
Version

1

BCN Protoype
User’s Manual

A N I M P L E M E N T A T I O N O F C O N S T R U C T I V E N E G A T I O N
F O R N O R M A L L O G I C P R O G R A M S

BCN Prototype Version 1.0.1

J. Álvez
P. Lucio

Universidad del País Vasco / Euskal Herriko Unibertsitatea

F. Orejas
E. Pasarella

E. Pino

Universidad Politécnica de Catalunya

This work has been partially supported by the Spanish Project TIC 2001-2476-C03

BCN Prototype User’s Manual

1

Chapter

1
INTRODUCTION

� The BCN Prototype is a sound and complete implementation of constructive

negation for the whole class of normal logic programs.

� It has been implemented in SICStus Prolog 3.8.5.

� The theoretical foundations of this implementation come from Shepherdson’s

operators.

� These operators provide a bottom-up scheme for computing literal answers, that

is the basis of our implementation.

� The constraint solver that we have implemented obtains the literal answers in an

efficient, incremental and lazy way.

� The procedural mechanism for goal computation, not only obtains all the correct

answers for a given goal, but also detects failure. In spite of the bottom-up
nature of the answers calculation, the procedural mechanism is in charge of
detecting when a goal should fail.

The BCN prototype is started by clicking the file bcn.exe

in the installation folder.

BCN Prototype User’s Manual

2

Chapter

2
USING THE PROTOTYPE: Main Window

 The window that appears when the application is started is the Main Window:

BCN Prototype User’s Manual. Figure 1: Main Window

From this window, we have access to the whole application:

� the Button 1.1 allows us to access the Edit Program Window,
� the Button 1.2 allows us to access the Edit Goal Window,
� the Button 1.3 allows us to access the Execution Window, and
� the Button 1.4 allows us to Exit.

The Program Display Box shows the program that is going to be used during
execution.

The Goal Display Box shows the current goal to be computed.

BCN Prototype User’s Manual

3

Chapter

3
WRITING A PROGRAM: Edit Program Window

 By a click in the Button 1.1 of the Main Window, the Edit Program Window
is activated:

BCN Prototype User’s Manual. Figure 2: Edit Program Window

Then, a new program can be written in the Program Edit Box.

The application deals with normal logic programs. A normal logic program consists in a
finite number of clauses of the form ()() ()().: yxtlxtp ⋅− in the usual Prolog syntax,
except negation that is represented by the symbol ‘!’ (Warning: it is not the cut-symbol
of Prolog).

Warning: do not use names of pre-defined Prolog functions.

See the program above.

BCN Prototype User’s Manual

The functionality of this window is:

� The Button 2.1 allows us to load (for execution) a program that has been
previously saved. Programs are stored in text files with ‘.pnt’ extension.

� The Button 2.2 allows us to save the program that is currently in the Program
Edit Box.

� The Button 2.4 clears the Program Edit Box.
� The Button 2.3 compiles the program that is currently in the Program Edit

Box. If the program has no errors, a message appears in the Compilation
Messages Display Box. Otherwise, the errors are shown in this.

� The Button 2.5 allows us to return to the Main Window (in particular, to edit a
goal).

4

BCN Prototype User’s Manual

5

Chapter

4
WRITING A GOAL: Edit Goal Window

 If a program is already loaded, by clicking Button 1.2 in the Main Window, we
can go to the Edit Goal Window:

BCN Prototype User’s Manual. Figure 3: Edit Goal Window

The goal must be written in the Goal Edit Box.

A normal goal is a collection ()(.xt)l of literals:
� separated by the symbol “,”,
� the symbol “!” is used to represent negation, and
� the symbol “.” is used to finish the goal.

See the example in the above window.

BCN Prototype User’s Manual

The functionality of this window is:

� The Button 3.1 allows us to load (for computation) a previously saved goal.

Goals are stored in text files with ‘.qnt’ extension.
� The Button 3.2 allows us to save the goal that is currently in the Goal Edit Box.
� The Button 3.4 clears the Goal Edit Box.
� The Button 3.3 starts the compilation of the goal in the Goal Edit Box. If it is

correct, then a message appears in the Compilation Messages Display Box.
Otherwise, the errors are shown in this.

� The Button 3.5 allows us to return to the Main Window.

6

BCN Prototype User’s Manual

7

Chapter

5
EXECUTING A PROGRAM: Execution Window

 After introducing a program and a goal, the Button 1.3 starts the computation
and opens the ExecutionWindow:

BCN Prototype User’s Manual. Figure 4: Execution Window

This window is independent of the rest of the application and it is possible to compute
at the same time different goals (even, for different programs).

Along the execution, the program and the goal are respectively shown in the Program
Display Box and the Goal Display Box.

The Answer Display Box is used to show the successive answers of the given goal and
program.

BCN Prototype User’s Manual

The computation process can be conducted as follows:

� By clicking the Button 4.1 the computation starts and the first answer (if it

exists) is showed in the Answer Display Box.
� Then, by clicking the Button 4.2 the successive answers are computed and

shown in the same box.
� When there is not more answers, the message ‘no’ appears in the Answer

Display Box.
� At any time, the execution can be restarted by clicking the Button 4.1.
� The Counter of answers displays the ordinal number of the answer that is

currently in the Answer Display Box.
� The computation can be finished by clicking the Button 4.3.

What is an answer?

� An answer provides information about the variables (X) of the goal.

� The general form of an answer is either ‘true’ or a formula composed by a

conjunction of both:
1. Collapsing equations of the form ()Wi t=X , and
2. Universally quantified collapsing disequations of the form

()()VWWV j ⋅≠∀ s , where the term is not a single variable in s V and
 does not occur in jW s

where each occurs at most once. iX

Notice that the scope of each universally quantified variable is the
disequation where it appears in.

iV

� Hence, an answer involves the variables X of the goal, together with two kind

of auxiliary variables:

o Prolog-like variables of the form ‘_<char>’ represent the usual
existencially quantified variables: these are the variables W in the above
notation.

o Variables of the form ‘*<char>’ are used to represent the universally
quantified variables: these are the variables V in the above notation.

8

BCN Prototype User’s Manual

For example, the answer:

() (()()2121113221121 W,VWVWWWWXWXWXWW gag ≠)∀∧≠∧≠∧=∧=∧=∃∃

is displayed in our prototype as follows:

()_BC,*f_A _B,_A a,_A g(_A),X _B,X _A,X 321 ≠≠≠===

9

