
specif icat ion f rame . ~  ~¢. 

Definition 3.2. A specif icat ion f rame c j . ~  = ( S p e e , M o d  : S p e c  °p --~ Cat .)  has  f r e e  
cons t ruc t i ons  iff for every specif icat ion m o r p h i s m  f : S P I  --, S P 2  in .Slaec there  is a 

h l  PO - P 1  

P 2  g 2  • P 3  

Fig. 2..~-~2"-pushout diagram. 
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free func tor  F f : M o c l ( S P 1 ) ~  Mod(SP2) which  is left ad jo in t  to Vr. Ff (and,  in 
general ,  a n y  func tor  F : Mod(SPI  ) ~ Mod(SP2))  is strongly persistent iff ~ .oFf  = rD. 

The  in tu i t ion  o f  the free cons t ruc t ion ,  in this context ,  is qui te  simple. Cons ide r  the 
case where  f is an  inclusion o f  p r o g r a m s  (specifications):  P C P'. The  free cons t ruc-  
t ion assoc ia ted  to this inc lus ion would  build,  for each model  . ~ / o f  P,  the  least  P '-  
model  tha t  can  be buil t  over  ~¢t, i.e., i f  P and  P '  are definite logic p r o g r a m s  F(zzl) 
is the  least model  assoc ia ted  to P'  u .~,", where  .~-/" deno tes  the p r o g r a m  consi,; t ing 
o f  all the a t o m s  in .c/. I f  the m o r p h i s m  is more  general  t han  an inclusion (i.e., it de- 
fines some form of  t r ans l a t ion  between ti~e s igna tures  o f  P and  P ' )  then,  s imilar ly,  
F'(,¢/) could  also be defined as the least model  associa ted  to P ' u  .¢1", where  .¢/* 
would  mean  here  the p r o g r a m  cons is t ing  o f  the co r r e spond ing  t rans la t ion  o f  all at- 
oms  in .z/. 

It m a y  be not iced  tha t  the existence o f  free cons t ruc t ions  in a given specif icat ion 
frame,  in general ,  implies the exis tence o f  " ini t ia i '"  models  (least models) .  Since the 
least model  o f  a p r o g r a m  P can  be defineO as F(¢)  where  O denotes  the e m p t y  model  
and  F is the  free cons t ruc t ion  associa ted to the inclusion d C P where  ~' deno tes  the 
e m p t y  p rog ram.  

Converse ly ,  it can  be shown  tha t  for  mos t  specif icat ion f rames the existence o f  ini- 
tial (least) models  assoc ia ted  to every specif icat ion (or  p rog ram)  ensures  the existence 
of  free cons t ruc t ions .  

Example  3.2 (Properties o f  ~ ' ~ 6 ~ ,  [29]). ~ C ~  ' has  free cons t ruc t ions .  

It is easy to see that ,  given a p r o g r a m  P = (PS, c6~) o f  ,~Ic$Y[ ~, the ca tegory  Moci(P) 
is closed unde r  intersect ion.  Th is  means  tha t  there is a least model  . l /p  in ~Iod(P) 
which  h a p p e n s  to be tr ivial ly initial ,  acco rd ing  to  the no t ion  o f  h o m o m o r p h i s , u  used 
( inclusions)  in t~e categor ies  o f  models .  Therefore ,  in the case o f  )~t~c6'r~', the exis- 
tence o f  free cons t ruc t ions  is a consequence  o f  the existence o f  ini t ial  objects.  In par-  
t icular ,  given a m o r p h i s m  h : P ~ P ' ,  wi th  P : (PS, crY) and  P'  : (PS', ~ ' ) ,  the  free 
cons t ruc t ion  Fh : Mod(P)  ~ Mod(P' )  can  be defined for every ~o/in l~iod(F) as the ini- 
tial mode l  o f  the  p r o g r a m  (PS',5,~" t_Jh#(~) ) ,  deno ted  ,/[pc~/~, w h e r e  h#(,¢/) is the 
p r o g r a m  cons is t ing  o f  the t r ans la t ion  t h r o u g h  h o f  all the  a toms  in ,e/. 

Free  cons t ruc t ions  have  been used at the  model  level to  give semant ics  to F: . ram- 
eter ized specific;~t~ons. In Ref. [29] free cons t ruc t ions  are cons idered  as the semant ics  
of  the different k inds  o f  open  (or modu la r )  logic p rograms .  H o r n  Clause  Logic  
( ,~~ 'Z#) ,  E q u a t i o n a l  Logic  (e~~ ~SP) and  C o n d i t i o n a l  Equa t i ona l  Logic  ( c K ~ .  "~) have  

. .  

free cons t ruc t ions  (see Ref. [15]). In con t ra s t  C lausa l  Logic ('6' ~.9 °) and  Firs t  Orde r  
Logic  (.~-t~'i~e), in general ,  do  not .  

Definition 3.3. A specif icat ion f rame .g).7 = (Spe¢. ,  Mod) has fi 'ee extensions iff for 
every p u s h o u t  d i a g r a m  in S p e c  as Fig. 1, i f F  : M o d ( S P 0 )  ---, M o d ( S P I )  is a s t rongly  
persis tent  free func tor  wi th  respect to f l ,  then  there  is a s t rongly  persis tent  func tor  
F * : M o d ( S P 2 )  ~ Mod(SP3) ,  called the extension o f F  t, ia f 2 ,  such that :  

(a) F" is free with  respect to g2. 
(b) The  d i a g r a m  o f  Fig. 3 commutes .  
Extens ion  m a y  be,, in some cases, a key cons t ruc t ion  tor  p roving  compos i t i ona l i t y  

and  full abs t rac t ion  results. Th i s  is the case, in par t icular ,  when  the semant ics  o f  the 
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Mod(SPO)  

vz2 

M od( S P 2 )  
F" 

,, M o d ( S P 1 )  

• M o d ( S P 3 )  

Fig. 3. Free extension diagram. 

given cons t ruc t ion  is expressed as a persis tent  free |;unctor. Every logic hav ing  amal -  
g a m a t i o n s  has  also free extensions.  

Theorem 3.2 [16]. Specification fi'ames t~ave l'ree extensions. 

This  result  is a consequence  o f  the existence o f  a m a l g a m a t i o n .  Being more  con-  
crete, i f F  : Mod(SPO) --~ M o d ( S P I )  is a s t rong ly  persis tent  free func tor  wi th  respect  
to f l then  the extens ion o f  F via f 2  is the  s t rongly  pers is tent  free func tor  
F* : Mod(SP2) - -~  Mod(SP3) ,  such tha t  for each model  .~/2 in Mod(SP2) ,  F*(.¢/2) 
is the  a m a l g a m a t e d  sum ,~-/2 +r;_,c~2) 1:(Vf2(0~2)). 

Example  3.3 ( Properties o f  Wq;,'~ ~, /29]). ,Y/'g'Z,a has  fi'ee extensions ,  since it has  
a m a l g a m a t i o n s .  

T h e  existence o f  extens ions  for  s t rong ly  persis tent  free functors  can  be genera l ized  
to the non-pers i s ten t  case under  cer ta in  c i rcumstances :  

Definit ion 3.4. A specif icat ion f rame ~ .3a -=  ( S p e e , M o d )  has generalized free  
extensions iff for every p u s h o u t  d i a g r a m  as in Fig. 1, if  F : M o d ( S P 0 ) - - +  
M o d ( S P I )  is a tYee func tor  with respect to f l ,  then there  is a func tor  
F* : Mod(SP2)  ~ l~od(S P3),  called the generaliced extension o f F  via f 2 ,  such tha t :  

(a) F" is free with  respect to  g2. 
(b) There  is a na tu ra l  t r a n s f o r m a t i o n  v : F o ~ 2  --, ~ o F *  such ti iat  the d i a g r a m  o f  

na tu ra l  t r a n s f o r m a t i o n s  in Fig. 4 commutes ,  where_/ '3 = g l o f l  = g 2 o f 2  and  u and  
u* are, respectively,  the universal  t r a n s f o r m a t i o n s  associa ted  to z and  F*. 

Theorem 3.3 [23]. I r a  .~pecification f rame  ~/'.~ has j?ee constructions and pushouts & 
all model categ~Jries Mod(SP),Jbr all abstrt:,.ct spec~[ications S P  in S p e e ,  then 5 a ~  has 
generalized free e.x'tensions. 

1/]2 V.f2 0 u *  D V f3 0 F *  

Vj l  o F o  ~')2 
Fig. 4. l~Jatural transformations associated to a generalized free vnt.~'nsion. 
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Example  3.4 (Properties o f  , ~ Z ~ ' ,  i2~:q). ~¢t,~Ae has  generalized free extensions 
because,  according  to Defini t ion 4, it is enough  to check tha t  for every p rog ram P, 
there are pushou t s  in Moa(P)" Given models  . . 4 0 , , ~ / 1 , ~ 2  in Mod(P), with 
f l : ~¢0 C_ ~ 1 and  f 2  : d 0  c d 2 ,  we can define the pushou t  o f  o41 and  .~2  a long 
f l  and  f 2  as jus t  the jo in  ~ 1 u ~¢2. 

3.3. Standard union of  logic programs 

In this section, we present  compos i t iona l i ty  and  full abs t rac t ion  results [29] for a 
semant ics  o f  the s t andard  un ion  o f  logic programs,  which are general  in the sense 
tha t  they are independent  of  the class of  logic p rograms  conzidered,  as long as it 
is a specification f rame with  the propert ies  in t roduced in Section 3.2. 

As is well known,  the least model  semantics  o f  logic p rograms  is nei ther  compo-  
si t ional  nor  fully abs t rac t  (in a compos i t iona l  way). As a result,  some form of  more  
complex semant ics  mus t  be considered if we intend to capture  a compos i t iona l  be- 
haviour .  F o r  instance,  Ref. [21] studies the ( s tandard)  union  of  logic p rograms  
and  the compos i t ion  o f  logic modules, where a logic module  can  be seen as a logic 
p r o g r a m  including an  add i t iona l  importlexport interface, with the restr ict ion tha t  
clauses in the module  do not  include impor ted  predicates in their  heads.  In bo th  
cases, the mean ing  o f  these cons t ruc t ions  is defined in terms of  sets o f  minimal  claus- 
es, tha t  are logical consequences  o f  the given program.  In our  context,  we can see 
these meanings  as concrete representat ives o f  our  general  algebraic construct ions .  
In this sense, t~ie full abs t rac t ion  results in Ref. [21] can be seen jus t  as ad hoc ver- 
sions o f  var ia t ions  o f  the results ob ta ined  in Ref. [29]. 

lu  our  approach ,  for s tudy ing  the opera t ion  of  union,  we consider  tha t  a logic 
p r o g r a m  P = (PS, cg) m a y  be seen as a special k ind of  open p rogram where all 
predicates  are par t ia l ly  defined, in the sense tha t  more  in fo rmat ion  abou t  the pred- 
icates in P Ses, can  be added  by union  with  o ther  programs.  In our  context ,  this im- 
plies tha t  the mean ing  of  a p r o g r a m  P can be seen as a mapp ing  tha t  given a PS- 
s t ructure  d ( that  can be seen as including the "mis s ing"  definit ions o f  the predi-  
cates in P), yields as result  the "comple t e "  in te rpre ta t ion  of  P, i.e. we may  consider  
tha t  the mean ing  of  P is the free cons t ruc t ion  associated to the p rogram inclusion: 
(P S, ~) C_ P. 

Definition 3.5. The  semantics of  a program P = (PS, c~), noted  by Sem(P), is the free 
functor  F : Mod(PS,  0) --~ Mod(P),  associated to the inclusion (PS, O) c_ P. 

I t  may  be noted  that ,  in this case, the semantics  o f  P is never a persistent functor~ 
since given a p r o g r a m  P and  a PS-mode l  d ,  F ( ~ )  is in general  different f rom ,~/. 

Definition 3.6. Let P l  = (PS l ,C~ l )  and  P2 = (PS2,C~2) be programs,  the s t andard  
union  of  P t  and P2, P I  U P2, is the p rogram (PSI U PS2, ~,1 U ~2). 

It  must  be noted tha t  P1 U P2 coincides with the result o f  the pushout  d iagram,  in 
the ca tegory  of  p rograms  o f  the under ly ing specification frame, given by Fig. 5. 
Fig. 6 
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(PS1  N PS2 ,  0) ,, P1 

P2 • P1 u P2 
Fig. 5. Standard union of programs. 

Mod(PS2 ,  ~) ,  

Sere(P2)  

M o d ( P 2 )  - 

M o d  PS1, ¢J) Sere(P1)  : Mod(P1) 

l 
M o d  P S ,  ~) S e m ' ( P 1 )  = M o d ( P S 2  U P S i ,  e l )  

I 
Sem'  ( P2) i F 2  

M o d ( P S 1 U  PS2,C2)  f l . . . . .~ Mod(P1 U Pz) 

Fig. 6. Union compositionality. 

Dea l ing  wi th  p r o g r a m s  whose  semant ics  is persis tent ,  compos i t i ona l i t y  o f  ou r  se- 
mant ics ,  wi th  respect to s t anda rd  union ,  is a direct  consequence  o f  the existence o f  
free extens ions  in the specif icat ion frame. However ,  in the general  case, we have  to  
use the more  complex  cons t ruc t ion  o f  general ized free extension.  

Theorem 3.4 (Compos i t iona l i ty ,  [29]). The semantics o f  Pl  U P2 can be obtained as: 
Sem(P1 U P2) = FloSem'(P2) = F2oSem' (e l  ), where 

(i) P S  = P S I  U PS2.  
(ii) Sem'(Pl ) and Sem'(P2) are the generalized extensions o f  Sem(Pl ) and Sere(P2) 
via the inclusions ( P S I ,  0) c (PS,  0) a n d  (PS2,  ~) c_ (PS,  0), respectively. 
(iii) FI  and F2 are the generali=ed extensions o f  Sem'(P! ) and Sem'(P2) via the in- 
chtsions (P S, 0) c (P S, ~1 ) and (P S, 0) C (P S, ~2) ,  respectively. 

It mus t  be no ted  tha t  T h e o r e m  3.4 really proves the compos i t i ona l i t y  o f  Sere with  
respect to  s t anda rd  un ion ,  in the sense tha t  the  m e a n i n g  o f  P I  u P2 is defined in 
te rms  o f  the m e a n i n g  o f  P I  and  P2,  since the general ized extens ion  o f  free func tor  
F via an  inc lus ion i, is un ique ly  de te rmined  by  F and  i. 

On  the o ther  hand ,  the fo l lowing l emma is a consequence  o f  the fact tha t  free con-  
s t ruc t ions  are  un ique  up to na tu ra l  i somorph i sm:  

Lemma 3.1 [29]. Given two programs P I and P2, 

Sere(el)  = Sem(e2) i f f  f o r  every e : Sem(PLIPI)  ---- Sere(PUP2).  

This  l emma can be used to prove  full abs t rac t ion  o f  the given semantics .  In  par-  
t icular,  a semant ic  defini t ion o f  a p r o g r a m  uni t  is fully abs t rac t  wi th  respect to a 
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given compos i t ion  opera t ion ,  for instance t_J, and a given observat ion criteri~l Ohs  if 
and only if for all p rograms  PI  and P2 

S e m ( P l  ) --=- S e m ( P 2 )  iff for every P : O b s ( P  t3 PI  ) = O h s ( P  t_~ P2). 

Now,  there are several observat ion criteria that  may be used in the context  o f  logic 
p rogramming .  The  most  obv;,ous one is to consider  two programs  PI and P2 obser- 
va t ional iy  equivalent  if and  only if the ground consequences of  the two programs co-. 
incide, or  equivalent ly  if  and only if their  associated least models  coincide (in Ref. 
[29] it is also considered observat ions  associated to the computed  answers of  the giv- 
en programs) .  In this sense, full abs t rac t ion  can be reformulated as: 

S e m ( P I  ) = Sere(P2)  iff for every P : Ta~,pl = Tp~ e,_. 

where Te, denotes  the initial model  of  P in the cor responding  specification frame, for 
example,  if  the under ly ing  specification frame is . ~ c ¢ ~ ,  then 7"/, is the minimal  Her- 
b rand  model  o f  P, tha t  is, Tp ~- . / / e .  

The  abst ract  result of  full abs t rac t ion  works  for all "a lgebra ic"  specification 
frames (in par t icular  .~c¢, c-ka is algebraic). 

Definition 3.7. A specification frame yf.~v _- (Spee. Mod) is algebraic  if for each 
specification S P  in Spe  e and for each model ..~/in l~Iod(P) there exists a specification 
SP0  such tha t  . ~ / =  Tse0, where T.s.Pr~ denotes  the initial model of  S P0. 

Theorem 3.5 (Full  abst ract ion,  [29]). Le t  .¢/ ' .T---(~'og, Moct) be an algebreric 
speci f ica t ion  f r a m e .  Then,  given two  progrc t , t s  P !  a,,:rl P2 #//~-og, 

S e m ( P l  ) = S e m ( P 2 )  i['[" . for e re rv  P : Tt,, Jel = Tt,,j:,2. 

In Ref. [29], these results are used to analyze and improve previous ones. More  
specifically, with respect to s tandard  union,  it is proved that  the semantics proposed 
in Ref. [21] is equivalent  to the above ~abstract '"  semantics: this allows us to con- 
clude tha t  their  semantics  is not  only fully abstract ,  as they prove, but also compo-  
sit ional.  Being more  concretely,  the semantics  of  a logic progra.,n P = ( P S ,  ~¢;), as 
defined in Ref. [21], can be seen as a specific representat ive o f  the free cons t ruc t ion  
~issociated to the inclusion ( P S ,  O) c ( P S ,  ~¢, ) in the specification frame .~¢~ 7~. Then,  
the full abs t rac t ion  results o f  Ref. [21] are jus t  a consequence  of  the results in Sec- 
t ion 3.2 applied to the specification frame . ~ 6 . ~ .  On the o ther  hand,  according to 
these results, the compos i t iona l i ty  o f  the semantics,  with respect to the union, is a 
consequence of  Theorem 3.4. 

4. A model-theoretic semantics for normal logic programs 

As said in Section 1, our  aim is to define a model- theoret ic  semantics  for normal  
logic p rograms  (i.e., the mean ing  of  a p rogram P is the set Mod.(P) o f  all models  of  P, 
for a given not ion  of  model) ,  such that  the following monoton ic i ty  proper ty  holds  

Mod.(P) _D Mocl(P U P') for all P, P ' .  
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In addi t ion ,  we also wan t  this  semant ics  to be adequa t e  for app ly ing  the general  
results  presented in the previous  section. This  means  tha t  it mus t  be possible,  based 
on this  semantics ,  to define a spec.;fication f rame sa t is fying all the proper t ies  needed 
for def ining the mean ing  o f  the k ind of  p r o g r a m s  units  considered.  In par t icular ,  
this means  tha t  ' ~ s  spc,Afication f rame must  have free cons t ruc t ions  and ,  as a con-  
sequence,  every p r o g r a m  P mus t  have  a least model ,  deno ted  . / l e ,  t ha t  could  be 
cons idered  its s t anda rd  meaning .  O n  the o ther  hand ,  obvious ly ,  this semant ics  
should  be proved equiva lent  to the s t anda rd  mean ing  associa ted  to no rma l  logic 
p rograms .  

An obv ious  choice is to cons ider  tha t  the  models  o f  a p r o g r a m  P are three-valued 
structures.  Then ,  one would  t ry  to find some order ing  -< a m o n g  models  sa t is fying 
tha t  there is a least e lement  tha t  can  be proved  equiva len t  to the in tended  m e a n i n g  
o f  P. U n f o r t u n a t e l y ,  as the fol lowing coun te r -example  shows,  this  is no t  possible.  

Example 4.1. Let us cons ider  the no rma l  p r o g r a m  PI  _= { a : - ~ b } ,  its least model  
~//el shou ld  be the pa i r  ({a} ,{b}) ,  and  cons ider  PI  ' = :  { b : - } ,  then - / /Pluel '  =-- 
({b}, {a}). Then  we mus t  have  ({a}, {b}) -< ({b}, {a}). 

Now,  by cons ider ing  the p r o g r a m  P2 ---- {b : - ~ a }  and  ex tend ing  it with the clause 
{a : - -}  we ob ta in  tha t  ({b}, {a}) _ ({a}, {b}) shou ld  hold.  

F r o m  our  poin t  o f  view, the p rob lem in this coun te r -example  is tha t  ,//PtuPl' and  
~Z/p2 should  no t  be ident ical  and  should  reflect, in some sense, the " 'dependences f rom 
negat ive i n f o r m a t i o n "  which m a k e  a given a t o m  be in the model .  F o r  instance,  ~.//e2_ 
includes b ~s a consequence" o f  the negat ive  in fo rma t ion  prov ided  by a, while -//eluel, 
includes b wi thou t  any  dependency  o f  negat ive  in fo rma t ion .  Th i s  cons ide ra t ion  has  
led us to cons ider  models  hav ing  "'layers" tha t  reflect these dependencies .  W e  call  
these models  r a n k e d  s t ruc tures  because o f  their  re la t ion  with r anked  resolut ion.  
F o r  instance,  if  we cons ider  aga in  the a b c  ve Example  4.1, the " ' in tended"  model  
for P I  has  a first layer  given by (O, {b}) and  a second layer  ({a}, {b}). H o w e v e r  
for P I  U P I '  the first layer  is ({b},0) ,  and  the second layer  ({b}, {a}). Similar ly,  
for P2 the first layer  is (0, {a}) and  the second layer  is ({b}, {a}). N o w  the in tended  
models  associa ted to P I  t3 P I '  and  to P2 are different, since their  first layers differ. 

In what  follows, first we sketch the p ropos i t iona l  case to provide  some intui t ion.  
In Sect ion 4.2 we extend the a l ready  presented semant ica l  no t ions  to the class o f  all 
no rma l  logic programs.  Then ,  in Sect ion 4.3 we prove  the existence o f  a leas~, model  
and  we provide  a c o n t i n u o u s  immedia te  consequence  o p e r a t o r  for ob ta in ing  it in a 
b o t t o m - u p  cons t ruc t ive  way.  Final ly ,  we show the equiva lence  o f  ou r  semant ics  with 
C l a r k - K u n e n  semant ics ,  p rov ing  tha t  our  least model  is a " t y p i c a l "  elemer,,t in .,'~: 
class o f  all models  o f  p r o g r a m  comple t ion .  

4. !. A f i r s t  approach:  The  propos i t ional  case 

In the p ropos i t iona l  case, it is enough  to cons ider  sequences o f  H e r b r a n d  three-  
valued E-structures .  In the next  section we extend this no t ion  o f  semant ica l  s t ruc ture  
to deal  wi th  no rma l  p r o g r a m s  with variables.  

Definition 4.1 (Propos i t iona l  case). A r a n k e d  three-vah~ed E-s t ruc ture  ~e/ is an  infinite 
sequence o f  pairs  ((A~-,A,:))i~ ~ such tha t  for  a n y  i E ~" 
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t, A + C A,++l and  A,.- C A~i 
• A + n A i = O. 

We will just  write a finite n u m b e r  n o f  layers, whenever  the rest o f  the layers are 
equal  to the nth layer. 

The layers of  our  structures could also be related to the not ion of  stratification 
[2,34], but  stratification is a syntactic restriction on the class o f  p rograms for ensur- 
ing the existence o f  certain semantic  construct ions,  whereas  ranked structures are 
models .  Actually,  as it can be seen below, we do  not  impose any restriction on the 
kind o f  p rograms  we deal  with (they do  not  have to be stratified in any sense). 

Now,  we define when one  o f  these structures is a model  o f  a program.  In order  to 
dist inguish the satisfaction relat ion between ranked  structures and  programs and  the 
logical consequence  relat ion in the three-valued logic, the former  will be denoted  by 
~R and the latter by ~3. 

Definition 4.2. A ranked  three-valued Z-structure .~/ is a model of  a propositio~lal 
normal Z-program P (denoted  by .~-/ ~R P) iff the fol lowing four condi t ions  are 
satisfied: 

(a) If  pv U Ad ~3 a then a E A~ (in part icular  if a : - ~ P). 
(b) If  a E A o then there is not  any clause a :  - [  ia P. 
(c) If  pV t_~A++~ U--,AT ~3 a then a E A,++l, where --,A, means{--,a]a E AT}. 
(d) I f a  E A£+ l then for every a :  - [ E  P one  o f  the fol lowing two facts holds: 

• there exists b E [ such that  b E Ai-, 
• there exists -~b E [ s u c h  that  b E A +. 

Not ice  that  for the p rogram PI _ { c : - - , b }  o f  Example  4.1, the following are 
some of  its models:  

. .a l  = ((0, {t,}), ({a}, {b})) 

..//2 = {({a}, {b})) 

. , z 3 =  (({a, b}, 0)) 

. / /4  = ((0,0)) 

.... ,,/5 = (({b},O),  ({b}, {,,})) 

but . # 6  = (({b}, {a})) is not  a mode l  o f  P. 
Our  model  no t ion  allows us to include (in any layer) more  positive in format ion  

than what  is suppor ted  as logical consequence  o f  the previous layers, but  the nega- 
tive in format ion  o f  each layer must  be suppor ted  (in that  sense). Thus,  if we want  to 
define an order ing  ~ on  ranked  structures such that  the least model  is the one  hav- 
ing, at each layer, the least a m o u n t  o f  pesi t ive in format ion  and  .the greatest a m o u n t  
o f  negative in format ion  suppor ted  by the previous layer, it suffices to take -< to be 
the lexicographic extension over sequences ( (A+,AT))~ of  the s tandard  order ing  
over three-valued structures: 

(A+,A -)--<(B+,B -) i f fA  + C B  + and  A- _~B-. 

It is easy to see that ,  for the above p rogram P1, .//1 is the ___-least model  in 
Mod(Pl ) .  Now,  consider  the case where  we add the clause b : - b  to PI ,  then ~.#i 
and  d[2 are not  models  o f  the new program.  In this case, the least model  is J/4.  Fur- 
thermore ,  by adding  a third clause b : - ,  ..It'4 is not  a model  o f  the new program 
{a:---,b, b : - b ,  b : - } ,  and  the least model  would  now be . / /5.  
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4.2. N o r m a l  logic p r o g r a m s  

105 

In this section, we extend the  mode l - theore t i c  semant ics  to the general  case o f  nor-  
mal  p rog rams  with variables.  Firstly, it mus t  be not iced  that  this extens ion can no t  
jus t  be based on  seeing no rma l  p rog rams  with variables as abbrev ia t ions  for  pro-  
grams inc luding all possible g r o u n d  instances o f  the  given ;;iauses. For  instance,  
the p r o g r a m s  

P !  =_ { n a t ( O ) : - ,  n a t ( s ( x ) ) : - n a t ( x ) }  and  P2 ~ {,,_-.~t(_r) • - }  

have exactly the same instances (cons ider ing  the s ignature  including,  as un ique  furic- 
t ion symbols ,  the cons tan t  0 and  the unary  funct ion  symbol  s), but  they have a com-  
pletely different behavior .  In part icular ,  the query  

" -- -ma t ( x )  

would  be undef ined  for P1 and  false for P2, The  solu t ion  p roposed  is ra ther  t- ban .  
die the f i rs t-order  case in a s imilar  m a n n e r  to the p ropos i t iona l  case, by cons ider ing  
r anked  structures inc luding not  just  g r o u n d  a toms  but  cor  s t ra ined a toms  with vari- 
ables. 

Definition 4.3. A r a n k e d  three-t'ah~ed Z-st ructure  is an infinite sequence  

. ~ . j  = ( ( A T , A T ) ) , ~  

such that  for any  i E I~: 

e A~ and  A 7 are sets of  pairs p(~)Dc(.~,  where  p E ~ and  c(.~) is a satisfiable Z- 
constra int .  

o A~ and  A 7 are closed unde r  r e n a m i n g  of  variables.  
• A? C_ AI.~_ I and  A ,  C_ AT~ ~. 
• (Cons is tency  Proper ty)  For  any p E PSi, if there  exists Z-cons t ra in ts  c and  d such 

that  p(yc)l-qc E A [  and  p(Yc)[S]d E A [ ,  then c A d is unsatisfiable. 

We will no t  m a k e  explicit the  free variables o f  a cons t ra ined  a t o m  vchenever they 
are not  relevant  and  we will just  write a finite n u m b e r  n o f  layers wheneve r  rest o f  the  
layers are identical  te  the  nth layer. 

A pair  pE]c E A, ~ is logically in terpre ted  as the formula  ( c - ~  p)V, and  a pair  
p n c  E d ;  has the logical m e a n i n g  o f  (c --~ __,p)V. Consequen t ly ,  we define the sets: 

A T v  _ {(~.  v ÷ ---* p)  Ip[-qc E A, }, 

A/-v ~ {(c . . . .  p)V[pVlc E A 7 }, 

A~ - -  A 7  ~' U AJ. 
Definition 4.4. A ranked  three-valued Z-s t ructure  .~/ is a m o d e l  o f  a n o r m a l  Z-pro-  
g r a m  P (deno ted  by .~" ~e  P) iff the fol lowing four  cond i t ions  are satisfied: 

(a) If FETe U pv O A~ -v ~3 (c --~ p)V and  c is satisfiable, then pD]c E A6 ~. 
(b) If  p(yc)l-lc(Yc) E A o then  c/~ c' is unsatisfiable for every (proper ly  r enamed)  

clause p(~) : - IVlc '  E P.  " 
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(c) I f  FET_~ U pv U A~-~ U Af  v h (c ~ p)V and  c is satisfiable, then pUJc E Ai?+l. 
(d) I f  p(X')U]c E A,.-.l then FETx UA v ~s ((c A c ' ) - - .  ~ i ) )  v for  every (proper ly  re- 

named)  clause p(5:) : - f f - lc '  E P. 

Remark  4.1. C o n d i t i o n s  (a) and  (c) can be slightly simplified to: 
(a ')  I f  FETs U pV ~s (c --~ p)V and  c is satisfiable, then pf-lc E AO ~ 
(c') I f  FET_~ U pv U A, -v ~3 (c ---, p)V and  c is satisfiable, then pf-]c E Ai~ t 

if we would  no t  have the aim o f  p rov ing  tha t  this semant ics  defines a specif icat ion 
frame. Unfo r tuna t e ly ,  proper t ies  (a) and  (c) are needed for p rov ing  the so-called 
a m a l g a m a t i o n  p roper ty  o f  specification frames. 

N o ~ ,  we can define a model  theoret ic  semantics  for no rma l  p rograms ,  in terms o f  
the class o f  models ,  for  a prod;ram P" ...... 

Mo~t(p) = { o / I . o / ~  p}. 

This  semant ics  is m o n o t o n i c  with respect to p r o g r a m  extension.  

Theorem 4.1. For all Z-programs P, P'. Mod(P) ~ Mod(P U P').  

Proof .  Suppose  tha t  ,r./ ~n  P U P', for p rov ing  that  ,o/ ~n  P cond i t ions  (b) and  (d) 
are trivial. In order  to prove  cond i t ions  (a) and  (c), it is enough  to observe tha t  
( p u p , ) V =  pV U p , v  which means  that ,  for  any  set o f  fo rmulas  ~ U  {to}, the 
fol lowing holds:  if FETz- U pV U ¢~ ~3 tp then FET,,: U (P U p,)V U • ~3 tp. [] 

Likewise in the p ropos i t iona l  case, the order ing  cons idered  over  Mocl(P) is the lex- 
icographica l  extension _ over  sequences ((Aj~,A,:-))j~ o f  the s t anda rd  order ing.  

As in the p ropos i t i ona l  case, we have the fol lowing theorem.  

Theorem 4.2. For all)' S-program P there exists a ~-Ieast Z-model .//p #~ the class 
Mod(P).  

i + Proof.  Let P be any  _r-program, we define . / / e  = ~(Mi ,M[k))iE~ as the r anked  S- 
s t ructure  such that  
* M d is the C-least  set sat isfying cond i t ion  (a). 
• M~7 is the C-greatest  set sat isfying cond i t ion  (b). 
o M + is the C-least  set sat isfying cond i t ion  (c). i + !  

• M ~  is the C-greatest  set sat isfying cond i t ion  (d). 
By def ini t ion -//p is a model  o f  P. In order  to prove  tha t  it is the least one, suppose  

any  o ' h e r  ,~1 7 Mod(P) such tha t  ,~,/--< .f ie .  Then ,  there is some i c I~1 such tha t  
A; = M S and A i = M 7 for any  j < i, but  one o f  the fol lowing two facts holds:  

(i) there is pDc c A[ \ M/- 
(ii) there is pDc E M, + \ A?. 

We will prove tha t  bo th  facts are not  possible. 
(i) Suppose  tha t  pDc E A:,. I f i  = 0 then for every clause p(,~) • -]U],~ = ~-in P, the 

cons t ra in t  c A,~ = ~ is unsatisfiable,  but  this is a sufficient cond i t ion  for pE]c E M o. 
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F o r  i > O, the case p[]c E A;  for some j < i is trivial since A 7 ~_ A f  = &If .  Other -  
wise, we have  that  for every clause p(,~) : -[tLlv = i in P: 

FET~U 'J-I ~3 ((c A.~- ~ ~,/)v 

_ ~ A V since M,~I~ ~_ ~, we have that  plZc also belongs  to Mi-. 
(ii) Now.  suppose  tha t  pDc  E M,*. Fo r  i --- 0 tha t  means  FET~ UPV OM~- ~3 

(c --~ p)V, since -~/E Moct(P) and  M~; ~ C_ .4~-;. this suffices to ensure  tha t  p O c  E Aft. 
F o r  i > 0 there are two cases. First,  pF-lc ~_ M~ ~ for some j < i, but  Ai + _D A j- = Mj + 
and  A,-~ D AiL I = M, I. Otherwise ,  we have  tha t  

bET,- U pV U M, 'v U M,~'~ ~3 (c  ~ p)~' 

since (i). we have that  Ai-~ I ~- 1~'Ii-- t ,  and  because o f  the cons t ruc t ion  o f  . a t ,  we also 
have  that  A,: v _~ M, v ,  ~o tha t  we ob ta in  p D c  E A, ~. [] 

4.3. The least model  

In this section we s tudy some interest ing proper t ies  of  least models .  In par t icular ,  
different c laaracter izat ioqs by logical consequence  closure  and  its cons t ruc t ive  defini- 
t ion th rough  an immedia te  consequence  opera tor .  

F r o m  now on. ((M~',It~)1~.~. will denote  the least model  . / /p  of  a given 
p rog ram P. 

O u r  first least model  charac te r iza t ion  is made  in terms o f  a logical consequence  
closure o f  the equa l i ty  theory and  the s t anda rd  logical in te rpre ta t ion  o f  the p rogram.  

Lemma 4.1. For an i' L'-progrtm~ P: 
(i) p[ ]c  E M,; ¢=~ FET_, u P~' , ~  (c --~ p)V. 
(ii) p[]c E M~ ~'. ~ ¢==~ FET,_- U pv U M~" ~3 (c ---, p)V. 
(iii) plSlc ~ M,- ~ FEZ,_ U pv U M; ~' ~3 (c --~ _,p)V. 

Proof.  Righ~:-to-left impl ica t ion  o f  (i) and  (ii), as well as (i i i)-left-to-right.  are trivial. 
We  will prove the o thers  by s imul taneous  induc t ion  on i. 

F o r  the converse  impl ica t ion  o f  (i). we define the set 

B -- {q[-qd J FETz U pV ~.~ (d --~ q)V and  d is sat isfiable}.  

Now.  using the fact tha t  for every set o f  formulas  • U {~b}: 

a , u { , p l , t , b ; , p } b , ~ ,  ~ , t , b , q ,  
it is easy to see that  B satisfies Def ini t ion (a). Therefore ,  M~ C B. 

The  p r o o f  for the converse  impl ica t ion  of  (ii) is similar,  but  t ak ing  the set 

B ~ {qff3d J FET,= U P  v U M~ fv ~3 (d ~ q)V and  d is satisfiable}.  

For  the r ight-to-left  impl ica t ion  of( i i i ) ,  the key idea is tha t  the p rog ram P c a n n o t  
" ' add"  new negative logical consequences .  In par t icular ,  i f  we assume that  aff]c is not  
in Mi-, then we can build a model  o f  FETz UPV U M ~  which is not  a model  o f  
(c ~ -,a)V: it is enough  to cons ider  the ~qerbrand s t ruc ture  (A ~, A-)  where  A-  con-  
sists o f  all a toms  ba  such that  bOd  E M~- and a is a (ground subs t i tu t ion)  so lu t ion  
o f  d. and  ,4 +- includes the rest of  the a toms.  [] 
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A trivial consequence  o f  the previous l emma is tha t  Jf/~, is closed with respect to 
less general  constraints .  

Lemma 4.2. For any Z-program P and for  every i E ~: 
(i) i f  p[:]c E M~ + and FETr ~3 (d --~ c) v and d is satisfiable, then prJd E M~+; 
(ii) i f  pU]c E M 7 and FET~ ~3 (d ~ c) v and d is satisfiable, then pU]d E Mi-. 

Proof.  I t  is enough  to notice tha t  for  any  set o f  formulas  ,PU{q~}, if  
FETz U • ~3 (c ~ q~)v and  FETz ~3 (d --+ c) v, then FETz- U rp ~3 (d --* tp) ~ . [] 

Now,  we are going to character ize the least model  in the usual construct ive way: 
as the least f ixpoint  o f  a m o n o t o n i c  and  con t inuous  immedia te  consequence  opera-  
tor.  F o r  that  purpose  we order  ranked  structures by the trivial extension o f  Fi t t ing 's  
order ing  

~ _ _ _ p ~ i f f A  +C_B + and  A~-C_B/- for a l l i ~ .  

It  is easy to see tha t  ranked  structures are a cpo with respect to  ___e, whose bo t tom is 
the infinite sequence o f  pairs o f  empty  sets and  the least upper  bound ,  for  evcr) ~n- 
finite increasing chain o f  r anked  str,:~tures, is the level-by-level un ion  o f  posit ive and  
negative par ts  o f  all o f  them. We define an immedia te  consequence  ope ra to r  in the 
fc, I lowing way. 

Definitio~ 4.5. Let P be a Z-p rogram and  . 4  a ranked  Z-structure,  Te(~/) = ~ wilere 
:~ is the ranked  s tructure defined for  each i E [~ by: 

B + --- Vp(A~,Ai,,) and B~- = Rp(Ai~,,AT,_t) , 

where A+I ~ AZI --= ~, by convent ion ,  and  Vp and Rp are the fol lowing two opera tors  
over pairs  o f  sets o f  cons t ra ined  a toms:  

Ve(C, D) = {p(£)Dc(~) IFor some n > / I ,  

some satisfiable cons t ra in ts  e t , . . . ,  e, ,  

and  some subset o f  proper ly  renamed  clauses o f  P 

{p(~) : - P O d ~ l  1 <. k <. n , f ree (~  A dk) = -~,.~ }: 

FETe: ~3 (c ---} V~,=13~k(d~ A ck)) v and  

FETr U C v U D v 1=3 (c~. --~/k)v for  all k = 1 . . . . .  n}, 

Re(C, D) = {p(Yc)Dc(~) lFor  every proper ly  renamed c l a u s e  p(Yc):-[Dd E P: 
F E r , : u C v u D  v t=3 ( ( c A d )  ~ 9[) )  }. 

The powers (or  i terat ions)  o f  Te are defined by 

T ~ p ( d ) = d  and  Tfi+'(~)=Te(T~(~4)) .  

The mono ton ic i ty  o f  logical consequence trivially implies tha t  Vp and //p a=e 
m o n o t o n i c  with respect to C, hence Te is m o n o t o n i c  with respect to -%. Mc, reover, 
we will prove tha t  it is con t inuous  and, therefore,  we will ob ta in  Me at the ~ i terat ion 
o f  Te over  the always empty  ranked  s t ructme.  
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Lemma 4.3. For any T.-program P, Tp is continuous. 

ProoL Cons ider  any  infinite cha in  o f  r anked  s t ructures  

~¢0 ----_r ~ '1  -'<r - - -  " < F  JTg/ll " g F  ° ~ -  

By m o n o t o n i c i t y  o f  Te it is enough  to p rove  tha t  Te(U.~n) -<F LtTe(o'dn). Consider ,  
firstly, p(~)~c(~)  E (Tp(U~Cn)) o, then there exists n >f 1, cons t ra in t s  ci . . . .  , c,,, a n d  a 
subset  {p(~) : --/kE]d~-i I <~ k < n} o f  P,  such tha t  

FET~ ~3 c --* 3fi~(d~- A ck) 
k = t  

and  

FETr U (U,~n)o v ~3 (ck --~ [k)V for  all k = I . . . .  , n. 

Hence,  by compac tness  o f  the logic, there exists some ~ ' r  (in the chain)  such tha t  

FETz U (..~'r)o v ~3 (ok ~ :~-)v for  all k = 1 . . . . .  n. 

The re fo r .  ~ ,r-(~)LTc(~) C (Te(~e/r))i~, and  so, it belongs to (t_lTe(.~/n)) o. 
Similarly,  by cons ider ing  tha t  p(Yc)Dc(~) ~ (Tp(u,~'n)),++j, we have that :  

k = !  

and  

FETe U (.~r)+i v U (~e/r),; -v ~3 (ck ~ ~-~-)v for all k : :  l . . . . .  n. 
+ 

so tha t  p(~)l-qc(~) E ( Te(~lr) ),+!. 
The  p r o o f  for  the inclusion o f  negat ive par ts  is s imilar  and  easier. [] 

Tile fo l lowing l emma provides  a useful induc t ion  pr inciple  for  reason ing  abou t  
the  least model .  In par t icular ,  it is the basis for  tbe least mod~:l-:charaeterization in 
terms o f  least f ixpoints  a n d  for  c o m p a r i n g  Tp with Fi t t ing ' s  opera to r .  

Lemma 4.4. For any Z-program P: 
(i) M g  = VI."(~), 0),  
(ii) M0- = Re(O, 0), 
(iii) M +,  = V~°(M~, M.), 
(iv) M,.Z ! = Re(M?,  M 7) ,  

w/,e,~, v ° ( c , o )  = c a , d  v : + ' ( c , o )  = v p ( v : ( c , o ) , D ) .  

Proof. Facts  (i0 and  (iv) are tr ivial  since M o and  M~I  are, respectively, the C- 
greatest  sets sat isfying cond i t ions  (b) a n d  (d) in Def in i t ion  4. The  r ight- to- lef t  
inclusions o f  (i) and  (iii) are  also trivial  t¥om the  fact tha t  ~:g:o is a model  o f  P. Since 
,Atp is the  least model  o f  P, we will prove  the lef t- to-r ight  inclusions o f  (i) and  (iii) by 
p rov ing  tha t  V~(0, ¢) and  V~,°(Mi~,Mi -) satisfy, respectively, Def in i t ion  4(a) and  (c), 
tha t  is, for  any  satisfiable cons t ra in t  c: 
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(1) FETzU.pv U V;,"(O,O) v 1=:3 (c __,p)V ~ p D c E  I%"(0,0). 
(2) R~.Tz- U pv U Yt;"(MT, M i- )v U Mi -v ~.~ ((,., _ - .  p)V 

pr~c~ v/,'(,w,', ~ -  ). 
In o rde r  to  p : o v e  ( I ), let us cons ide r  a c o n s t r a i n e d  a t o m  p(.~)r-qc(.-r) ~/V/"(O, O) wi th  

c sat isf iable ,  we will p rove  the  exis tence  o f  a th ree -va lued  X-mode l  o f  FET,-U pV 
U(V~"(O, 0)) v wh ich  is a c o u n t e r - m o d e l  o f  V.~-(c(~) --~ p(5.-)). 

Let 4) be the  fo l lowing  set o f  f o r m u l a s  over  the s igna tu re  S ' :  

q~ =- FETz U {c[a/.~]} U {.-~d[#/Yc] l p[~d C V/,"(I}5, 0)}.  

where  Z" is the  ex t ens ion  o f  Z by  the  new c o n s t a n t  s y m b o l s  a. 
N o w ,  let ,e.,/be the  least 3-va lued  H e r b r a n d  U - m o d e l  o f  tb sa t i s fy ing ,  in add i t i on :  

q.,,(g) = [ .t_ if  eb ~ (.~ = .~ - -  e) v for  some  a(.V)~e(.i) E ~5;"(~, W j, 

t u o therwise ,  

fi-r each  t , -ary p red ica l e  symbo l  q E I-'S, a n d  each  .~ E (tt,_:,)". 
It is t r ivial ,  by  c o n s t r u c t i o n ,  tha t  .-~," is a mode l  of['ET, g (f~;"(0, (I))) v. a n d  a cot tn t -  

e r -mode l  o f  V~(c(,~) ~ p(.~)). 
To  p rove  tha t  ~./ is a lso  a mode l  o f  pv, let q(Y¢) : -11  . . . . .  IkDg be a c lause  in P 

{with i¢.9 as free va r iab les  in the  body) ,  and  let .~ ~_ (H_,,)" a n d  r E (H,_.-,)", such tha t  
.¢./ ~- (] A g)[g. ~/.~, ¢]. Then ,  /~ . . . . .  h. mus t  be a t o m s  (becauz, e o u r  mode l  does  no t  
sa t is fy  a n y  nega t ed  a t o m )  such tha t  for  all i = 1 . . . . .  k there  cxists  a c o n s t r a i n t  d; 
such t ha t  l~(~',j")~d~(S',y) E ~;"(O. 0) a n d  

( ) ,/~ ~ _rr = ,~ -~ 9p(gU-,.e) A d~(:L2)) . 
i.:1 

M o r e o v e r ,  by  logical  c o m p a c t n e s s  a n d  the de t in i t ion  o f  l},, the fo l lowing  c o n s t r a i n e d  
a t o m  be longs  to I,~,"(0.0): 

q(~')~3Y(g(k, fi) A ~A d~(-~, f '))  • 

So tha t ,  q ~ ( , ~ )  = It. 
Fina l ly ,  the  Z ' - s t ruc tu re  ,,~'/ mus t  be t r a n s f o r m e d  in to  a Z-s t ruc ture ,  by in terpre-  

t ing  {over the  same  universe)  on ly  func t ion  s y m b o l s  in FSz. (but  no t  the new c o n s t a n t  
symbols ) .  

T h e  p r o o f  for  (2) is very s imilar .  F o r  a c o n s t r a i n e d  a t o m  p D c  ¢ l~"'(Mi ~ , M, ) wi th  
c sat isf iable ,  we o b t a i n  the ini t ial  X ' -model  ,rJ o f  

q, ~ FET,- W {¢[a/xl} U {~d[a/Scllp~d ~ ;5';' ( M/  . M/ )} 

wi th  i n t e r p r e t a t i c n  for  p red ica t e  s y m b o l s  given by: 
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_t 
q'~/(g) : 

U 

if q~ ~ (.~ = g --~ e) v for  some q[S]e E I'~,"(M, ~ , M F ), 

i f  q~ ~ (~- = g ~ e) v for some q[]e E M~-. 

otherwise.  

P rov ing  tha t  ~e,/is a model  o f  P is very s imi lar  to the previous  case. [] 

F r o m  now on, we will deno te  by  Te r k thc k th  power  (or i tera t ion)  o f  Tp over  the 
r anked  s t ruc ture  ((0, 0)), (0 ,0)  . . . .  ). N o w  it can be shown tha t  . l ip  coincides  with 
T,, ~" to, which  is the least f ixpoint  o f  Tp. 

Lemma  4.5. For at O, S-program P: Tp t to ~ - . / /  p. 

Proof.  It is trivial tha t  for all j E ~ :  Tp ]" j -<r -///", hence 7~, [ ~,~ -<~-. l/t,. W e  will 
p rove  the oppos i te  inclusion,  tha t  is, for all i E I~: 

i~¢ + C (Tp [ oJ){ a n d  M;-- C (7~., ,~ ~o),.- 

by  induc t ion  on i. Us ing  L e m m a  4.4, Ibr all i E ~ (where M~_~ : MS, : 0), we k n o w  
that :  

M~+=V~"(M,~ , ,M, - , )  and  M Z = R p ( M / , , M T _ I ) .  

F o r  i : :  9 it is trivial by def ini t ion o f  Tp. In the induct ive step for i + i. the inclusion 
o f  negat ive  par ts  is trivial.  Fo r  the posi t ive ones,  it is easy to prove  tha t  for all j E ~1: 
V~(M.+,Mi -)  C (Te 1" ~o)i+~ I, using induc t ion  o n ]  and  the induc t ion  hypo thes i s  abou t  
/14.* and  M/-. Hence,  ,.l/t, -'<~ Tp T tO. 

4.4. Equivalence with she Clarlc-Kuw.'n ,+'emantics 

In Ref. [25] was proved tha t  the finite powers  o f  F i t t ing ' s  ope ra to r  coincide  wi th  
the three-valued logical consequences  o f  C l a r k ' s  comple t ion  ( the C l a r k - K u n e n  se- 
mant ics) .  This  result was adap ted  to the C o n s t r a i n t  Logic P r o g r a m m i n g  f r amework  
in Ref. [32]. Here  we are go ing  to show that  the finite powers  o f  ou r  c o n t i n u o u s  op-  
e ra to r  Tp essential ly coincide  wi th  those  o f  F i t t ing ' s  opera tor .  Hence,  our  model - the-  
oretic semant ics  "s equiva len t  to the C l a r k - K u n e n  semantics ,  in  par t icular ,  the least 
model  o f  every p r o g r a m  P is a three-valued model  o f  c%~mp(P) a n d  is typical  in the 
class o f  all three-valued models  o f  Comp(P).  Firs t ly ,  we recall the def ini t ion o f  Fit-  
t ing 's  ope ra to r  Re and  show its re la t ionsh ip  with  our  Tp by means  o f  one example.  

Definition 4.6 ([20,25,32]). Let P be a normal  Z-program,  the immedia te  consequence  
ope ra to r  q~r, r ang ing  over  H e r b r a n d  three-valued Z-s t ruc tures  (or s t anda rd  three- 
valued in te rpre ta t ions )  . ~  ---- (H +, H- ) .  is given by: 

~e(J¢~) + : {p(t-) E Bz i There e×k~ts a clause p(.~): - [ D d  in P with flee ~ariables 
x ,y  an0 a tup!e g of  closed S - terms such that: 
./e ~ (d A l)[ilx',Sly]}, 

~/,e(.~)- : {p(t--) E Bz I For every clause p(X-): - [ l i d  in P with tree variables 
x , y  and every tuple g of  closed Z - terms: 
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qJe is no t  c o n t i n u o u s  and  ob ta ins  i n fo rma t ion  wi thou t  t ak ing  in to  accoun t  the 
negat ive  dependences ,  whereas  Tp is c o n t i n u o u s  a n d  ranges  over  r anked  s t ructures  
p lac ing i n fo rma t ion  at layers.  F in i te  powers  o f  bo th  ope ra to r s  ob ta in  essential ly 
(in spite o f  layers)  the same in fo rmat ion .  In o rde r  to i l lus t ra te  the re la t ionsh ip  be- 
tween bo th  ope ra to r s  let us cons ider  the fol lowing example  (.extending the usual  pro- 
g ram to show the n o n - c o n t i n u i t y  o f  F i t t ing ' s  ope ra to r  wi th  two more  clauses).  

Example 4.2. Let  P be the fo l lowing p r o g r a m  o f  the s igna ture  wi th  c o n s t a n t  0, l - a ry  
func t ion  s, 0-ary  predica te  q and  1-ary predicates  p, a, b: 

p(x) : - p (y )Dx  = s(y) 

q : - p(x) 
a(x) : -  -w(x) 
b(x) : -- a o ' ) [ ~ ' - ~  sO')  

F o r  this  p r o g r a m  P, the i te ra t ions  top Y k over  the (@, O) three-valued in te rp re ta t ion  
can be descr ibed as follows: J 

k to~ T k = ((to~ T k) +, (to~ T k) - )  
(0 ,~)  

~ f t , ( o ) , p ( 0 ) } )  

({a(O)},  {b(O),p(O),p(s(O))}) 

({a(O), b( ~(O) ),a(s(O) ) },  {b(O),p(O),p(s(O) ),p(s2(O)) } ) 

to 

t o +  1 

({a(s'(O)) l i >1 O} U {b(d(O)) l i 1> 1}. {b(O)} U {p ( s ' (O) ) [ i  >i 0}) 

({a(s'(O)) I i /> O} U {b(s i (O))  I t ~  1 }, {b(O)} U {p(s'(O)) l i i> O} U {q}). 

To  describe the i te ra t ions  Tp T k ,  since each layer  o f  our  f ixpoint  is closed wi th  re- 
spect to  less general  cons t ra in t s ,  in each layer  we will only  write tt~ mos t  general  con-  
s t ra ined a toms.  

k Tp T A = < ( M d , M o ) , . . . ,  ( M + , M / )  . . . .  > 

((0,_¢.)> 

((@, {b(x)Elx = O , p ( x ) D x  = 0})> 

((•, {b(x)[_qx = O,p(x)[Dx  = 0}), 

({a(x)E2r = o},  {b (x )Ox  = O, p ( x ) ~  = 0 v x = ,~(0) })> 

((0, {b(x)[Dx = O,p(x)Dlx = 0}), 

({a(x)E]x = O, b(x)[Dx ~- s(O) },  { b(x)D]x == O,p(x )[Dx  = 0 V x ---- s(O) } ) 

({a(x)ff]x = O v  x =  s(O), b(x)[ZLr ---- s(O)}, 

{b(x)D,  ---- O , p ( x ) D x  --- 0 v x ---- s(O) V x = s2(O)})) 

! in order to make the reading easier we underline the negative parts. 
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~, (tO, { b ( x ) ~  = 0 , p ( x ) r a ~  = 0 } ) ,  

({a(x)E2x = O,b(x)Elx = s(0)},  {b(x)l-L~ ----- 0 , p ( x ) ~ x  ----- 0 V x ----- s(0)}),  

( { a ( x ) C ~  : -  0 v . . .  v ~ = ~ (0~  I i > / 0 } u  

{b(x)[S]x = s(0) V . . .  Vx = s '(0) [ i />  1}, 

{ b ( x ) n r  = 0} U {p(x)t:2x = 0 v . . .  v x =  s '(0) l i ~> 0}) 

Not ice  tha t  all posit ive facts b(x)ELr-----si+t(0) are placed in the same layer as 
a(x)Dr = si(O), but  negat ive facts p(x)Eix = s'+t(0) are placed one layer  af ter  the first 
occurrence  o f  p(x )~x  =: s i(O). 

The  ope ra to r  ~ff  given in Ret\ [32] is a n o n - g r o u n d  version o f  ~e  relative to a 
s t ructure  ~ '  where the cons t ra in t s  are interpreted.  It  ranges over  (non- ranked)  par-  
tial cons t ra ined  in te rpre ta t ions  and  is ne i ther  cont inuous .  The  con t i nuous  o p e r a t o r  
defined in Ref. [18], to ob ta in  a fully abs t rac t  f ixpoint  semant ics  charac te r iz ing  the 
ope ra t iona l  semant ics  with respect to  answer  cons t ra in ts ,  is in some sense closer to 
ou r  Tp. However ,  there are  two differences tha t  may  be remarked .  Firstly, it also) 
ranges over  (non- ranked)  par t ia l  cons t ra ined  in terpre ta t ions ,  and  is defined relat ive 
to a given structure.  Secondly,  only  the negat ive par t  o f  the resul t ing f ixpoint  is 
closed wi th  respect to  finite d i s junc t ion  o f  const ra in ts .  R e m e m b e r  tha t  in o u r  case 
bo th  par ts  o f  every layer  are closed with respect to less general  const ra ints .  

Now,  we will show that  ou r  f ixpoint  semant ics  essential ly coincldes  with cu t t ing  
off at step o~ the i te ra t ion  o f  q~e, in the sense tha t  we are going  to relate 4,p T ~o with 
the three-valued in te rp re ta t ion  ob ta ined  f rom ~,ur ( ranked)  f ixpoint  model  by foraet-  
t ing layers. We  build the posi t ive (respectively negative)  par t  o f  this in te rpre ta t ion  as 
the set all g round  instances o f  the cons t ra ined  a toms  in the posi t ive (respectively neg- 
ative) par t  o f  any  layer. 

Definit ion 4.7. Let P be a Z-p rogram,  [,//p] (or  equiva lent ly  ITs, ]" to]) is the three- 
valued in te rpre ta t ion  given by (@ E { + , - } ) :  

[..I/e] ~ : {p(t-)  E n ~  I r ( ~ )  c-L~ : i ~ g i  ~ f o r  s o m e  i E ~ } .  

It  is wor thwhi le  no t ing  tha t  by closure with respect to less general  cons t ra in t s  the 
above  membersh ip  requi rement  is equivalent  to  ask for some p(~)f-qc(~) such tha t  
FET~ ~ c[-i/Yc]. Moreover ,  by completeness  o f  the theory  FETr, the lat ter  is equivalent  
to sat isfact ion in some a rb i t r a ry  fixed model  o f  FETr, since all its models  are  elemen- 
ta ry  equivalent .  

Lemma 4.6. For any Z-program P and an), k E [%1: [Tp "f k] = ~p T k. 
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Proof.  The p roo f  is made  by induct ion on k, using the induct ion  principle provided 
in Lerilma 4.4 for [Tp T k]. We also use, a long the proof,  the fact that  a sentence is a 
logical consequence  of  FETz iff it is satisfied in some stvecific model  o f  this theory.  

For  k = 0 it tr ivially holds.  For  the inductive step we are going to show the four 
inclusions needed for proving  [Tp T (k + 1)] -- ~ e  ~ (k + 1), assuming the induct ion 
hypothes is  [Te T k] = ~p T k. 

We first consider  p(t-) ~ [Te T (k + 1)] +. Then  there exists L j  E ~ such that  

p(.~)a~ = i ~ v i ( ( r e  T k)~. (re  r k)/~. 

Now,  we use induct ion on j .  The  basic case j = 0 holds  s imply by induct ion hypoth-  
esis and (~e  T k) + c_ (~p I ( k +  l ) ) r .  For  the inductive case suppose that  
p(Yc)E~ = t E Vd+I((Tp T k ) / . ( T e  T k) i - ) -There fo re  for some n />  !, some satisfiable 
cons t ra in ts  cl . . . . .  c , ,  some subset { p ( Y ) : - ~ U d , ] l  ~< r ~  n} of  properly renamed 
clauses o f  P, with .fi-ee([ ~ A dr) --- ~ , y :  

r I 

and  for all r =  1 . . . . .  n" 

FET:,U(Vi~((Tp [ I.'):+.(TP T k ) . ) v  U (Tr  1" k)~ -v k (c,  --> i ' )  v. 

It is clear that  t/,~ T k ~ FETe. Besides by the: induct ion hypothesis :  

• ,~ ~ k ~ (V,.:((Tp ~ 1,.)~", (Te ~ k)7)) v and also <b,. [ k ~ (Tp r k)~ '~. 

Then we obta in  ~e r k ~ t/" Ad,)[-t-/~,g/P] for some i ~<r<~n and some closed g. 
Hence,  p(t-') E (,/~z, 1" (k + 1))+. 

Now.  consider  p(t-) c (4~p T (k + ! ) ) ' .  Then  4~e r k ~ (dA [)[U.t,g/i~] for some 
clause p ( . ~ ) : - f D d  in P and some tuples L g of  closed Z-terms,  hence 

FET,  p- v.i-(.~ = i - - ,  3y (d  A ~ . =  i A i '  = .~)) 

and also, by the induct ion  hypothesis ,  there exists some i ~ r~ such that  

FET,. U (Te T k) v ~ ((.i" = t -Aft  = .~) --, / ) v  

Then  p(2)E2i - :  i E  (Tp l" ( k +  1))~ ~. 
Fo r  the negative parts ,  we first prove tha t  [Te [ (k + 1)]- C (~p T (k + 1)) -. Sup- 

pose tha t  p(.V)l:li- = i E Rp((Tp T k)/~, (Tp ~ k)i- ) holds for some i E ~ .  Then  

F e ~  u (r, ,  t k ) [  ~ ((.~ = i A  d)  - -  -4 ) " .  

for each clause p(~): - f ~ d  in P. In part icular ,  by the induct ion hypothesis  q~, l" k sat- 
isfies all o f  these sentences. Hence  ~e  1" k ~ (~(d  A D [t/-~. ~/Y] for all o f  these clauses 
and  any  tuple o f  closed terms .~. Then  p(t~ E (q~e T (k + I ) ) - .  

Conversely,  let us suppose p(t-) ~ (~e  T (k + I ) ) - ,  then 

qb#> T k I:: ~(d  A hT/.~,UY] 
tbr all clauses p(.~): -[U]d in P and all closed terms .~, By the induct ion hypothesis  
there exists i ~ ~d such that  

r ~ T z  U (rp r k ) [  I = ((2 = #A d)  --~ -1i) v 

and  therefore p(.~)Fq~- = ~ ~ U(Tp T (k + l ) ) i . l .  [] 
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A di rec t  c o n s e q u e n c e  o f  the  p r ev ious  l e m m a  is t he  e q u i v a l e n c e  b e t w e e n  o u r  least  
m o d e l  a n d  the  finite p o w e r s  o f  F i t t i ng ' s  o p e r a t o r .  

T h e o r e m  4.3. For any S-program P: [.//e] = ~ e  ]" ¢o. 
. . ,  

It is w e l l - k n o w n  (cf. Ref.  [25]) tha t  [- / /e]  c o u l d  no t  be  a m o d e l  o f  Comp(P).  T h e r e -  
fore,  in o r d e r  to  relt~te o u r  least  m o d e l  -//t, wi th  p r o g r a m  c o m p l e t i o n ,  we  h a v e  to  see 
it as a " ' s t a n d a r d "  t h r e e - w d u e d  s t ruc tu re  r a t h e r  t h a n  as the  H e r b r a n d  s t ruc tu r e  g iven  
by [.//e]. W e  s h o u l d  first de f ine  the  t r u t h - v a l u e  o f  f i r s t -o rder  s en t ences  in r a n k e d  
t h r ee -va lue  s t ruc tures .  F o r  that ,  we beg in  by  a s s ign ing  t r u t h - v a l u e s  (in ..~t) to  c o n -  
s t r a ined  a t o m s  will1 the  key ( a n d  o b v i o u s )  de f in i t ion :  

.¢-/(p(.~-)1--¥(.i-)) = t'_ if  p(X)r-?-(.~) c A j for  s o m e  i C M. 
u o the rwise .  

Th i s  de f in i t i on  can  be e x t e n d e d ,  in a d i rec t  way  to  any  a r b i t r a r y  ( c o n s t r a i n e d )  for-  
mula .  Here ,  we  o m i t  this de t i n i t i on  d u e  to  the  lack o f  space;  h o w e v e r  a very s imi la r  
ex t ens ion ,  to  in t e rp re t  goa l s  o f  C L P - p r o g r a m s ,  is m a d e  in Refi [32]. 

T h e o r e m  4.4, For every S-program P : ./,it, ~ Comp(P).  

Proof .  O n e  has  to p r o v e  tha t  every  a x i o m  ~p E Comp(P).- / /e(~pE]T) -----_t ho lds .  F o r  
the  ax iom~ in bET,: this  is tr ivial .  F o r  the  a x i o m s  o f  the  form:  

we  p r o c e e d  by case-~nalys is  o f  the  th ree  poss ib le  t r u t h - v a l u e s  (in . / / e )  o f  the  c o n -  
s t r a ined  f o r m u l a  p(;¢)~c ( for  s o m e  a rb i t r a ry  sa t is f iable  c o n s t r a i n t  c). s h o w i n g  t h a t  
it co inc ide s  wi th  the  t ru th  va lue  o f  V~ '  ~ ~-~-'¢ (d~ A l ~ )E3c i n . / / e .  In each  case.  we m a d e  
use o f  the  de f in i t ion  o f  the  I ru th -va lue  c o r r e s p o n d i n g  to  c o n s t r a i n e d  f o r m u l a s  wi th  
the  c o n n e c t i v e s  invo lved .  

N o w .  we p r o v e  tha t  . / /p  is " ' typ ica l"  in t he  class o f  all m o d e l s  o f  Comp(P).  

T h e o r e m  4.5. For  till v Itorlllct] progrtttll P ~otd tlttl '  cot~strahted literal lFTc.: 

/de F IE3c --~ Comp(P) ~ IRe'. 

Proof .  W e  will p r o v e  (by s i m u l t a n e o u s  i n d u c t i o n  on  n) tha t  for  till n E ~ :  
(i) pDc  E M I ~ ~ Chnnp(P) ~ (c --~ p)V 
(ii) p~c" E M,; ~ Comp(P)  ~ (c ---, --,p)':. 

F o r  n = 0, if pIZlcE M,~" then .  by L e m m a  4.1, FET,_-UpV~-(c  ___,p)V. Since  
Comp(P)  ~ FET,_ U pv (see Sec t ion  2), Comp(P)  ,~ (c ---* p)V. I f  p(.~)f-lc(.~) ~_ ~10- t h e n  
c / \  dk is unsa t i s f iab le  for  all p(.~-) : -f 'V-/dt E P. T h e n .  for  all k = I . . .  m ( w h e r e  m is 
the  n u m b e r  o f  c lauses  wi th  h e a d  p): FET,_ ~ ~ V.~(c --, -,3f'~da). T h e r e f o r e ,  
Comp(P)  ~ VX'(c(X') --* ~p(X)). 

F o r  the  i nduc t ive  step,  s u p p o s e  tha t  Comp(P)  [= M~. In the  par t  (i). we  h a v e  tha t  
Comp(P) ~ FET,_ '0 pv UM~.  If plZ]c E M~:~ then ,  by L e m m a  4.1, FETz U pv U M  v 
(c ~ p)V. Hence .  the  last f o r m u l a  is a lso  a logical  c o n s e q u e n c e  o f  Comp(P).  F o r  pa r t  
OiL ifp(.rc)[--lc(.i-) E ,~//2 ,, t hen  V5,'(c~2) ~ ~ V~'~:, 3Y't"(dk A ~k)) is a logical  c o n s e q u e n c e  
o f  FETz U M v. T h e r e f o r e  Comp(e)  ~ ~x(c(.~)-- ,  -~p(:~)). 
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5. A specification frame for normal logic programs 

In this section, we show how the model - theore t ic  semantics defined in Section 4 
can be the basis for defiuing a sl~ecification frame, which has the addi t ional  proper-  
ties o f  ensur ing the existence o f  composi t ional  and  fully abstract  semantics for most  
kinds o f  modu la r  units. In particular, we prove, as a consequence  of  these properties,  
the  existence o f  a compos i t iona l  and fully abstract  semantics for the s tandard  union 
o f  no rmal  logic programs.  

Definition 5.1. Let _r = (FSz, PSz) be some prefixed signature. Let NLPz be the 
category o f  normal  logic p rograms  over S,  whose objects are the pairs (L', ~) ,  with ¢, 
being a set o f  normal  clauses over S and  whose morph i sms  are just inclusions, up to 
renaming  of  variables, o f  sets o f  normal  clauses. 

We define the model  fnnctor  Mod mapp ing  every p rogram P in NLPz into the cat- 
egory Mod(P), whose  objects are ranked  S-structures satisfying P and where  a mo-  
rphism is just  the order ing  relation between two ranked structures. For  every 
m o r p h i s m  h: P --. P', Vh = Mod(h) is just  the identity. 

Now,  we show that the above defined pair is, in fact, a specilication frame. 

Lemma 5.1. ,  1 "L,a.~z = (NLPz, Modz. : NLPz .'p ---. C a t )  is a specification frame,  i.e. it 
satisfies: 

(i) NLPz has pushouts; 
(ii) Morl trans]'orms pushouts in NLPz into pullbacks in C a t .  

Proof. The pushout  o f  three programs (_r, qr~0), (2~, ~1 ) and (X, ~2),  with ¢~0 c q~l 
and  qr~0 C 4)2 is just  PI u P2, i.e. (S, q~l u ~2).  

On  the o ther  hand,  to show existence of  amalgamat ion ,  on the current  context,  is 
trivial, since 

• rJ ~ R P !  and ~ ~ R P 2  ~ .~/ ~ R P I U P 2  

is an obvious  con:~equence o f  Definit ion 4 (a l though it does not  hold for the simpli- 
fication discussed in R e m a r k  3.1). Therefore  

Mod(P1 ) + Mo~(P0)Mod(P2) = Mod(PI ) fq Mod(P2). [] 

Remark 5.1. It may be no ted  that we consider  a fixed signature for all p rograms in 
the specification frame. The  main  reason for this is technical,  as the counter -example  
below shows. In particular,  in the general  case we can not  define a forgetful functor.  
It can be argued that  this is highly inconvenient  with respect to modular i ty  issues, 
however  we do  not  th ink that  this is impor tan t  insofar as visibility is t reated 
complete ly  at the static semantics level. On  the o ther  hand,  we believe that  this 
s i tuat ion is in some sense related to the ~aature o f  negation-as-fai lure where  one  can 
always expect to obta in  (negative) answers to queries over predicates which are not  
in the signature o f  the given program.  

Example 5.1. Let S!  and Z2 be two signatures with PSzt = {p} and  PSz2 = {p,q}. 
Let . q / =  ((O, {q } ) , ( {p } ,  {q})) and ~ - :  ~(0, ¢), (O, O)). Then L 4 _  ~ in ~'2, but 
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Iz~--- zz/Iz~ in g o d ( Z l , O ) ,  where  ~¢ lz~ (resp. ~ Izt) is V~(~¢) (resp. V/(g~'), and/6i  is 
the  forgetful  func tor  associated to the  inclusion i: (ZI ,  0) c (Z2, 0). T h a t  is, .~' l~t 
(resp. ~ 1~) is ob ta ined  f rom z~' ( r e sp . .~ )  by dele t ing  all a t o m s  inc luding  symbols  
not  in E 1, which  is the mos t  obvious  defini t ion o f  a forgetful  func tor  in this context .  

Before p rov ing  fl tr ther " s t ruc tu ra l "  proper t ies  o f  this specif icat ion f rame we will 
show that  the  class o f  mode l s  associated to  a given p r o g r a m  forms a comple t e  lattice. 
On  the  o the r  hand,  this result  will be used as a l e m m a  for showing  the  o the r  prop-  
erties o f  the  specification frame. 

L e m m a  5.2. For  any  p r o g r a m  P, Mod(P) is a comple t e  lattice. 

Proof .  In o rder  to show tha t  Mod(P) is a comple t e  latt ice we have  to  p rove  that ,  for  
each subset  6 ~ o f  Mod(P) ,  we can define the  jo in  and  mee t  o f  the  mode l s  o f  .SP, u,Se 
and  r-16~. 

(a) The  jo in  ~' = u6~ can be def ined as follows: 

C~ = {aE]c I FETz, uP v u U{A~Vl~Z e ,¢o} ~3 (c -- a) v} 

Co = n{Aol-~ ~ se0} 

where 6Co = 6e. 
For all layers i > 0 such that cj~ # 0: 

c;- = {a~c  1 FETe- u P~ u CL, u U{A; -V l~"  e .Sq} 1=3 (c --,. ' : 'F} 

q- = N{A21 /  sq} 
where  A"i = 6ei_! \ {~c/[Ai-i # Ci-t }. 

If  there  is k e N such that  .Sek_l # (b but  .9°4 = 0, then  for all layers i wi th  i />  k: 

c + = {amc I FEr~ u e" u c7_, b3 (c -+ a) ~} 
c;  = {~mc I For  all a: - l r - l a  ~ P: FETz  U C~_, ~3 ((c  A d) - -  --,l)u}. 

(b) The  mee t  ~ ----- 1"3S, a is def ined as follows: 
F o r  all layers i e IM such tha t  ~ # ¢: 

D;- = U{A,:-I.~ e ~ ,}  

where  ~0  = c j  and  ~ i  = ~ i - l  \ {~/IA,-! # D i - l } .  
If  there  exists k E N such that  ~ _  ~ # 0, and  ~k = 0, then  for all layers i E ~ such 

that  i >/k:  

D~" = {ar-lc I if for  every ar-ld E D~,  c A d is unsatisf iable} 

D f  = DT_ ~ . 

(a) First  o f  all, we have to prove  the consis tency proper ty:  Let us suppose  that  
al"lcl E C~ and  aF-Ic2 E C 7 for some  i < k, such that  c l  A c2 is satisfiable. Let 
c = c l  A c2, then  al--lc e C + n Cf- because the cons t ruc t ion  guaran tees  that  layers 
are closed with respect to less general  constraints .  I f  a D c  E C i then  ar-lc E A f  for  
a!! z~/E Aa~, what  means:  FET~ U A~_~ ~3 (c A d) --, _~]-)v for all a: --l-13d ~ P. But 
A~_~ = C~_ ~ holds  for  a ! t - ~  ~ 6e,. Then ,  by monoton ic i ty :  
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F~V= u C7_, u U { , t U I ~ o . / e  .9°;} I=~ ((~ An) ~ - 4 )  ~, for  all a: - i E l d  e P, 

contradict.i,~g aFqcE C] ,  because ( c - + a )  v can never  be a consequence  o f  
FETs U pV U C~_ ~ U U{A+Vl.e /c  . ~ } .  The  consis tency proper ty  is gua ran teed  for all 
layers i ~ k becavse  they are just  an " i f  and  only  if" version o f  the satisfe.ction con-  
d i t ion  in Def in i t ion  4. 

In o rde r  to prove  tha t  ~ is a mode l  o f  P, it suffices to no te  that  C~, for any layer i, 
con ta ins  all the posit ive in fo rma t ion  that  is suppor t ed  as logical consequence  o f  the 
previous  layers, and  that  C 7 only con ta ins  suppor ted  negat ive in fo rma t ion  in the 
same sense. 

I ' inally,  we p rove  tha t  ~, is the  least mode l  which is greater  than  every mode l  in ~ .  
The  cons t ruc t ion  o f  ~ implies that  for each mode l  .e/ E of, it holds  ei ther  
.~ /E ,~ , ' - i  \ o f .  for some  i ~  I%1, imply ing  A~_~ C_ C~Lt and  ,,t7_ ~ D_C,_~ and  
A,_~ ¢ C,_~ and Aj = C~ for all j < i - -  1; or  A ~ ,gai, for all i ~ [~, but  in this case 
the def ini t ion ensures  A + _c Ci ~ and  A 7 D C7, for each i. Hence,  ~/--< ~6 ~. 

In o rde r  to p rove  tha t  ~6" is the least mode l  sat isfying .~" _--< c6' for  all . ~ / a  ,~, let us 
suppose  that  .~ is a mode l  satisfying .e/_~ ,~ for all .e,/~ .~/~. First, it may  be no ted  
that ,  accord ing  to the  def in i t ion  o f  c6', if the given k does  not  exist then,  for every lay- 
er i, there  is an .~,,' a ,9 "~ such that  for each j ,  0 <~ j < i, Aj = C~. Then,  for every i, 
Ci ~ c_ B + and C ,  _D B 7. Hence  ;~ _-5_ ~:. If  the given k exists then,  similarly, there  is 
an .~,/~ .~  such that  for each j ,  0 <~ j < k, A j  = C).  Therefore ,  for every j ,  
0 ~ j < k, C) ~ c Bf  and  Cf  _~ B~. On  the o the r  hand ,  the cons t ruc t ion  o f  ~" ensures  
that  for all layers i >t k, C; con ta ins  the least posi t ive i n fo rma t ion  and  the  greatest  
negat ive  i n fo rma t ion  suppor t ed  by the previous  layers. This  means  that  also for each 
i > ~ k , C ~ - c B ;  a n d C ~  @B,.-. 

(b) In this case, the  consis tency o f  ~ is a trivial consequence  o f  the consis tency o f  
the mode l s  in .~. Let us prove  that  ~ is a mode l  o f  P. Firstly, suppose  that  

FETz- U P~ U DT~ U D/~v ks (c --, a) v, 

where  i < k, if k exists, and  i ~ ~1 is a, bitrary,  otherwise.  We k n o w  that  all ~:¢ e . ~  
satisfies: A { D D + and  Ag_t = D/-_~ so, by m o n o t o n i c i t y  

FET~ U P" U "~7-~ U ,4i ~ 1=3 (c --, ,~)". 

This  means  a d o  E A] for all ,& E ,~,, so aDc E D~. Now,  suppose  that  aVlc E D 7 
for any i (i < k if the giver; k exists). Then ,  aVlcE A,:- for some  .~'l E .~';, and  
FET~ U D~_~ ~3 ((c ,'~ d) ~ ._,l-)V for all a: - [ D d  E P, because every . e / E  . ~  satisfies 
ALl --- D+l  and  A,C~ = DT_ i. I f  there exists the given layer k then,  for any layer D, 
with i />  k, the sat isfact ion cond i t ion  trivially holds,  since they con ta in  more  posit ive 
i n fo rma t ion  than  wha t  is suppor t ed  by the previous layers, but  just  the negat ive  in- 
f o rma t ion  f rom Di-I.  

It is not  difficult to see that  ~ is the greatest  mode l  which is smaller  than  all mod-  
els in ~ge because it is trivial that  f-){A i [.el E .~,} is the greatest  set such that  
B, + _ ~ N { A i ~ [ , ~ . l ~ } ,  and  that  U{(A,) I .e I~ .~¢ ,}  is the least set such that  
B; C U{(A/-)[.~.,/~ .~i} for all .~3 E .~'. It" there exists the given layer k then D~, for 
each i /> k, con ta ins  the greatest  posi t ive in fo rmat ion  and the least negat ive informa-  
t ion suppor t ed  by the  previous  layers. [] 
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The  fol lowing example  gives some  hints  abou t  the cons t ruc t ions  in the previous  
proof.  

Example  5.2. Let the p rog ram P = { p : - q } ,  the  symbols  P S x  : { p , q , r , s }  and  the 
fol lowing structures: 

~,,~ : (({p},~),  ({p},0)> 

,c/2 : (({p}, {q}), ({p}, {q})) 

: / 3  = (({p}, q}), ({p, r}, O)) 

,.e]4 = ((0, {q}), ({/}, {q})) 

.~,5 : ((~: (q}), ({p}, {q,~})) 

T h e n  

..Jl u .~/2 u .~J3 : (({p}, ~), ({p, d ,  0)) 

.r./l i-1 o~'4 i-1 .&5 = (CO, {q}) ,  (O, { q , r } ) .  ({p. s} ,  {q,r})) 

Now,  using the previous  l emma  we can prove  t h a t .  l '--~'~z satisfies all the prop-  
erties needed  for giving a d e q u a t e  compos i t iona l  semant ics  to the in t ended  p r o g r a m  
units. 

T h e o r e m  5.1 (Propert ies  of .... I "~,C#~).. l "dL/':#z: has f r e e  construct ions,  j r e e  ex t ens ions  
a n d  generali-_ed f i 'ee  extensions.  

Proof . . . t :LP :#x  has free cons t ruc t ions ,  since given a m o r p h i s m  h :  P---, P' ,  with 
P = (X, c~) and  P~ = (S, c6~'), the free cons t ruc t ion  b3, : Mod(P) ~ Mod(P')  is def ined 
for every .¢J in Mod(P) as ~6' -- Fjz(.¢/) such that:  

G : {aG,: I FET~ U P'~' U A;"  t=3 (c --, a) v } 

Co = Ao n Mo 
• Fo r  all layers i > 0 such that  A~_l : Ci-l:  

c / =  {,,a~ I FET,: U P'~ U Cy_, U A~ -~' I=~ (¢ ~ a) v} 

C 7 = Aj n M , -  

• If  there exists k E I%1 such that  4,_t ~ Ca _~, then for all layers i with i >t k: 

c7  = { a a c  I ~Tr~ u p,v u c,L, ~3 (c --, ~)v} 

c; : { a p e  I For  all a : - i C e d  E r~: r E ~  u cL,  ~3 ((c ^ a ) - ~  ~t)~}. 

Note  tha t  i f -& E Mod(P') .  then  the above  cons t ruc t ion  coincides  with the  defini- 
t ion o f  the jo in  mode l  in L e m m a  5.2, ibr the par t icular  case when  ~ = {~' , .-gt, ,},  
that  is El{.&, J /p ,  }. Nevertheless ,  it is qui te  easy to see that  even in this case, the  re- 
sult is the least mode l  o f  I"  greater  than  .&. The  reason is that  the defini t ion guar-  
antees  that ,  at  any layer i (i < k if k exist), C~ + con ta ins  the least posit ive 
in fo rmat ion  suppor t ed  by the previous  layers and  A,. +. and  C 7 con ta ins  the greatest  
negat ive in fo rma t ion  suppor t ed  by the  previoas  layers which  belongs  to A 7. W h e n  k 
exists, C~, for all layers i ~ k, conta ins  the  least posit ive in fo rma t ion  and  the greatest  
negat ive in fo rmat ion  suppor ted  by the previous layers. 
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N o w ,  we  h a v e  t o  p r o v e  t h a t  F h ( d )  satisfies the  un iversa l  p r o p e r t y  o f  free c o n -  
s t ruc t ions :  for  e a c h  m o d e l  ~," in Mod(P ' ) ,  such  tha t  ~ , / ~  V h ( ~ " ) ( =  .~"),  it ho !ds  t h a t  
I__!{.~/, ..[[p,} -< .~". This  p r o p e r t y  h o l d s  by  de f in i t i on  o f  t he  j o i n  o p e r a t i o n  I__1. 

..t" c~¢'~0"z has  free e x t e n s i o n s  s ince  it has  a m a l g a m a t i o n s .  
T o  see t ha t  . . t :L~'~z - has  gene ra l i z ed  free ex tens ions ,  a c c o r d i n g  to  T h e o r e m  3.3, it 

is e n o u g h  to  p r o v e  t h a t  fo r  every  p r o g r a m  P,  t h e r e  are  p u s h o u t s  in Mod(P) .  G i v e n  
m o d e l s  ~ 0 , ~ . t l , ~ t 2  in Mod(P) ,  w i th  f l  : .~/0 _---< .c,,/1 a n d  f 2  : . ~ 0  -< .~2 ,  the  p u s h o u t  
.~¢3 o f . ~ l  a n d  .r.12 via f ' l  a n d  f 2  m u s t  be  t he  least  m o d e l  g r ea t e r  t h a n  .~'1 a n d  .~2 ,  
t hus  aga in  s',,'3 is j u s t  t he  j o i n  .~11 1._1 ~ 2 .  []  

O n c e  p r o v e d  the  r e q u i r e d  p rope r t i e s  o f  . A ~  we can  p r o v i d e  a ca t egor i ca l  se- 
m a n t i c s  fo r  p r o g r a m s  f r a g m e n t s  w h i c h  is c o m p o s i t i o n a l  w i th  respect_ to  s t a n d a r d  un-  
ion.  T h e  c o m p o s i t i o n a l i t y  resu l t  is j u s t  a c o n s e q u e n c e  o f  T h e o r e m  3.4. H o w e v e r ,  as  
w e  can  see b e l o w ,  full a b s t r a c t i o n  is no t  a d i rec t  c o n s e q u e n c e  o f  T h e o r e m  3.5. N e v -  
e r the less ,  in this  case  we  w e r e  a lso  ab le  to  p r o v e  full a b s t r a c t i o n  m a k i n g  use o f  the  
specific p r o p e r t i e s  o f  o u r  s eman t i c s .  

Theorem 5.2 ( C o m p o s i t i o n a l i t y ) .  For  an)" n o r m a l  logic p r o g r a m  P, the semant ics  
Sere(P)  = F such that  F is the f r e e  construct ion  assoc ia ted  to the inclusion (Z, 0) c_ P,  
is compos i t iona l  with respect  to the s t amlard  union o f  programs .  

Proof .  Is a d i rec t  c o n s e q u e n c e  o f  T h e o r e m s  3.4 a n d  5.1. []  

Let  us n o w  see a c o u n t e r - e x a m p l e  s h o w i n g  t h a t .  I :L/-':~ is n o t  a lgebra ic :  

E x a m p l e  5.3. T h e  m o d e l  , ~  = ((0, ~), ({q}, 0) . . . .  ) c an  n e v e r  be  a least  m o d e l  o f  any  
n o r m a l  logic  p r o g r a m .  In  p a r t i c u l a r  in .e/, the  fact  q is no t  s u p p o r t e d  by the  p r e v i o u s  
layer .  

N e v e r t h e l e s s ,  as said a b o v e ,  we can  still p r o v e  full a b s t r a c t i o n  us ing the  specific 
p r o p e r t i e s  o f  o u r  s e m a n t i c  c o n s t r u c t i o n s .  

Theorem 5.3 (Ful l  a b s t r a c t i o n ) .  Given two n o r m a l  p r o g r a m s  P I  a n d  P2,  the Jo i lowing  
three f a c t s  are equivalent:  

(i) S e m ( P l  ) :- S e m ( e 2 ) .  
(ii) For every  p r o g r a m  P,  S e m ( P  U P1 ) : S e m ( P  U P2) .  
(iii) For  every  p r o g r a m  P,  ,/ /r~Pl . . . .  Z/~j , , .  

Proof .  It  is e n o u g h  to  p r o v e  tha t  (iii) impl ies  (i), because  the  o t h e r  i m p l i c a t i o n s  are  
d i rec t  c o n s e q u e n c e s  o f  L e m m a  3.1 a n d  T h e o r e m  5.1. 

Le t  us s u p p o s e  t h a t  t he re  exists  a m o d e l  .& in Mod(2f, 0) such  t h a t  
F I ( ~ / )  ~- F2( .q / ) ,  w h e r e  F l  ----- S e m ( P l )  a n d  F2  = Sere(P2) .  T h e n ,  we  will s h o w  tha t  
t he r e  exis ts  a p r o g r a m  P such  tha t  .,/,¢t,~m ~ •//t~p2. Let  j E ~ ~e the  least  layer  such  
tha t  F l ( , & ) j -  ~ FE( ,~ ' ) f  o r  F l ( , r / ) f  ~ F 2 ( . c / ) i .  T h e n  we  can  cons: ,der  t w o  cases.  

4- Firs t ,  i f  the re  exis ts  t he  g iven  level k E [~, a n d  F l  ( d ) ~  # F 2 ( . & ) / ,  for  s o m e  j < k, 
t h e n  F l ( . ~ )  :/: F 2 ( . ~ )  for  all m o d e l s  ~ E Mod(27,[3) such  tha t  .~'+ = :J~+ a n d  
~c,/~- i = ~,:-- i for  s o m e  layer  i. T h i s  is the  case  fo r  the  m o d e l  .~ such  tha t ,  fo r  all i E N: 
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= A ; .  , 

B 7 = A~- z . 

In any o the r  case, F I ( . ~ ) ~  F2( ,~)  for all mode l s  ,~ E Mod(2~,0) such that  
B~ = F I  ( .~)j_ i = F2(.~/)j_ t for some  layer i. Now,  we choose  the mode l  .~ such that ,  
for all i E ~ :  

B + ---- F I  (~'1);_, = Fe(,q/)7_ , , 

B~7 = F1 (,e/)]_! = F2(,~/)i_ I . 

It is easy to see that ,  in bo th  cases, .~ . . . .  //p, for P being the p rogram:  
P = (Z, B +v U {a: - a C ] d / a D ¢  E B~ and  c A d is unsatisfiable}).  

Hence,  we can conc lude  that  F1  ( . / /~ , , e )  = - / / ~ , m  # , l /Put"2 = F 2 ( - I I ~ p ) .  D 

6. Conclusions and related work 

Wc have  presented  a new m o n o t o n i c  semant ic  f r amework  for no rma l  logic pro-  
grams;  The  ma in  character is t ics  o f  this semant ics  are the fol lowing ones:  W e  do  
not  cons ider  any restr ict ions on  p rograms  (e.g., stratification).  We associate to every 
p r o g r a m  a class o f  mode l s  which  forms a comple t e  lattice whose  least e lement  is 
shown to be typical for the class o f  mode l s  o f  the C l a r k - K u n e n ' s  comple t ion  o f  
the p rogram.  As a consequence ,  this least mode l  can be seen as the s t anda rd  seman-  
tics o f  the given p rogram.  Finally,  the mode ls  o f  a p r o g r a m  are a special case o f  Beth 
structures,  where  the  o rde r ing  relat ing the " 'worlds"  o f  the s t ructure  is total.  Actual -  
ly, ou r  semant ics  could  have been defined,  wi thou t  any  p rob lem,  in terms o f  general  
Beth structures.  In this sense, we believe that  our  semant ics  cou ld  also be valuable  
for knowledge  r ep resema t ion  cons ider ing  the in tu i t ion  beh ind  Beth (and  also 
Kr ipke)  s tructures where  each wor ld  in a mode l  represents  the k n o w l e d g e  one  has 
at a given m o m e n t  (see e.g. Ref. [33]). 

The  mo t iva t ion  for this new semant ics  was the def ini t ion o f  a specification f rame 
o f  no rma l  logic p rog rams  that  cou ld  be used for def ining compos i t i ona l  semant ics  to 
a variety o f  p rog ram units. In this sense, we have shown that  the p roposed  semant ics  
defines indeed  a specification f rame with the requi red  propert ies ,  in  part icular ,  we 
have prov ided  a categorical  semant ics  for arbi t rary  p rog ram f ragments  which is 
compos i t i ona l  and  fully abstract  with  respect to s tandard  p rog ram union.  Actually,  
o the r  k ind  o f  units  and  compos i t i on  opera t ions  can be seen just  as a special case. 

The  k ind  o f  compos i t iona l i ty  results ob ta ined  are qui te  m o r e  powerful  than  the  
results presented  in Refs. [17,19,27,35,9]. In Refs. [17,19,27] different semant ic  defi- 
n i t ions  are p rov ided  for cer tain k inds  o f  m o d u l a r  units which are shown  to be com-  
posi t ional .  However ,  they all impose  (at least) the restr ict ion (not  needed  in our  
work)  that ,  for  put t ing  toge ther  ( th rough  the co r r e spond ing  compos i t i on  opera t ion)  
two units, the sets o f  predicates  def ined in each unit  must  be disjoint.  This  means  
that ,  there  can not  be clauses def ining the same predicate  p (i.e. hav ing  p in the  head  
o f  a clause) in bo th  units. This  restriction rules out  the appl ica t ion  o f  those  results to  
approaches  where  the  given system o f  modu le s  support~ the  incrementa l  def ini t ion o f  
predicates  th rough  some form o f  inher i tance  (e.g. Ref. [7]). In Ref. [35] a slightly 
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m o r e  g e n e r a l  f r a m e w o r k  is c o n s i d e r e d .  In  p a r t i c u l a r  t h e y  s t u d y  o p e n  p r o g r a m s  
w h e r e  t h e  o p e n  p r e d i c a t e g  ca~  b e  a x i o m a t i z e d  by  a r b i t r a r y  f irst  o r d e r  a x i o m s .  T h e y  
p r o v i d e  a s e m a n t i c  d e f i n i t i o n  b a s e d  o n  w e l l - f o u n d e d  s e m a n t i c s  a n d  s h o w  its  c o m p o -  
s i t i o n a l i t y  u n d e r  c e r t a i n  suf f ic ien t  c o n d i t i o n s  w h i c h  a r e  q u i t e  c l o s e  t o  t h e  r e s t r i c t i o n s  
i m p o s e d  in Re f .  [17]. F i n a l l y ,  Re f .  [9] p r o v e s  t h a t  F i t t i n g s ' s  i m m e d i a t e  c o n s e q u e n c e  
o p e r a t o r  c a n  be  u s e d  f o r  d e f i n i n g  a s e m a n t i c s  f o r  a r b i t r a r y  p r o g r a m  f r a g m e n t s  w h i c h  
is c o m p o s i t i o n a l  w i t h  r e s p e c t  t o  u n i o n ,  i n t e r s e c t i o n  a n d  f i l te r ing.  T h e  m a i n  p r o b l e m  
h e r e  is t h a t ,  i f  o n l y  u n i o n  is c o n s i d e r e d ,  t h e  g i v e n  s e m a n t i c s  is t o o  c o n c r e t e  t o  b e  o f  
a n y  use .  

W e  h a v e  n o t  d i r e c t l y  r e l a t e d  o u r  a p p r o a c h  w i t h  o t h e r  k i n d s  o f  s e m a n t i c s ,  al-  
t h o u g h  t h e  r e l a t i o n  e s t a b l i s h e d  w i t h  c o m p l e t i o n  i m p l i e s ,  b y  t r a n s i t i v i t y ,  t h a t  o u r  se- 
m a n t i c s  c a n  be  c o n s i d e r e d  e q u i v a l e n t  t o  c o n s t r u c t i v e  n e g a t i o n  a p p r o a c h e s  as  Refs .  
[13,32]. A c t u a l l y ,  t h e  r e l a t i o n  t o  R e f .  [13] is q u i t e  m o r e  d i r e c t ,  in  t h e  s ense  t h a t  t h e  
c o n s t r u c t i o n  o f  o u r  l eas t  m o d e l  is c lose ly  r e l a t e d  to  r a n k e d  r e s o l u t i o n  as  d e f i n e d  
t he r e .  T h e r e  is a l s o  a c e r t a i n  r e l a t i o n  b e t w e e n  t h e  c o n s t r u c t i o n  o f  o u r  leas t  m o d e l  
a n d  F i t t i n g ' s  fix p o i n t  s e m a n t i c s  [20], o r  r a t h e r  w i t h  t h e  v e r s i o n  d e f i n e d  in Ref .  
[l 8], a l t h o u g h  n o t  as  c l o se  as  it m a y  s eem:  n o t i c e  t h a t  in e a c h  l a y e r  o f  o u r  leas t  m o d e l  
w e  a d d  n o t  j u s t  t h e  i m m e d i a t e  c o n s e q u e n c e s  o f  t h e  p r e v i o u s  l ayer ,  b u t  all l og ica l  c o n -  
s e q u e n c e s .  
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