
Systematic Semantic Tableaux for PLTL

J. Gaintzarain, M. Hermo, P. Lucio and M. Navarro1

Dpto. de Lenguajes y Sistemas Informáticos.
Facultad de Informática. Universidad del Páıs Vasco.

20080-San Sebastián, Spain.

Abstract

The better known methods of semantic tableaux for deciding satisfiability in propositional linear temporal
logic generate graphs in addition to classical trees. The test of satisfaction is made from the graph and it
does not correspond with the application of rules in any calculus for PLTL. We present here a new method
of semantic tableaux without using additional graphs. The method is based on a new complete finitary
sequent calculus for PLTL which allows us to incorporate all the information in a tree. This approach makes
our tableaux better suited for completely automatic theorem proving.

Keywords: Propositional Linear Temporal Logic, Tableaux, Satisfiability

1 Introduction

Temporal logics constitute a well-known topic of study in theoretical computer

science. One of the most basic and important types of temporal logic is the Propo-

sitional (Linear) Temporal Logic (PLTL), which contains logical operators for rea-

soning about discrete, linear sequences of states. Tableaux are common mechanisms

used in most decision procedures for the validity problem and also in tableaux-based

completeness proofs for temporal logics.

The semantic tableaux for PL (Propositional Logic) are very simple: the formula

is decomposed into its sub-formulas according to certain rules, resulting in a tree-

like tableau where each branch is terminated by a leaf with a complementary pair of

formulas (a closed branch) or by a leaf containing a set of non-contradictory literals

(an open branch). Each open branch represents a model for the given formula.

However, in PLTL, the same approach is not enough, since each formula must be

analyzed in an infinite sequence of states. For instance the formula φ U ψ is analyzed

as follows: either ψ holds now or else φ holds now and φ U ψ holds in the next state.

1 This work has been partially supported by Spanish Project TIN2004-079250-C03.

Electronic Notes in Theoretical Computer Science 206 (2008) 59–73

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.075

http://www.elsevier.com/locate/entcs

Therefore, some mechanism must control the repeated appearances of the formulas

and identify periodic situations in finite time [5]. The usual way to proceed is to

build a tableau-graph, divide it into its strongly connected components, and check

fulfilling paths among them to ensure that eventually in the future ψ holds for every

φ U ψ.

While the application of rules in decomposing the formula can correspond to a

deduction in usual sequent calculus for PLTL, the second phase of the procedure

that checks for the fulfillment property does not correspond with rules for such

calculus.

We can only mention one paper [9] that avoids the second phase in the con-

struction by adding extra information into the nodes of the tableaux. Some of this

information must be synthesized bottom-up and it is needed because a single branch

cannot be open or closed; it may be open in connection with some other branches.

In this paper we present a systematic tableaux method that, similarly to the PL

case, allows us to build a tableau as a finite tree with open and closed branches. If

all branches are closed then the formula has no models. If the formula is satisfiable

then some of its models can be obtained from the open branches. These models (in

general) are ultimately periodic, that is, they terminate in a cycle. Our approach

is simpler than [9] since each branch does not depend on other branches.

This approach is based on the use of a particular rule for until formulas (φ U ψ) to

“remember” the context when the unfolding of such formulas occurs. By using this

rule, the fulfilling check is incorporated into the construction of the tree. Moreover,

this particular rule belongs to the set of rules in a new sound and complete sequent

calculus for PLTL [3]. Therefore, each application of a rule in the tableaux is indeed

an application of the corresponding rule in the mentioned calculus. In contrast with

this calculus, called FC, other sequent calculus [6,7,8] prevent this correspondence.

This paper is organized as follows. Section 2 is a basic introduction to PLTL.

In section 3, we introduce the method of semantic tableaux. More precisely, we

present the rules for constructing tableaux, the algorithm of construction, and sev-

eral properties of this algorithm. Section 4 shows some examples, while section 5

presents the soundness and the completeness proof of the method.

2 PLTL: Language and Model Theory

In what follows, we refer to the PLTL language, with syntax and semantics similar

to [3].

A PLTL-formula is built using the constant proposition false, propositional vari-

ables (denoted by lowercase letters p, q, . . .) from a set Prop, the classical connec-

tives ¬ and ∧, and the temporal connectives ◦ and U . A lowercase Greek letter

(ϕ,ψ, χ, γ, . . .) denotes a formula and an uppercase one (Φ,Γ,Ψ,Ω, . . .) denotes a

finite set of PLTL-formulas. Those of the form p and ¬p, where p ∈ Prop, are called

literals. As usual, other connectives can be defined in terms of the previous ones:

true ≡ ¬false, ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), �ϕ ≡ true U ϕ, �ϕ ≡ ¬�¬ϕ. In the rest

of this paper, we employ formula instead of PLTL-formula. Formulas of the form

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–7360

ϕ U ψ (also �ϕ and ¬�ϕ) are called eventualities. Those of the form ◦ϕ and ¬◦ϕ

are called next formulas.

The operator next translates any set of formulas into another (possibly empty)

set of formulas next(Φ) = {γ | ◦γ ∈ Φ} ∪ {¬γ | ¬◦γ ∈ Φ}.

Definition 2.1 A PLTL-structure M is a pair (N, VM) where N is the set of natural

numbers and VM : N → 2Prop maps each state n ∈ N into a subset of Prop.

Intuitively, VM specifies which propositional variables are necessarily true in each

state.

Definition 2.2 The truth of a formula ϕ in the state j of a PLTL-structure M,

which is denoted by 〈M, j〉 |= ϕ, is inductively defined as follows:

〈M, j〉 �|= false

〈M, j〉 |= p iff p ∈ VM(j) for p ∈ Prop

〈M, j〉 |= ¬ϕ iff 〈M, j〉 �|= ϕ

〈M, j〉 |= ϕ ∧ ψ iff (〈M, j〉 |= ϕ

and 〈M, j〉 |= ψ)

〈M, j〉 |= ◦ϕ iff 〈M, j + 1〉 |= ϕ

〈M, j〉 |= ϕ U ψ iff 〈M, k〉 |= ψ for some k ≥ j and 〈M, i〉 |= ϕ for every j ≤ i < k.

This is extended to sets in the usual way: 〈M, j〉 |= Φ iff 〈M, j〉 |= ϕ for all

ϕ ∈ Φ. We say that M is a model of Φ, in symbols M |= Φ, iff 〈M, 0〉 |= Φ. A

satisfiable set of formulas has at least one model, otherwise it is unsatisfiable.

3 Semantic Tableaux for PLTL

In this section we present a method for semantic tableaux which, given a temporal

formula, searches systematically for a model. If a model is found, the formula is

satisfiable; otherwise, it is unsatisfiable.

3.1 Rules for Constructing a Semantic Tableau

We use the following α-, β-, X-rules in the construction of semantic tableaux for,

respectively, α-formulas (conjunctions), β-formulas (disjunctions) and next formu-

las. α1 denotes the (set of) conjuncts of a α-formula, β1, β2 denote the (sets of)

disjuncts of a β-formula and X1 denotes the application of the operator next to a

set of formulas.

α α1

(r1) ¬¬ϕ ϕ

(r2) ϕ ∧ ψ ϕ,ψ

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–73 61

β β1 β2

(r3) ¬(ϕ ∧ ψ) ¬ϕ ¬ψ

(r4) ¬(ϕ U ψ) ¬ϕ,¬ψ ϕ,¬ψ,¬◦(ϕ U ψ)

(r5) ϕ U ψ ψ ϕ,¬ψ,◦(ϕ U ψ)

(r6) Γ, ϕ U ψ Γ, ψ Γ, ϕ,¬ψ,◦((Γ∗ ∧ ϕ) U ψ)

where Γ∗ = ¬(
∧

γ∈Γ γ)

X X1

(r7) Γ next(Γ)

All rules but (r6) are the usual ones in temporal tableaux construction (see

for instance [1]). Rule (r6) is introduced in [3], where a new sound and complete

calculus for PLTL is presented. This rule allows us to “remember” the context Γ

when unfolding of ϕ U ψ is done. More concretely, it forces some formula in the

context to change in future worlds (while ψ is not obtained).

Although it is enough to use the minimal set of operators given above, we will

use all operators in the examples in section 4. Below the usual β-rules for ϕ ∨ ψ,

�ϕ and ¬�ϕ, and α-rules for ¬(ϕ ∨ ψ), �ϕ and ¬�ϕ are shown. Note that they

can be derived from the above rules. In particular, the rules with context Γ are

derived from rule (r6).

α α1

�ϕ ϕ,◦�ϕ

¬�ϕ ¬ϕ,¬◦�ϕ

¬(ϕ ∨ ψ) ¬ϕ,¬ψ

β β1 β2

ϕ ∨ ψ ϕ ψ

�ϕ ϕ ¬ϕ,◦�ϕ

Γ, �ϕ Γ, ϕ Γ,¬ϕ,◦(Γ∗ U ϕ)

¬�ϕ ¬ϕ ϕ,¬◦�ϕ

Γ,¬�ϕ Γ,¬ϕ Γ, ϕ,◦(Γ∗ U ¬ϕ)

3.2 Preclosure and Closure of a Temporal Formula

Let ϕ be the formula whose satisfiability we wish to check.

Definition 3.1 The set of components in ϕ, Comp(ϕ), is the smallest set of for-

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–7362

mulas defined as follows:

• ϕ ∈ Comp(ϕ)

• If γ ∈ Comp(ϕ), then all the formulas appearing in the parts α1,X1, β1, β2 of

rules (r1), . . . , (r7), except (r6), that can be applied to γ, are in Comp(ϕ).

Next we define the pre-closure of ϕ.

Definition 3.2 PCL(ϕ) = Comp(ϕ)∪{¬γ | γ ∈ Comp(ϕ)}∪{γ | ¬γ ∈ Comp(ϕ)}

Note that the pre-closure of a formula does not consider those produced by the

application of rule (r6). We will define the closure adding these formulas to the

pre-closure.

Definition 3.3 Let D(ϕ) be the following set of formulas

D(ϕ) = {¬(
∧

ψ∈Q

ψ) : Q ⊆ PCL(ϕ)} ∪ {false}

Let C(ϕ) be the set of all possible conjunctions of elements in D(ϕ). That is,

C(ϕ) = {
∧

D∈S

D : S ⊆ D(ϕ)}

The closure of ϕ , CL(ϕ), is defined as follows

CL(ϕ) = PCL(ϕ) ∪ C(ϕ) ∪ A

where

A =
⋃

(γ U ψ)∈PCL(ϕ)

C∈C(ϕ)

{◦((C ∧ γ) U ψ), (C ∧ γ) U ψ}

From the above definition, the following holds:

Proposition 3.4 CL(ϕ) has finite cardinality. Actually, if |PCL(ϕ)| = n then

|D(ϕ)| ∈ O(2n) and both |C(ϕ)|, |CL(ϕ)| ∈ O(22n
).

3.3 Systematic Construction of a Semantic Tableau

A tableau T is a tree where each node n is labeled with a set of formulas F (n).

The root is labeled with the singleton set {ϕ}, for the formula ϕ whose satisfiabil-

ity we wish to check. The children of a node are obtained by applying the rules

(r1), . . . , (r7).

Definition 3.5 Let T be a tableau and p be a path in T from nodes n1, n2, . . . , nj .

Any eventuality γ1 U γ2 ∈ F (ni), with 1 ≤ i ≤ j, is fulfilled in p if there exists k,

with i ≤ k ≤ j, such that γ2 ∈ F (nk).

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–73 63

To determine which rule (r5) or (r6) to apply to an eventuality in a node, it is

necessary to “distinguish” eventualities. The rule (r6) is applied only to “distin-

guish” eventualities, in other case the rule (r5) is used. If a node does not contain

any distinguished eventuality, then the algorithm distinguishes one of them and

rule (r6) is chosen to be applied to it. Each node of the tableau has at most one

distinguished eventuality.

Each branch of T can be seen as divided into stages, where each stage is a set of

consecutive nodes which are obtained by applying α- or β-rules. When the X-rule

is applied, we move from one stage to the following one in the branch.

Given two nodes in the same branch of T , n1 and n2, that are labeled with

the same set of formulas Φ (i.e. F (n1)=F (n2)=Φ), the path between such nodes is

called a loop.

The construction of the tableau is as follows.

Input: A PLTL formula ϕ

Output: A semantic tableau T for ϕ

Algorithm:

The tableau is built inductively by repeatedly choosing an unmarked leaf l labeled

with a set of formulas F (l) and applying one of the following points in the order

given.

(i) Check if there is either the formula false or a complementary pair of formulas

{ϕ,¬ϕ} in F (l). If so, mark the leaf closed (×).

(ii) If F (l) is a set of literals, then mark the leaf open (�).

(iii) If F (l) = F (l′) for l′ an ancestor of l, take the oldest ancestor of l that is

labeled with F (l) (denote it by l′′). Now check if each eventuality in the path

between l′′ and l is fulfilled in such path. If this is the case, mark the leaf open

(�).

(iv) Otherwise, choose ϕ ∈ F (l) which is not a next formula.
• If the formula is an α-formula (ϕ = α), create a new node l′ as a child of l

and label l′ with

F (l′) = (F (l) − {α}) ∪ {α1}

• If the formula is a β-formula (ϕ = β), create two new nodes l′ and l′′ as

children of l. Label l′ with

F (l′) = (F (l) − {β}) ∪ {β1}

and label l′′ with

F (l′′) = (F (l) − {β}) ∪ {β2}

In this case, if ϕ is an eventuality, then

– If ϕ is the distinguished eventuality, then apply the special rule (r6) to

ϕ. Distinguish the formula that is inside the next formula in β2.

– If ϕ is not distinguished, but there is another distinguished formula, then

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–7364

apply rule (r5) to ϕ. Maintain the existing distinguished formula in β1 and

β2.

– Otherwise, distinguish the formula ϕ. Apply the special rule (r6) to ϕ

and distinguish the formula that is inside the next formula in β2.

(v) If F (l) consists only of literals and next formulas, the operator next is applied.

That is, let

{◦ϕ1, . . . ,◦ϕm,¬◦ϕm+1, . . . ,¬◦ϕn}

be the set of next formulas in F (l). Create a new node l′ as a child of l and

label l′ with

F (l′) = {ϕ1, . . . , ϕm,¬ϕm+1, . . . ,¬ϕn}

The construction terminates when every leaf is marked × or �. �

A tableau whose construction has terminated is called a completed tableau. A

completed tableau is closed if all leaves are marked ×. Otherwise, it is open.

3.4 Properties of this Construction

Here, we give some conditions that our algorithm must hold to ensure its termina-

tion, as well as other properties which are necessary for section 5.

Definition 3.6 A node in the tableau is inconsistent if it contains a formula and

its negation, or the constant false.

Proposition 3.7 If a formula γ and its negation ¬γ belong to the same stage in a

branch of the tableau, and γ does not contain an eventuality that is distinguished in

the stage, then this stage finishes in an inconsistent node.

Proof. It can be easily proven by structural induction on the formula γ. Note

that there are two base cases: for γ being a literal p and a next formula ◦α, since

these formulas must remain (after its first appearance) in all following nodes of the

stage. �

Proposition 3.8 All contexts accumulated in a distinguished eventuality in an open

branch are pairwise different.

Proof. Let n be a node with F (n) = Γ∪ {(Γ∗
i∧ . . .∧Γ∗

1∧α) U β}, and n+1 the

node obtained as the β2-part of applying rule (r6) to the distinguished eventuality in

n. That is, F (n+1) = Γ∪ {¬β,Γ∗
i ∧ . . .∧Γ∗

1 ∧α,◦((Γ∗ ∧Γ∗
i ∧ . . .∧Γ∗

1 ∧α) U β)}

where the last formula contains the eventuality that remains distinguished in all

nodes of this stage. By applying i times rule (r2), the branch is extended until

node F (n + i + 1) = Γ∪ {¬β,Γ∗
i, . . . Γ

∗
1, α,◦((Γ∗ ∧ Γ∗

i ∧ . . . ∧ Γ∗
1 ∧ α) U β)}.

Let us suppose that Γ∗ ∈ {Γ∗
i, . . . Γ

∗
1} for Γ = {γ1, . . . , γp}. Then {γ1, . . . , γp,

¬(γ1 ∧ . . .∧γp)} ⊆ F (n+ i+1) and therefore, by applying p−1 times rule (r3), the

branch split (in some moment) into p branches containing each one a complementary

pair of formulas (γj and ¬γj) in the same stage. Moreover, each formula γj, for j in

1, . . . , p, cannot contain any distinguished eventuality. By Proposition 3.7, all these

branches are closed. �

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–73 65

Note that although there can be some formulas in the tableau T for ϕ that do

not belong to CL(ϕ) because contexts are repeated, the previous proposition proves

that all formulas in any open branch of T belong to CL(ϕ).

The following proposition concerns the open branches containing a loop.

Proposition 3.9 For every eventuality α U δ which is distinguished inside a loop,

it holds that δ also belongs to (some node in) the loop.

Proof. Let α U δ be distinguished in a node of a loop. Then the rule (r6) is

applied to α U δ within some context Γ1. If δ does not belong to the loop, this means

that each application of such rule in the loop yields to obtain the β2-formulas; in

particular, in the following stages (i ≥ 1), distinguished formulas are obtained: γ1

= (Γ∗
1 ∧ α) U δ, γ2 = (Γ∗

2 ∧ Γ∗
1 ∧ α) U δ, . . ., γi = (Γ∗

i ∧ . . . ∧ Γ∗
1 ∧ α) U δ, for

some contexts Γi.

By Proposition 3.8, these formulas are all new (they are syntactically growing),

and in each node n of stage i either γi or ◦γi+1 is in the set F (n). This contradicts

the existence of a repeated node. Therefore δ must belong to the loop. �

Next, the construction of the tableau is open to be implemented in different

ways. However, any implementation must ensure that it is not possible to find a

never distinguished unfulfilled eventuality in an open branch.

Remark 3.10 The use of a fair strategy for distinguishing the eventualities in each

branch of the tableau, is essential for proving that the construction finishes.

Theorem 3.11 Any semantic tableau for a temporal formula ϕ, that distinguishes

eventualities with a fair strategy, is finite.

Proof. Suppose that a tableau for ϕ contains an infinite branch p. Then the sets

of formulas labeling the nodes in p are included in CL(ϕ) which, by Proposition 3.4,

has finite cardinality. Then there are only finitely many possible different nodes in p.

Thus, there must exist a node occurring infinite many times in p. This means that

there is an unfulfilled eventuality, and by proposition 3.9, this eventuality is never

distinguished. But this contradicts the fact that the strategy for distinguishing

eventualities is fair. Therefore, the tableau cannot contain an infinite branch. �

To conclude, it is worth saying that the implementation of the algorithm must

build the tableau incrementally using a deep-first strategy. Thus, when a node is

marked open, the algorithm stops providing a model for the formula.

4 Examples of Semantic Tableaux

In this section, we give some examples of tableaux. The distinguished formulas are

overlined. The formula which a rule is applied to is underlined. The application

of operator next is drawn with ⇓ (instead of ↓) to better mark the stages in each

branch. For purposes of visual clarity, we sometimes omit the application of trivial

rules like (r1), which eliminates double negations. In these examples, all connectives

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–7366

are used and consequently all α and β-rules. In addition, Γ∗ is written
∨

γ∈Γ ¬γ

instead of ¬(
∧

γ∈Γ γ).

The first example shows an open tableau without loops for the formula (p U q)∧

(�¬q).

{(p U q) ∧ (�¬q)}

↓

{p U q, �¬q}

↙ ↘

{q, �¬q} {p,¬q, �¬q,◦(((¬�¬q) ∧ p) U q)}

↓ ↘ |

{q,¬q} {q,◦(¬q U ¬q)} |

↓ ⇓ |

× {¬q U ¬q} |

↙ ↘ |

{¬q} {¬q, q,◦((false ∧ ¬q) U ¬q)} |

↓ ↓ |

� × |

{p,¬q, �¬q,◦(((¬�¬q) ∧ p) U q)}

↙ ↘

| {p,¬q, q,◦(�¬q),◦(((¬�¬q) ∧ p) U q)}

↓ ↓

{p,¬q,◦(((¬�¬q) ∧ p) U q)} ×

⇓

{((¬�¬q) ∧ p) U q}

↙ ↘

{q} {(¬�¬q) ∧ p,¬q,◦(ψ)} 2

↓ ↓

� {¬�¬q, p,¬q,◦(ψ)}

↓

{q,¬◦�¬q, p,¬q,◦(ψ)}

↓

×

Note that each branch finishing with the mark �, produces a finite structure

from which a model can be constructed (see Figure 1).

The different stages in a branch correspond to the different worlds in the struc-

ture associated to such a branch.

The second example shows a closed tableau for the formula p U q ∧¬◦� q ∧¬q.

Note that each branch finishes with the mark ×. The formula p U q ∧ ¬◦� q ∧ ¬q

has no models.

2 where ψ = (false ∧ (¬�¬q) ∧ p) U q

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–73 67

0 1

q q

0 1

p, q q

Fig. 1. Two structures for {(p U q) ∧ (�¬q)}

{p U q ∧ ¬◦� q ∧ ¬q}

↓

{p U q,¬◦� q ∧ ¬q}

↓

{p U q,¬◦� q,¬q}

↙ |

{q,¬◦� q,¬q} |

↙ |

× ↓

{p,¬q,¬◦� q,◦(((q ∨ ◦� q) ∧ p) U q)}

⇓

{¬� q, ((q ∨ ◦� q) ∧ p) U q}

↓

{¬q,¬◦� q, ((q ∨ ◦� q) ∧ p) U q}

↙ ↓

{¬q,¬◦� q, q} {¬q,¬◦� q, (q ∨ ◦� q) ∧ p,◦(δ)} 3

↙ ↓

× {¬q,¬◦� q, (q ∨ ◦� q), p,◦(δ)}

↙ ↘

{¬q,¬◦� q, q, p,◦(δ)} {¬q,¬◦� q,◦� q, p,◦(δ)}

↓ ↓

× ×

The last example shows (part of) an open tableau with loops (indicated (a) and

(b)) for the formula � � p∧ �¬p. Each branch finishing with the mark � produces

a model (see Figure 2).

{� � p ∧ �¬p}

↓

{� � p, �¬p}

↓

{� p,◦� � p, �¬p}

↙ ↘

{p,◦� � p, �¬p} . . .

3 where δ = [(q ∨ ◦� q) ∧ (q ∨ ◦� q) ∧ p] U q

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–7368

↙ |

{p,◦� � p,¬p} |

↙ ↓

× {p,◦� � p,◦((¬p ∨ ¬◦� � p) U ¬p)}

⇓

{� � p, (¬p ∨ ¬◦� � p) U ¬p}

↓

{� p,◦� � p, (¬p ∨ ¬◦� � p) U ¬p}

↙ ↘

{� p,◦� � p,¬p} . . .

↙ |

{p,◦� � p,¬p} |

↓ ↓

× {¬p,◦� � p,◦((¬◦� � p ∨ p) U p)}

⇓

{� � p, (¬◦� � p ∨ p) U p}

↓

{� p,◦� � p, (¬◦� � p ∨ p) U p}

↙ ↘

(a) {� p,◦� � p, p} . . .

↙ |

(b) {p,◦� � p} |

⇓ ↓

{� � p} {¬p,◦� � p, p,◦(¬p ∨ ¬◦� � p) U p}

↓ ↓

{� p,◦� � p} ×

↙ ↘

{p,◦� � p} {¬p,◦� � p,◦(¬◦� � p U p)}

↓ ⇓

(b) � {� � p,¬◦� � p U p}

↓

{� p,◦� � p,¬◦� � p U p}

↙ ↘

{� p,◦� � p, p} {� p,◦� � p,¬◦� � p,¬p,◦(α) 4 }

↓ ↓

(a) � ×

5 Soundness and Completeness of Semantic Tableaux

In this section we prove that our algorithm is sound and complete for proving the

satisfiability of PLTL formulas. Soundness is given in Theorem 5.2 and completeness

in Theorem 5.3.

4 where α = [(¬� p ∨ ¬◦� � p) ∧ (¬◦� � p)] U p

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–73 69

0 1

p p

2

0 1

p p p

2

p

3

p

Fig. 2. Two models for {� � p ∧ �¬p}

Lemma 5.1 The following facts hold for α- and β- formulas:

• Φ
⋃

{α} satisfiable ⇐⇒ Φ
⋃

{α1} satisfiable

• Φ
⋃

{β} satisfiable ⇐⇒ Φ
⋃

{β1} satisfiable or Φ
⋃

{β2} satisfiable

• Given a consistent (without any complementary pair of formulas) set of formulas

Φ consisting of literals and next formulas: Φ satisfiable ⇐⇒ next(Φ) satisfiable

Theorem 5.2 If there exists a closed tableau for ϕ then ϕ is unsatisfiable.

Proof. Let T be a closed tableau for ϕ. The set of formulas labeling each leaf is

inconsistent and therefore unsatisfiable. By the previous lemma, each node in T is

then labeled with a unsatisfiable set of formulas, in particular the root. Therefore

ϕ is unsatisfiable. �

Theorem 5.3 If there exists an open tableau for ϕ then ϕ is satisfiable.

Proof. Let T be an open tableau for ϕ. There exists a leaf n in T , marked

open, labeled with a set of formulas F (n). Let R be the branch in T from the root

until leaf n and let j be the stage in R the node n belongs to. We shall build from

R a model for ϕ.

Consider the structure M with a sequence of states 0, 1, 2, . . ., where 〈M, i〉 is the

set of all literals appearing in all nodes (or equivalently in the last node) of the

stage i in R, for i = 0, 1, Distinguish two main cases:

(i) The leaf n is marked open because F (n) is a (consistent) set of literals. Then

M is a finite structure that can be seen as follows:

0 1 j

. . .

(ii) The leaf n is marked open because the set of formulas F (n) coincides with the

set of formulas in some ancestor nodes of n in R. Let m be the oldest ancestor

node of n in R such that F (m) = F (n). Then all eventualities in the path

between m and n are fulfilled in the path. Let j′ be the stage in R the node m

belongs to, for some 0 ≤ j′ < j. Then M is an infinite structure with a final

loop that can be seen as follows:

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–7370

0 1 j’

.

j-1

In the next auxiliar lemma we shall prove that every formula φ in a node of

stage i in R is satisfied in the structure M, that is, 〈M, i〉 |= φ. Then, in particular,

〈M, 0〉 |= ϕ.

Finally, it is well known that M can be extended to an interpretation by adding to

〈M, i〉 all propositional variables p (from ϕ) such that neither p nor ¬p are in the

stage i in R, for every i ≥ 0. �

Now we prove the auxiliary lemma used in the proof of Theorem 5.3.

Lemma 5.4 For every formula φ appearing at (a node of) stage i in R, it holds

that 〈M, i〉 |= φ.

Proof. Let φ ∈i R denote that φ appears at (a node of) stage i in R, with

i = 0, 1, . . . , j. We proceed by structural induction on φ.

• The base case, φ literal, holds by construction of M.

• Cases ¬¬φ1 , φ1 ∧ φ2 , ◦φ1 , ¬◦φ1 and the case ¬(φ1 ∧ φ2) can be easily proven

by induction hypothesis on φ1 and φ2.

• Case ¬(φ1 U φ2) .

· When M is a finite structure, it is obvious that for some k in i . . . j it holds

¬φ1 ∈k R. Otherwise, the leaf n contains the formula ¬(φ1 U φ2) which is not a

literal. Also ¬φ2 ∈s R for every s in i . . . k. Then, by induction, 〈M, k〉 |= ¬φ1

and 〈M, s〉 |= ¬φ2, for every s in i . . . k. Therefore 〈M, i〉 |= ¬(φ1 U φ2) .

· When M is an infinite structure with a final loop, let us first suppose that stage

i is not inside the loop, that is, suppose i < j′. Hence, either the same occurs

as in the previous case, or else ¬φ2 ∈s R for every s ≥ i. Both facts yield to

〈M, i〉 |= ¬(φ1 U φ2) .

· When M is an infinite structure with a final loop, but stage i is inside the loop,

we must also take into account the stages from j until the second occurrence

of i (these are also future worlds for i).

This situation can be converted to the previous one just considering that the

structure M can be seen as the structure M′ defined 〈M′, k〉 = 〈M, k〉 for k

in 0 . . . j − 1, and 〈M′, j + s〉 = 〈M, j′ + s〉 for s in 0 . . . (j − j′ − 1)

That is, M′ is the following structure, where p = 2j − j′ − 1. Then it holds:

¬(φ1 U φ2) ∈i R =⇒ 〈M′, i〉 |= ¬(φ1 U φ2) ⇐⇒ 〈M, i〉 |= ¬(φ1 U φ2) .

0 j’

.

 i

. . .

j p

• Case φ1 U φ2 .

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–73 71

· When M is a finite structure, it is obvious that for some k in i . . . j it holds

φ2 ∈k R. Otherwise, the leaf n contains a formula which is not a literal. Also

φ1 ∈s R for every s in i . . . k − 1. Then, by induction, 〈M, k〉 |= φ2 and

〈M, s〉 |= φ1, for every s in i . . . k − 1. Therefore 〈M, i〉 |= (φ1 U φ2) .

· When M is an infinite structure with a final loop, we can consider again two

situations depending on stage i to be before or inside the loop.

If stage i is inside the loop then, by construction of the algorithm, the formula

φ2 belongs to the loop where, until this moment, always is φ1. It yields, again

by induction, to 〈M, i〉 |= (φ1 U φ2).

If stage i is before the loop and the formula φ2 does not belong to some

stage before the loop, then there must exist an eventuality (Δ ∧ φ1) U φ2 in

the first node of stage j′, for some (possibly empty) conjunction Δ of contexts.

Besides, φ1 ∈s R for every s in i . . . (j′ − 1). Now the previous situation can be

applied to (Δ ∧ φ1) U φ2 since the stage j′ is inside the loop. Then 〈M, j′〉 |=

((Δ ∧ φ1) U φ2) which implies that 〈M, i〉 |= (φ1 U φ2) . �

6 Conclusions and Further Work

The development of automated deduction systems for propositional temporal logic

has followed two main proof-theoretical approaches: tableaux [10] and resolution

[2]. We have focused here on the first field, introducing a new method for semantic

tableaux. While most of the previous decision algorithms for PLTL have been

presented as two-phase procedures:

– A tableau procedure that creates a graph.

– A procedure that checks whether the graph fulfills all eventualities.

Here, we have presented a tableau method where derivations result in tree struc-

tures rather than general graphs. Consequently, our method has the following two

main advantages:

First, it avoids the second phase which requires the creation of the graph. Since

it involves only the first phase, the procedure stops as soon as a model is detected,

thus avoiding the construction of the complete tableau.

Secondly, each application of a rule in the tableaux is indeed an application of

the corresponding rule in a new sequent calculus called FC [3]. Given any valid

propositional temporal formula, a refutational proof in FC can be directly built

from the closed tableau obtained by our method.

With respect to implementation, we have built a first prototype (in Java) that

allows us to see, step by step, the construction of the tableau. When the initial

formula is unsatisfiable, the running time of our algorithm can be high. In fact, the

Proposition 3.4 gives an upper bound on the time complexity (worst case) of our

method. But in practice, although it is still in test phase, its behaviour appears to

be good enough. We are also working on the mechanization of the calculus FC in

the generic proof-assistant Isabelle (cf. http://isabelle.in.tum.de) in order to

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–7372

http://isabelle.in.tum.de

allow the interactive formalization of FC-proofs for temporal properties.

Additionally, we also plan to work on applying this new approach to make

resolution. Up to now, the best resolution methods need to incorporate rules that

only can be implemented using an invariant formula [2]. As in the tableaux case,

we believe that the use of FC could improve the known resolution algorithms.

References

[1] M. Ben-Ari, Mathematical Logic for Computer Science, Springer, second edition, (2001).

[2] M. Fisher, A Resolution Method for Temporal Logic, IJCAI, (1991), 99–104.

[3] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas, A Cut-Free and Invariant-Free Sequent
Calculus for PLTL, 21 International Workshop CSL 2007. LNCS 4646. Springer-Verlag, (2007), 481–
495.

[4] Y. Kesten, Z. Manna, H. McGuire and A. Pnueli, A Decision Algorithm for Full Propositional Temporal
Logic, CAV’93: Proceedings of the 5th International Conference on Computer Aided Verification,
Springer-Verlag, (1993), 97–109.

[5] O. Lichtenstein and A. Pnueli, Propositional Temporal Logics: Decidability and Completeness, Logic
Journal of the IGPL, volume 8, number 1, (2000).

[6] B. Paech, Gentzen-Systems for Propositional Temporal Logics, in CSL, (1988), 240–253.
http://dblp.uni-trier.de .

[7] R. Pliuskevicius, Investigation of Finitary Calculus for a Discrete Linear Time Logic by means of
Infinitary Calculus, Baltic Computer Science, (1991), 504–528, http://dblp.uni-trier.de .

[8] A. Szalas, Temporal Logic of Programs: A Standard Approach, Time and Logic. A Computational
Approach. Bolc, L. and Sza�las, A. UCL Press Ltd. (1995), 1–50.

[9] S. Schwendimann, A New One-Pass Tableau Calculus for PLTL, In Proceedings Tableaux 98. LNAI
1397, (1998), 277–291.

[10] P. Wolper, Temporal Logic Can Be More Expressive, Information and Control, 56, 1–2, (1983),72–99.

J. Gaintzarain et al. / Electronic Notes in Theoretical Computer Science 206 (2008) 59–73 73

http://dblp.uni-trier.de
http://dblp.uni-trier.de

	Introduction
	PLTL: Language and Model Theory
	Semantic Tableaux for PLTL
	Rules for Constructing a Semantic Tableau
	Preclosure and Closure of a Temporal Formula
	Systematic Construction of a Semantic Tableau
	Properties of this Construction

	Examples of Semantic Tableaux
	Soundness and Completeness of Semantic Tableaux
	Conclusions and Further Work
	References

