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Abstract

In this paper, we propose a new approach to define temporal logic programming languages based on a temporal extension
of resolution. We introduce the very expressive language TeDiLog that allows both eventualities and always formulas to
occur in the head and also in the body of clauses. The operational semantics of TeDiLog is formulated on the basis of
a resolution mechanism that dispenses with invariants, but produces new disjunctive clauses. As a consequence TeDiLog
combines the temporal and the disjunctive paradigms in logic programming. In this contribution, we restrict our presentation
to the propositional setting where the underlying logic PLTL is complete. Hence, the equivalence between operational and
the logical semantics can be fully achieved.
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1 Introduction

Temporal logic programming (TLP) in a broad sense means programming in any language

that is based in a temporal logic. TLP is an important tool for describing dynamic systems,

therefore TLP is a central issue for many applications in computer science and artificial in-

telligence. The different approaches to TLP can be grouped into two categories depending

on their view of a program execution as, either a construction of a model, or a refutation

proof. The earliest languages TEMPURA and TOKIO, respectively proposed in [14] and

[2], are based on interval temporal logic and belong to the former class. Their objective

is to construct a Kripke model of a given formula and, to this end, the formula is inter-

preted similarly to an imperative program. Some other similar languages are proposed in

[3,10,13].
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The second category includes all languages that extends Horn clauses with temporal

connectives. Depending on the underlying execution mechanism these temporal Horn lan-

guages can be grouped into two sub-families. On one hand, the execution of the languages

proposed in [6,8,12] relies on a translation into the constraint logic programming (CLP)

paradigm using special temporal theories. On the other hand, there are some proposals of

TLP languages whose underlying execution mechanism extends classical resolution proof

system for handling temporal connectives. The best known of that languages are Tem-

plog [1], Chronolog [15] and Gabbay’s Temporal Prolog [9]. The implementation of both

Templog and Chronolog are based in two different temporal extensions of SLD-resolution,

called TSLD- and TiSLD-resolution, which respectively define their operational semantics.

The only allowed temporal operator in Chronolog clauses is the next time operator (◦). In

Templog the always operator (�) is allowed in clause heads and the eventually operator

(� ) is allowed in clause bodys. However, Templog and Chronolog have the same expres-

sive power and the same metalogical properties of existence of minimal model and fixpoint

characterization. Roughly speaking Templog and Chronolog programs are expressible us-

ing ◦ as the only temporal operator. This restriction is so strong that allows to reduce any

temporal program to a (possibly infinite) classical logic program. Gabbay’s Temporal Pro-

log is a very expressive language that allows two kinds of eventually connectives (future

and past), but does not allow � in clause heads. This great expressiveness causes the lack

of the minimal model property. A resolution-based computation procedure is outlined in

[9] where it is also proved to be sound. As far as we know, the completeness property of

Gabbay’s Temporal Prolog has not been addressed.

In this paper, we propose a new approach to define TLP languages in the framework

of temporal extension of resolution. We introduce a very expressive TLP language that

allows both � and � in clause heads and bodys. In particular, our language is strictly

more expressive than Templog, Chronolog and Gabbays’s Temporal Prolog. We provide

a system of resolution rules and a computation mechanism. As a first step, and for clar-

ity, the presentation of the system is restricted to the propositional setting. Our refutation

procedure is sound and complete with respect to the logical semantics of the logical conse-

quences of the program. We cannot expect the minimal model property because of the same

reasons of Gabbay’s Temporal Prolog. Due to technical reasons related to our resolution

system, we choose to combine the paradigms of temporal and disjunctive logic program-

ming (DLP). Temporal disjunctive logic programming has previously been addressed in

[11] where Chronolog is extended with DLP features. From the temporal point of view,

Disjunctive Chronolog has the same limitations as Chronolog. We conjecture that our tem-

poral disjunctive logic programming language naturally enjoys the minimal model property

that is the metalogical roof in DLP. Our resolution system requires the expressive power

of full temporal logic. That is, the resolution of a � -goal, necessarily generates subgoals

involving the strictly more expressive operator “until”. Hence, we directly formulate our

language in terms of the temporal operators ”until” and ”release”.

2 The Logic PLTL

A PLTL-formula is built using propositional variables (denoted by lowercase letters

p, q, . . .) from a set Prop, the classical connectives ¬ and ∧, and the temporal connectives ◦
and U . A lowercase Greek letter (ϕ, ψ, χ, γ, . . .) denotes a formula and an uppercase one
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(Φ,∆,Γ,Ψ,Ω,Π, . . .) denotes a finite set of PLTL-formulas. As usual other connectives

can be defined in terms of the previous ones: ϕ∨ψ ≡ ¬(¬ϕ∧¬ψ), ϕRψ ≡ ¬(¬ϕU ¬ψ),

�ϕ ≡ ¬ϕU ϕ, �ϕ ≡ ¬�¬ϕ. Note that �ϕ ≡ ¬ϕRϕ. PLTL-formulas of the form ϕU ψ
and �ϕ are called eventualities. In the sequel, formula means PLTL-formula.

We use two kind of superscripts on unary connectives namely ⊗. First, ⊗i with i

varying on N represents the sequence formed by i⊗, in particular empty for i = 0. Second,

the especial case ⊗b for b varying in {0, 1} which allows to represent a formula with or

without a prefixed ⊗. Along the rest of the paper superscripts b and b′ range in {0, 1}.

A PLTL-structureM is a pair (SM, VM) such that SM is a denumerable sequence of

states s0, s1, s2, . . . and VM is a map VM : SM → 2Prop. Intuitively, VM(s) specifies

which atomic propositions are (necessarily) true in the state s. The formal semantics of

PLTL-formulas is given by the truth of a formula ϕ in the state sj of a PLTL-structureM,

which is denoted by 〈M, sj〉 |= ϕ, which is inductively defined as follows:

• 〈M, sj〉 |= p iff p ∈ VM(sj) for p ∈ Prop

• 〈M, sj〉 |= ¬ϕ iff 〈M, sj〉 6|= ϕ

• 〈M, sj〉 |= ϕ ∧ ψ iff 〈M, sj〉 |= ϕ and 〈M, sj〉 |= ψ

• 〈M, sj〉 |= ◦ϕ iff 〈M, sj+1〉 |= ϕ

• 〈M, sj〉 |= ϕU ψ iff there exists k ≥ j such that 〈M, sk〉 |= ψ and for every j ≤ i < k

it holds 〈M, si〉 |= ϕ.

This formal semantics is extended using the respective abbreviations to the defined con-

nectives. The semantics is extended from formulas to sets of formulas in the usual way:

〈M, sj〉 |= Φ iff 〈M, sj〉 |= γ for all γ ∈ Φ. We say thatM is a model of Φ, in symbols

M |= Φ, iff 〈M, s0〉 |= Φ. A satisfiable set of formulas has at least one model, otherwise it

is unsatisfiable. Two sets of formulas Φ and Ψ are equisatisfiable whenever Φ is satisfiable

iff Ψ is satisfiable. A formula χ is a logical consequence of a set of formulas Φ , denoted

as Φ |= χ, iff for every PLTL-structure M and every sj ∈ SM: if 〈M, sj〉 |= Φ then

〈M, sj〉 |= χ.

3 The Logic Programming Language

Our notion of atom extends the classical notion of propositional atom with temporal atoms

and (possibly empty) prefixed chains of the connective ◦. Using the usual BNF-notation:

L ::= C | ¬C T ::= LU C | LRC | �C | �C A ::= ◦iC | ◦iT (i ∈ N)

where C stands for classical atom, L for literal, T for temporal atom and A for atom. In

the sequel, we say atom in the latter sense, otherwise we specify between propositional or

temporal atom. Program clauses and query clauses are defined using atoms as usual

H ::= ⊥ | A∨H B ::= > | A∧B D ::= �b(A∨H ← B) Q ::= �b(⊥ ← B)

where ⊥ represents the empty disjunction and > represents the empty conjunction. H

stands for head, B for body, D for (disjunctive) program clause and Q for query clause.

A program is a set of program clauses and a goal is a set of query clauses. The intended

meaning of a program Π is the conjunction of the program clauses in Π and the intended

meaning of a goal Γ is the conjunction of the query clauses in Γ. A clause of the form

H ← B is called a now-clause and a clause of the form �(H ← B) is called an always-
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clause. Note that �b(⊥ ← >) represents the two possible syntactic forms of the empty

clause, as now- or always-clause. We identify heads and bodies (finite disjunctions and

conjunctions of atoms, respectively) with sets of atoms. Hence, we assume there is neither

repetitions nor established order in the atoms of a head or a body.

In the next example we show a TeDiLog specification of a system. We would like to

remark that many clauses in the below example contain eventualities in their heads. Hence,

this clauses cannot be written in the programming languages [1,15] that we mention in

Section 1, although they are allowed in the language of [9].

Example 3.1

1. �(◦� ack sm← req dv) 8. �(waiting dv U ack sm← req dv)

2. �(◦� eop dv ← ack sm) 9. �(working dv U eop dv ← ack sm)

3. �(� ctr sm← >) 10. �(waiting smU eop dv ← ack sm)

4. �(� ack sm← ctr sm) 11. �(◦(¬req dv U eop dv)← working dv)

5. �(com dv ← � eop dv) 12. �(¬working dv U ack sm← eop dv)

6. �(com sm← � ack sm) 13. �(◦(¬req dv U eop dv)← req dv)

7. �(¬waiting dv U req dv ∨ ¬waiting dv U ack sm← eop dv)

In this example a system where a device dv and a system manager sm interact with each

other is (partially) specified by means of a set of program clauses. The device dv sends a

request req dv to sm to get permission to execute a process and goes into waiting-state until

sm sends the acknowledgement ack sm giving permission to execute the process. Then

sm goes into waiting-state whereas dv goes into working-state until dv communicates the

end of the process by means of eop dv. Besides, the system manager innerly generates a

control signal ctr sm from time to time which is eventually followed by ack sm provoking

an answer eop dv from the device dv. The interaction generated after the control signal

ctr sm corresponds to the fact that the system manager sm has to control regularly whether

the device dv is correctly connected to the system. The device dv is considered to be in

communicating-state (com dv) while the arising of the eop dv signal (now or in a future

moment) is guaranteed. Similarly for com sm whith respect to sm and ack sm.

With this TeDiLog specification in hand, one could check if the system verifies some

properties such as fairness, liveness, safety, mutual exclusion, etc. It suffices to express the

property as a goal. For instance we would be interested in checking whether the device dv

and the system manager sm will always keep communicating with each other. This could

be accomplished by checking whether dv is always in communicating-state (com dv) and

checking whether sm is always in communicating-state (com sm). The corresponding

goal would be {⊥ ← �com dv∧�com sm}. Note that this goal cannot be expressed nei-

ther in the languages of [1,15] nor in the language [9]. In Section 4 we give a computation

example using a simplification of this TeDiLog specification.

4 Procedural Semantics

In this section, we present the refutation procedure underlying TeDiLog. First we introduce

some necessary technical notation. Then we provide the rules of our temporal resolution

system and finally the proof method is showed.

Given a set of clauses ∆, we define alw(∆) = {�N | �N ∈ ∆} and now(∆) =
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∆ \ alw(∆). Given a now-clause N = A1 ∨ . . . ∨ An ← A′1 ∧ . . .∧ A
′
m, with n ≥ 0 and

m ≥ 0, we abbreviate by ◦N the now-clause ◦A1 ∨ . . . ∨ ◦An ← ◦A′1 ∧ . . .∧ ◦A
′
m.

The operator unnext applies to a set of clauses Ψ for obtaining the clauses that should

be satisfied at any state which is next to any state that satisfies Ψ, that is, unnext(Ψ) =

alw(Ψ) ∪ {N | �b(◦N ) ∈ Ψ}. Note that unnext implicitly uses the equivalence between

�N and {N, ◦�N}. Given a non-empty set of now-clauses ∆ = {N1, . . . , Nr}, the set

∆¬ is the set of clauses obtained by applying the distribution laws to the formula ¬N1 ∨
. . . ∨ ¬Nr. For augmenting a set of now-clauses, i.e., for adding an atom to the body of

each clause and converting the new now-clauses in always-clauses, we use the function

aug(a,∆) = {�(H ← B ∧ a) | H ← B ∈ ∆}. The following function def associates a

set of clauses to a fresh variable a w.r.t. a set of clauses ∆ and a set of literals S. In some

sense, the clauses in def(a, S,∆) give the meaning of a in a context given by ∆ and S.

def(a, S,∆) =















{�(⊥← a)} if ∆ = ∅
aug(a,∆¬) if ∆ 6= ∅ and S = ∅
{�(p← a)} ∪ aug(a,∆¬) if ∆ 6= ∅ and S = {p}
{�(⊥← p ∧ a)} ∪ aug(a,∆¬) if ∆ 6= ∅ and S = {¬p}

Now, we give the rule system underlying the operational semantics of TeDiLog. Be-

sides a classical-like resolution rule (Res), our system includes a subsumption rule (Sbm)

and also the temporal rules for decomposing temporal atoms. The so called context-free

rules are based directly on the inductive definition of the corresponding connective. The

so called context-dependent rules are a bit peculiar in the sense that they apply to a set of

clauses and the conclusion is a set constructed using also the clauses that are not in the

premise set.

This section is split into four subsections. The first subsection is devoted to the rules

(Res) and (Sbm), in the second subsection the context-free rules are introduced. The idea

underlying the context-dependent rules is explained in the third subsection. In the fourth

subsection the details about the refutation procedure are dealt with.

4.1 Resolution and Subsumption Rules

(Res)
�

b(A ∨H ← B) �
b
′

(H ′ ← A ∧ B′)

�
b∗b

′

(H ∨H ′ ← B ∧B′)

(Sbm) �
b(H ← B) is subsumed by �

b(H ′ ← B′) if H ′ ( H and B′ ⊆ B or H ′ ⊆ H and B′ ( B

Fig. 1. The Resolution Rule (Res) and the Subsumption rule (Sbm)

The resolution rule (Res) in Figure 1 applies to two clauses (the premises) that verify

that one of the atoms in the head of the first clause is in the body of the second clause,

and a new clause is obtained (the resolvent). The premises remain in and the resolvent is

added to the target set of clauses. The rule (Res) constitutes a very natural generalization

of classical resolution to the case of TeDiLog clauses.

Similarly, the subsumption rule (Sbm) in Figure 1 generalizes classical subsumption

to TeDiLog clauses. Note that the same superscript b occurs in both clauses. Unlike clas-

sical logic programming, we cannot ensure refutational completeness for our resolution

procedure in absence of (Sbm).
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4.2 Context-Free Temporal Rules

(U L1)
�

b((p1 U p2) ∨H ← B)

{� b(p2 ∨ p1 ∨H ← B), �
b(p2 ∨ ◦(p1 U p2) ∨H ← B)}

(U L2)
�

b((¬p1 U p2) ∨H ← B)

{� b(p2 ∨ p1 ∨H ← B), �
b(p2 ∨ ◦(p1 U p2) ∨H ← B)}

(U R1)
�

b(H ← (p1 U p2) ∧ B)

{� b(H ← p2 ∧B), �
b(H ← p1 ∧ ◦(p1 U p2) ∧ B)}

(U R2)
�

b(H ← (¬p1 U p2) ∧B)

{� b(H ← p2 ∧B), �
b(p1 ∨H ← ◦(¬p1 U p2) ∧B)}

Fig. 2. The Context-Free Rules (U L1), (U L2), (U R1) and (U R2)

(RL1)
�

b((p1R p2) ∨H ← B)

{� b(p2 ∨H ← B), �
b(p1 ∨ ◦(p1R p2) ∨H ← B)}

(RL2)
�

b((¬p1R p2) ∨H ← B)

{� b(p2 ∨H ← B), �
b(◦(p1R p2) ∨H ← p1 ∧ B)}

(RR1)
�

b(H ← (p1R p2) ∧ B)

{� b(H ← p2 ∧ p1 ∧B), �
b(H ← p2 ∧ ◦(p1R p2) ∧B)}

(RR2)
�

b(H ← (¬p1R p2) ∧B)

{� b(p1 ∨H ← p2 ∧B), �
b(H ← p2 ∧ ◦(¬p1R p2) ∧B)}

Fig. 3. The Context-Free Rules (RL1), (RL2), (RR1) and (RR2)

The context-free rules (U L1), (U L2), (U R1) and (U R2) of Figure 2 replace a clause

of the form �b((LU p) ∨ H ← B) or a clause of the form �b(H ← (LU p) ∧ B) by

a logically equivalent set of clauses using the well known inductive definition LU p ≡
p ∨ (L ∧ ◦(LU p)) of the connective U . Likewise, the rules (RL1), (RL2), (RR1)

and (RR2) of Figure 3 use the inductive definition LR p ≡ p ∧ (L ∨ ◦(LR p)) of the

connective R . A simple distribution gives the equivalent set of clauses that appears in the

conclusion of each rule.

4.3 Context-Dependent Temporal Rules

The rules (U L3), (U L4), (RR3) and (RR4) consider a more complex inductive defi-

nition of the corresponding connective taking into account the context of the involved set

of clauses. For instance, in the case of the rule (U L3) the underlying idea is that a set of

clauses Ω ∪ {�bi((p1U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n} (where n ≥ 1) is satisfiable if and

only if the following set of clauses is satisfiable

Ω ∪ {p2 ∨ p1 ∨Hi ← Bi, p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n} ∪ def(a, {p1},∆)

∪ {�(◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

where ∆ = now(Ω) and the fresh propositional variable a is always equivalent to the

formula p1 ∧
∨

ζ∈∆¬ζ. Intuitively, if p1 U p2 is true at the first state s0 of a model but

the model does not satisfy p2 at s0, then p2 should be true in a later state, namely s1,

and the states in between s0 and s1 must satisfy p1 but not the context Ω. When the

number of possible contexts is finite, this property prevents from postponing indefinitely
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(U L3)
Ω, {� bi((p1 U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n}

{p2 ∨ p1 ∨Hi ← Bi, p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n} ∪ def(a,{p1}, ∆)

∪ {� (◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(U L4)
Ω, {� bi((¬p1 U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n}

{p2 ∨Hi ← p1 ∧Bi, p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n} ∪ def(a,{¬p1},∆)

∪ {� (◦(¬p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(RR3)
Ω, {� bi(Hi ← (p1R p2) ∧Bi) | 1 ≤ i ≤ n}

{Hi ← p2 ∧ p1 ∧ Bi, Hi ← p2 ∧ ◦(¬aR p2) ∧Bi | 1 ≤ i ≤ n} ∪ def(a,{¬p1},∆)

∪ {� (◦Hi ← ◦(p1R p2) ∧ ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(RR4)
Ω, {� bi(Hi ← (¬p1R p2) ∧Bi) | 1 ≤ i ≤ n}

{p1 ∨Hi ← p2 ∧ Bi, Hi ← p2 ∧ ◦(¬aR p2) ∧Bi | 1 ≤ i ≤ n} ∪ def(a,{p1},∆)

∪ {� (◦Hi ← ◦(p1R p2) ∧ ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1, ∆ = now(Ω) and a ∈ Prop is fresh.

Fig. 4. The Rules (U L3), (U L4), (RR3) and (RR4)

the satisfaction of p1 U p2 and makes possible to get a complete resolution method that does

not require invariant generation at all.

Besides, the always-clauses in Ω can be excluded from the context (preserving equiva-

lence) because of the easy equivalence between the set {ϕ,�ψ, ◦((γ∧ (¬ϕ∨¬�ψ))U δ)}
and the set {ϕ,�ψ, ◦((γ ∧ ¬ϕ)U δ)}. Hence, the context ∆ is given by now(Ω).

With respect to the clauses that state that a is always equivalent to the formula p1 ∧
∨

ζ∈∆¬ζ, since the left-to-right implication is enough for equisatisfiability, we do not add

the clauses for the reverse implication in the rule.

The idea behind the other context-dependent rules is the same as in (U L1). In the case

of the rule (U L2) since ¬p1 is not an atom, ¬p1 cannot remain on the left-hand side of the

new clauses and therefore p1 appears on the right-hand side. The rules (RR3) and (RR4)

are better understood considering that having p1R p2 and ¬p1R p2 on the right-hand side

of a clause is like having (respectively) ¬p1 U ¬p2 and p1 U ¬p2 on the left-hand side.

4.4 Refutation Procedure

A derivation for a program Π and a goal Γ is a sequence of pairs D = (Π0,Γ0) 7→
(Π1,Γ1) 7→ . . . 7→ (Πi,Γi) 7→ . . . where (Π0,Γ0) = (Π,Γ) and each (Πi+1,Γi+1) is

obtained from (Πi,Γi) by applying one of the previously presented rules. If the last pair of

a derivationD contains the empty query clause �b(⊥ ← >), then D is called a refutation.

The clause �b(⊥ ← >) can only appear in the last pair of a derivation.

The resolution procedure consists in repeating Algorithm 1 starting from a pair (Π,Γ)

where the empty clause does not appear in the goal

Algorithm 1 Input: a program and a goal. Output: a derivation

Step 1 Fix fairly a distinguished temporal atom

Step 2 Apply the context-dependent rule that corresponds to the distinguished atom

Step 3 Apply the context-free rules

Step 4 Saturate the set of program clauses using the resolution rule

Step 5 Apply linear resolution between clauses in the program and in the goal

Step 6 Apply the Subsumption rule

Step 7 Apply the unnext operator
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For a temporal atom to be distinguishable it must appear as atom in at least one program

clause or query clause and must accept the application of a context-dependent rule. In each

iteration it is mandatory to distinguish a unique temporal atom if distinguishable atoms are

available. At the beginning of a new iteration, we say that a temporal atom T ′ is the direct

descendant of T if T was the distinguished atom in the previous iteration and ◦T ′ is the

fresh atom obtained after the application of the corresponding context-dependent rule to the

set of all the clauses that contained T as an atom that accepted the application of such a rule.

If T ′ is distinguishable in the present iteration, then T ′ must be the distinguished one. If

T ′ is not distinguishable, one of the distinguishable temporal atoms is distinguished fairly.

If following the mentioned procedure a temporal atom T ′′ has been distinguished in the

present pair (Πj,Γj), the corresponding context-dependent rule is applied to the set Ψ of

all the clauses in Πj ∪Γj that contain T ′′ as an atom that accepts such a rule and the clauses

in Ψ are replaced with the clauses in the conclusion set, obtaining a new pair (Πj+1,Γj+1).

Then the context-free rules are applied to the remaining temporal atoms replacing each

affected clause with the corresponding new clauses. When a pair where no temporal rule

can be applied is obtained, the program set is saturated by means of the resolution rule,

adding all the program clauses that can be obtained applying the rule (Res) to pairs of

program clauses. When the set of program clauses has been saturated, the linear resolution

step begins. At this step the rule (Res) is applied while possible but in each application

one of the premises must be a program clause and the other one must be a query clause.

Note that in the linear resolution step an application of (Res) can give as conclusion either

a program clause or a query clause and that clause must be added either to the program or

to the goal. After the linear resolution step, the rule (Sbm) must be applied while possible.

And finally, the application of the unnext operator yields a new pair and another iteration

must begin. It is worthwhile to note that the the unnext operator is applied when no other

rule can be applied. A derivation ends if during the linear resolution step the empty query

clause �b(⊥ ← >) is obtained.

Now, let us give a hint about how TeDiLog works by means of a simplified version of

the example introduced in Section 3.

Example 4.1 Consider the goal Γ0 = {⊥ ← �com dv} w.r.t. the program

Π0 = {C1 = �(◦� eop dv ← ack sm), C2 = �(� ctr sm← >),

C3 = �(� ack sm← ctr sm), C4 = �(com dv ← � eop dv)}

If we distinguish �com dv in Γ0, since �p abbreviates ¬pR p, then we apply the rule

(RR4) with empty context. Hence, Γ0 is replaced with the set of two clauses

Γ1 = {⊥ ← com dv ∧ ◦(¬xR com dv), �(⊥← x)} where x is fresh.

Now, in the clauses obtained by saturation there is only one now-clause: ◦� eop dv ∨
◦� ack sm∨ ◦� ctr sm← >. Therefore, after the first application of the unnext operator,

we obtain the clause C5 = � eop dv ∨ � ack sm ∨ � ctr sm← > and the goal

Γ2 = {⊥ ← � eop dv ∧ ¬xR com dv, �(⊥ ← x)}

where ¬xR com dv becomes distinguished. Hence, by application of the rule (RR4) to

the first query in Γ2 with context {C5} and successive resolution steps, the goal becomes

Γ3 = {← ack sm, �(⊥ ← x)}. Then, � ack sm in C3 is distinguished, to yield the goal

Γ4 = {← ctr sm, �(⊥← x)}. Finally, � ctr sm inC2 must be distinguished. Then the

empty query is achieved.
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5 Equivalence between Operational and Logical Semantics

In this section we sketch the idea behind the equivalence of the operational and logical

semantics for our system. This equivalence means that the resolution procedure using

Algorithm 1 obtains a refutation for (Π,Γ) iff Π ∪ Γ is unsatisfiable. This equivalence is

divided in soundness and completeness.

Soundness means that whenever a refutation exists for a pair (Π,Γ), then Π ∪ Γ is

unsatisfiable. The soundness of our system can be guaranteed rule by rule. A rule is

sound whenever it preserves the satisfiability from the premises to the conclusion. The

rules presented in Sections 4.1, 4.2 and 4.3 are sound. Moreover, the initial and the target

sets of every application of these rules are equisatisfiable. Besides, the operator unnext

preserves satisfiability. Note that the equisatisfiability, in general, of initial and target sets

of unnext cannot be ensured. By satisfiability preservation of the TeDiLog rules and the

unnext operator, we can prove that whenever �b(⊥ ← >) occurs in a derivation, then the

first pair of that derivation should be unsatisfiable. Hence, the introduced system is sound.

Completeness means that whenever a set of clauses Π ∪ Γ is unsatisfiable, a refutation

for (Π,Γ) can be constructed. Under the assumption that the resolution algorithm uses a

fair strategy for distinguishing atoms, the resolution system underlying the proof procedure

of TeDiLog is complete.The aim of the algorithm presented in the previous Section 4.4 is to

obtain a pair that contains the clause �b(⊥ ← >), however if the initial set of clauses Π∪Γ

is satisfiable, then this never occurs and an infinite derivation is built. In order to see this

fact let us consider the set atoms(Π,Γ) as the set that contains the atoms that could appear

in the clauses obtained from (Π,Γ) by means of the unnext operator and all the TeDiLog

rules with the exception of the context-dependent rules. The closure closure(Π,Γ) of a pair

(Π,Γ) is defined as the (minimal) set that contains all the clauses that could be generated

from atoms in atoms(Π,Γ). The number of clauses in closure(Π,Γ) is 2O(n), where n is

the number of atoms in atoms(Π,Γ).

Given a pair of sets of clauses (Π,Γ) as input, only the context-dependent rules intro-

duce new variables and due to the way that the unnext operator and the context-dependent

rules operate, the atoms that contain those fresh variables are always part of now-clauses.

Hence a distinguished atom that contains a new variable and all its descendants are in now-

clauses. Since following the algorithm the context-dependent rules must be applied to all

the clauses that contain the distinguished atom, the context is always a set of clauses in

closure(Π,Γ) and consequently the number of different contexts is finite. Moreover, the

sequence of distinguished atoms generated from an atom (the sequence of descendants) is

always finite because otherwise, since the closure is finite there would be necessarily two

contexts repeated and since the distinguished atoms state that no previous context can be

repeated, it is easy to see that clauses that do not contain the distinguished atom and that at

the same time subsume all the clauses with distinguished atoms are produced eventually. So

the sequence of descendants would finish contradicting its infiniteness. When the sequence

of descendants of a distinguished temporal atom finishes because after an application of

the unnext operator there is no a direct descendant of the previous one, that means that the

satisfaction of that eventuality has succeeded or is not needed. If an infinite derivation is

obtained there exists a model. Therefore, whenever there is no any refutation for (Π,Γ),

then the Algorithm 1 in Section 4.4 produces an infinite derivation and a model for Π ∪ Γ

can be constructed from that infinite derivation.
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6 Future Work

In [4,11,15] the minimal model and the fixpoint characterization of the declarative seman-

tics is a straightforward adaptation of the classical (disjunctive) case since in all of them

the satisfaction of a program is reduced to the satisfaction of a classical logic program and

the semantics is based on interpretations that contain only the so called temporally ground

atoms (atoms that only contain ◦ as temporal operator). But we are not able to do such a

reduction due to the fact that the U and the R operator can appear in heads and bodies.

Our aim is to define the declarative semantics of TeDiLog programs using interpretations

that can contain temporally non-ground atoms, i.e., atoms of the form LU p and LR p.

Our intention is to use the s-semantics approach as introduced in [5,7].

We plan to study TeDiLog in the first-order setting. Unlike PLTL, first order temporal

logic is incomplete. In spite of the incompleteness, the equivalence between procedural and

logical semantics could be preserved likewise in Templog. Besides we are also interested in

the extension of the model theoretic and fixpoint characterization to the first-order setting.
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