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Abstract. We deal with (general) equational constraints, that is, first-
order formulas, with equality as its only predicate symbol, over a (finite
or infinite) language L of function symbols. As semantic domain, we con-
sider the algebra of finite terms over L. Solving one of such constraints
means to find all the solutions for (i.e. assignments to) its free variables.
We present the Projective Quantifier Elimination (PQE) technique for
solving equational constraints (in particular, deciding their satisfiability)
that performs an algebraic-style transformation of expressions instead of
handling first-order formulas. PQE is formulated on the basis of three al-
gebraic operations on expressions: complement, intersection and projec-
tion. We aim to contribute not only a new style of quantifier elimination
for constraint solving, but also a more efficient method for equational
constraint solving. PQE avoids unnecessary applications of the costly
Explosion Rule (ER) that are performed by traditional solving methods.

1 Introduction

We deal with (general) equational constraints, that is, first-order formulas, with
equality as its only predicate symbol, over a (finite or infinite) language L of func-
tion symbols. As semantic domain, we consider the algebra of finite terms over
L. Solving one of such constraints means to find all the solutions for (i.e. assign-
ments to) its free variables. Equational constraint solving methods are rewriting
processes that transform the input constraint into an equivalent Boolean com-
bination (usually, disjunction) of constraints, in the so-called solved form. The
solved form represents the solutions of the constraints, since every solved form is
satisfiable whenever it is syntactically different from the logical constant for false-
hood. The most well-known algorithms for equational solving in this setting (see
[5, 8, 6, 10, 13, 14]) and later extensions to richer theories (see [17]) are based on
some Quantifier Elimination (QE) technique. A terminating non-deterministic
method based on a set of rules is presented in [8, 6, 7], and different deterministic
methods are introduced in [5, 10, 13, 14]. All of them (implicitly or explicitly) as-
sume some specific notion of solved form, which allows disequations and (often,
but not always) a limited form of universal quantification (see [6] for a good
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comparison of solved forms). In these methods, the elimination of those univer-
sal quantifications that are not allowed by the notion of solved form requires
the application of the so-called Explosion Rule (ER) (following [8]) or the Weak
Domain Closure Axiom (following [13]). Roughly speaking, an application of the
ER, to eliminate a universal variable x (and, hence, the quantifier on x), amounts
to conjoining a constraint representing the disjunction

∨
f∈L ∃v (x ≈ f(v)) where

v are fresh variables and L is the set of function symbols of a finite language.
In most of the solving methods —for efficiency and/or for termination— ER is
applied whenever no other rule or transformation step can be applied.

In this paper, we present a new style of QE, called Projective Quantifier
Elimination (PQE), to solve equational constraints over the algebra of finite
terms of a (finite or infinite) language of function symbols. The PQE technique
improves previous results [1–3] by two of the authors. On one hand, it performs
an algebraic-style transformation of expressions instead of handling first-order
formulas. The expressions we use to represent the matrix (i.e. the formula inside
the prefix of quantifiers) are heavily inspired by the notion of implicit gener-
alization that was introduced by Lassez and Marriot [12] to study complement
problems in the area of machine learning. Since then, different applications of
this notion have appeared in many other areas, such as logic and functional
programming, model-building, etc. Their computational properties have been
extensively studied by R. Pichler (see e.g. [16, 15]). The main power of implicit
generalizations is their high expressivity to compactly represent infinite sets of
ground terms. In [4], the authors introduce use two notions closely related to
implicit generalization, although they left open the problem of deciding their
satisfiability. On the other hand, the PQE technique is formulated on the basis
of three algebraic operations on such expressions: complement, intersection and
projection. The compact representation of the matrix, along with the operation
of projection, are the crucial keys to avoid the matrix blow-up produced by ER.

Outline of the paper. In Section 2 we provide basic notation and background
to make the paper self-contained. In Section 3, we define the syntax and seman-
tics of the ct-expressions that are the basis of the PQE technique. In Section
4 we explain how to transform a quantifier-free equational constraint into a ct-
expression. In Section 5 we define the notion of weak normal form (wnf) for
ct-expressions and prove the equivalence results that are expected for a normal
form notion. In Section 7 we introduce the crucial operation of projection that
allows the elimination of quantifiers through a controlled use of the ER –in the
case of finite language– and without any explosion for infinite languages. For
that purpose, the notion of normal form (for finite languages) is previously in-
troduced in Section 6. The PQE technique is introduced in Section 8 where its
completeness is proved. We provide some concluding remarks in Section 9

2 Preliminaries

Equational constraints are built on a language L of function symbols, an infi-
nite set of variables X , and the only predicate ≈ of equality. A term is either
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a variable from X or a function symbol f of arity n from L applied to a n-
tuple of terms, called subterms. TL(X ) denotes the set of all possible terms. If
S is any collection of terms, then Var(S) denotes the set of all variables oc-
curring in S. A term without variables is said to be ground and the set of all
ground terms over a language L is denoted by TL. Given two terms t1 and t2,
t1 ≈ t2 is called an equation and t1 6≈ t2 is an abbreviation for ¬(t1 ≈ t2) and
it is called a disequation. A tuple of n terms (t1, . . . , tn) (in particular, variables
(x1, . . . , xn)) is abbreviated by t (resp. x). We use juxtaposition to denote tu-
ple concatenation. That is, given an n-tuple of terms t = (t1, . . . , tn) and an
m-tuple of terms s = (s1, . . . , sm), the expression ts denotes the n + m-tuple
(t1, . . . , tn, s1, . . . , sm). In abuse of notation, we treat tuples as sets whenever or-
der is not relevant. An equational constraint is an arbitrary first-order formulas,
with equality as its only predicate symbol, over a (finite or infinite) language L
of function symbols, including constant formulas: true and false. In other words,
equational constraints are constructed using constant formulas and equations as
atoms, connectives (¬, ∧, ∨, →, ↔) and quantifiers (∃, ∀) as usual in first-order
syntax. We denote by CL(X )) the set of all equality constraints over L and X .
Free(ϕ) is the set of all free variables in a given ϕ ∈ CL(X ). Let v = Free(ϕ),
ϕ∃ and ϕ∀ are abbreviations for ∃v (ϕ) and ∀v (ϕ), respectively. In the sequel,
for brevity, we say constraint instead of equational constraint.

A substitution σ : X → TL(X ) is a mapping from a n-tuple of variables
x ⊂ X called its domain (denoted dom(σ)) into an n-tuple in (TL(X ))n called its
range (denoted range(σ)). When convenient, we see the mapping σ as a set of
associations of terms to variables, namely σ = {x1 ← t1, . . . , xn ← tn}, which
is usually abbreviated by x← t.1 We denote by rgVar(σ) the set Var(range(σ)).
The empty substitution (that is, both its domain and range are empty) is denoted
by ε. The application of a substitution σ to a term t, denoted by tσ, is called an
instance of t. We denote by groundL(t) the set of all ground instances of t over
the language L. A substitution is called a renaming if it is a bijection from X
onto X . The restriction of a substitution σ to the variables x, denoted by σ�x,
is defined as { x ← t | (x ← t) ∈ σ and x ∈ x }. A substitution σ is said to
be an assignment (or ground substitution) if it is a mapping from X into TL. A
substitution σ is said to be linear if no variable occurs more than once in the
tuple of terms range(σ). When a substitution is not linear, we call it non-linear.
The most general unifier of a set of terms {t1, . . . , tn} (which is denoted by
mgu(t1, . . . , tn)) is an idempotent substitution σ such that tiσ = tjσ for every
1 ≤ i, j ≤ n and, for any other substitution θ with the same property, θ = σα
holds for some substitution α. If mgu(t1, . . . , tn) does (not) exist, then the terms
t1, . . . , tn are said to be (non-)unifiable. The most general common instance of
a unifiable set of terms {t1, . . . , tn}, denoted by mgi(t1, . . . , tn), is any tiσ for
1 ≤ i ≤ n where σ = mgu(t1, . . . , tn).

Constraints from CL(X ) are interpreted in the algebra of all ground terms
over a language L, also called the Herbrand structure HL over L, whose universe
is TL. We assume that L contains at least two function symbols one of them

1 where x = (x1, . . . , xn) and t = (t1, . . . , tn).
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with arity 0, because otherwise the Herbrand universe is empty or finite. The
structure HL is the standard model of the free equality theory FETL (of the
language L). Since FETL is an elementary theory2, every ϕ ∈ CL(X ) is a logical
consequence of FETL if and only if HL is a model of ϕ. The theory FETL (which
is also called the theory of term algebra and Clark’s equational theory) was
originally introduced by Malcev in [14] and was shown to be decidable in [13]
(see also [8]). It is also a well-known result that the decision problem of whether
a given formula is satisfiable in HL is worst-case non-elementary (see [9, 18]).
The inherent complexity of the satisfaction problem of equational constraints
for finite signatures is studied in [16]. Given a constraint ϕ ∈ CL(X ), we would
like not only to decide if ϕ is satisfiable (in HL), but also to solve ϕ, that
is, to find its solutions. An assignment σ is said to be an L-solution of ϕ if
dom(σ) ⊇ Free(ϕ), range(σ) ⊆ TL(X ) and HL |= ϕσ. When L is not relevant,
we call them solutions. Consequently, ϕ is said to be satisfiable if it has at least
one solution, otherwise ϕ is said to be unsatisfiable. Note that ϕ is satisfiable if
and only if HL |= ϕ∃. Two constraints ϕ1 and ϕ2 are said to be L-equivalent if
HL |= (ϕ1 ↔ ϕ2)∀, which means that for every assignment σ, HL |= ϕ1σ if and
only if HL |= ϕ2σ. In other words, both constraints have the same solutions.

3 Expressions on Constrained Terms

In this section, we present the notion of ct-expression (or constrained terms
expression) to represent sets of tuples of ground terms in a very compact way that
is especially suitable for our PQE technique. This notation is strongly inspired
by the notion of implicit generalization introduced in [12].

Definition 1. A ct-expression (ct abbreviates constrained term) of arity k is
any syntactic object that can be recursively defined as follows

E ::= ⊥ | > | t 
Θ | ∼ E1 | E1 u E2 | E1 t E2

where t ∈ T kL is a k-tuple of terms, Θ is a set of idempotent substitutions such
that dom(θ) ⊆ Var(t) for each θ ∈ Θ, and E1, E2 are ct-expressions of arity k.3

We denote by EkL(X ) the set of all ct-expressions of arity k over language L and
variables X .

The ct-expressions ⊥ (empty), > (total), and t 
Θ are atomic.

Example 1. An example of atomic ct-expression over L = {a/0, f/1, g/1} is

(z1, f(z2), g(z3), z4) 
 [ (z1, z2, z3)← (a, g(w1), f(w2)), (z1, z4)← (f(w3), g(a)) ].

When Θ is empty in t 
 Θ we simply write t. Indeed, a tuple of terms is the
ct-expression that we associate to an equation in Definition 4 whenever its two
terms are unifiable. Negated equations (or disequations) give rise to the general
form t 
Θ.

Next, we provide a semantic function J KL (relative to a language L) that
associates a subset of T kL to each ct-expression in EkL(X ).

2 All its models satisfy the same first-order sentences
3 We consider that ⊥ and > have any arity k ≥ 0.
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Definition 2. The semantic function J KL :: EkL(X ) → 2(TL)
k

is inductively
defined by4

JEKL =



∅ if E = ⊥
T kL if E = >
groundL(t) \

⋃
θ∈Θ groundL(tθ) if E = t 
Θ

T kL \ JE′KL if E = ∼ E′

JE1KL ∩ JE2KL if E = E1 u E2

JE1KL ∪ JE2KL if E = E1 t E2.

Note that JtKL = groundL(t) for any t ∈ T kL . In particular, JxKL = T kL for any
k-tuple of distinct variables x ⊂ X .

Definition 3. Two ct-expressions E1, E2 ∈ EkL(X ) are (semantically) L-equivalent
iff JE1KL = JE2KL. It is denoted by E1 ≡L E2.

4 From Constraints to Expressions

The PQE technique transforms any constraint into a ct-expression that repre-
sents its solutions. It is well known that any constraint ϕ ∈ CL(X ) (as a first
order formula) can be transformed into an equivalent prenex form Prenex(ϕ)
where connectives for implication and double-implication are eliminated from
the matrix. Hence, Prenex(ϕ) has the form Q1y

1Q2y
2 . . . Qny

n(α) where α is a
quantifier-free formula whose symbols are in L ∪ {≈,¬,∧,∨}, each Qi ∈ {∀,∃},
Qi 6= Qi+1 for all 1 ≤ i < n, and y1y2 . . . yn ⊆ Free(α). Note that the solutions
of ϕ, and also of Prenex(ϕ), are assignments whose domain is Free(ϕ). The PQE
technique, to eliminate the prefix of quantifiers in Prenex(ϕ), firstly transforms
the matrix α into a ct-expression that represents the solutions of α. Constants
> and ⊥ are used to represent the empty and total set of solutions, respectively.
In particular, when Free(ϕ) is empty, the PQE technique is applied to decide
the satisfiability of ϕ obtaining either > or ⊥. First, we represent equations.

Definition 4. Let α ∈ CL(X ) be quantifier-free and v = Free(α). We associate
each equation t1 ≈ t2 in α to the ct-expression, denoted by Evt1≈t2 , defined as
follows

– Evt1≈t2 = ⊥ if t1 and t2 are non-unifiable
– Evt1≈t2 = vσρ where σ = mgu(t1, t2) and ρ is the renaming (v ∩ rgVar(σ))←
w for some fresh tuple of distinct variables w.

Example 2. Let us suppose that Free(α) = (x1, x2, x3, x4) and that α contains
the equation f(x1, a) ≈ f(g(x2), x4). Then, the most general unifier is σ =
{x1 ← g(x2), x4 ← a} and we choose a fresh w1 to make ρ = {x2 ← w1}.
Therefore, the atomic ct-expression that we associate to the above equation (in
α) is (x1, x2, x3, x4)σρ, which is the tuple of terms (g(w1), w1, x3, a).

4 where \,∪,∩ respectively stand for set-theoretic operations of difference, union and
intersection.
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The following remark states the relation between equations and tuples of terms
(exceptionally ⊥) established in Definition 2.

Remark 1. From Definition 4 it is obvious that the solutions of an equation t1 ≈
t2 are exactly those assignments θ such that dom(θ) = v and vθ ∈ groundL(vσρ).
When t1 ≈ t2 has no solutions, the associated ct-expression is ⊥ (which repre-
sents the empty set of ground terms).

An equation is represented by a tuple of terms, which is just the particular
case of t 
 Θ (in the above Definition 1) when Θ is the empty set. Our goal is
to combine all the equations in a quantifier-free constraint α, according to the
first-order connectives, to obtain a ct-expression whose semantics is the set of all
solutions of α. Negation (in particular, disequations) gives rise to ct-expressions
t 
Θ with non-empty Θ.

Definition 5. Let α ∈ CL(X ) be quantifier-free and let v = Free(α) be a k-
tuple for some k ≥ 0. We denote by Evα the ct-expression of arity k that is
recursively constructed (from α) as follows: Evtrue = >, Evfalse = ⊥, Evt1≈t2 is
the ct-expression of arity k associated in Definition 4 to the equation t1 ≈ t2,
Ev¬β =∼Evβ, Evα1∧α2

= Evα1
u Evα2

, and Evα1∨α2
= Evα1

t Evα2
.

Proposition 1. Let α ∈ CL(X ) be quantifier-free and let v = Free(α) be a k-
tuple for some k ≥ 0. For each assignment θ: θ is an L-solution of α if and only
if vθ ∈ JEvαKL.

Proof. Structural induction on α. The base step is given by Remark 1. ut

Example 3. Let us consider the following constraint α

f(x1, a) ≈ f(g(x2), x4) ∧ ( g(x4) 6≈ g(a) ∨ f(g(x4), g(x2)) 6≈ f(g(a), x1) )

In Example 2 we associate to the equation f(x1, a) ≈ f(g(x2), x4) the 4-tuple
(g(w1), w1, x3, a). According to Definition 5, the ct-expression Ex1,x2,x3,x4

α is

(g(w1), w1, x3, a) u ( ∼(x1, x2, x3, a) t ∼(g(w2), w2, x3, a) ).

We omit sub/super-indices in ct-expressions whenever they are not relevant. We
are already able to represent the matrix of any constraint in prenex form. In
Section 8, we deal with the quantification of ct-expressions.

5 Weak Normal Form

In this section we define the notion of weak normal form and prove some equiv-
alence results that are useful along the rest of the paper. Let us first introduce
the required syntactical conditions.

Definition 6. We say that a substitution θ is minimal5 if and only if w ∈
rgVar(θ \ {x← w}) for all (x← w) ∈ θ. We call θ′ the minimal version of θ if
θ′ is minimal and θ = θ′ ∪ ρ for some renaming ρ.

5 in the sense that θ minimally renames variables
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Example 4. θ1 = (v1, v2) ← (w1, f(w1)) is minimal, whereas θ2 = (v1, v2) ←
(w1, a) is not minimal. The minimal version of θ2 is v2 ← a.

Obviously, the minimal version of a minimal substitution is itself. A minimal
substitution θ only replaces the variables that are essential to reflect coincidences
of (sub-)terms in range(θ).

Proposition 2. The ct-expressions t 
 Θ and t 
 Θ′, such that Θ′ consists of
the minimal versions of all substitutions in Θ, are L-equivalent for any L.

Proof. groundL(tθ) = groundL(tθ′) if θ′ is the minimal version of θ. ut

Proposition 3. For any L and any atomic ct-expression t 
 Θ, if ε ∈ Θ then
t 
Θ ≡L ⊥.

Proof. It is a direct consequence of groundL(t) = groundL(tε). ut

Definition 7. A ct-expression Ex ∈ EkL(X ) is in weak normal form (shortly,
wnf) if and only if Ex is either a constant (⊥ or >) or a ct-expression of the
form

Ex = (t1 
Θ1)x t . . . t (tn 
Θn)x

where n ≥ 1 and θi 6= ε and θi is minimal for every (ti 
 Θi)x (which has arity
k) and every θi ∈ Θi.

In abuse of notation, we sometimes refer to a ct-expression E in wnf as the set
of all the atoms ti 
Θi that compounds E.

Next, in order to show that any ct-expression can be transformed into weak
normal form, we introduce some auxiliary results. First, we show that any atomic
ct-expression can be transformed into an equivalent atomic ct-expression in wnf.

Definition 8. Let E ∈ EkL(X ) be any atomic ct-expression, we define

wnf(E) =


⊥ if either E = ⊥ or E = t 
Θ and ε ∈ Θ′

> if E = >
t 
Θ′ if E = t 
Θ and ε 6∈ Θ′

where Θ′ = [θ′ | θ ∈ Θ and θ′ is the minimal version of θ].

Proposition 4. For all L and all atomic E ∈ EkL(X ), wnf(E) ≡L E.

Proof. It is a consequence of Definition 8 and Propositions 2 and 3. ut

Next, we prove that the complement of an atomic ct-expression in wnf can be
transformed into an equivalent ct-expressions in wnf.

Definition 9. Let E ∈ EkL(X ) be an atomic ct-expressions in wnf, we define

wnf(∼E) =


> if E = ⊥
⊥ if E = >
wnf(x 
 [x← t]) t

⊔
θ∈Θ

tθ if E = t 
Θ

where x is a k-tuple of fresh variables
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It is worth to note that whenever t is a tuple of distinct variables the above
wnf(x 
 [x← t]) is x 
 [ε] = ⊥.

Example 5. Let L = {a/0, f/1, g/1} and the ct-expression

E = (z1, f(z2), g(z3), z4) 
 [ (z1, z2)← (a, g(w)), z4 ← g(a) ].

Then, wnf(∼E) = (x1, x2, x3, x4) 
 [(x1, x2, x3, x4)← (z1, f(z2), g(z3), z4)] t
(a, f(g(w)), g(z3), z4) t (z1, f(z2), g(z3), a).

Proposition 5. For all L and all atomic E ∈ EkL(X ) in wnf, wnf(∼E) ≡L∼E.

Proof. It is a direct consequence of Definitions 2 and 9. ut

Next, we prove that the intersection of atomic ct-expressions in wnf can be
transformed into an equivalent ct-expression in wnf.

Definition 10. Let E1, E2 be two atomic ct-expressions in wnf, we define

wnf(E1uE2) =



⊥ if either E1 = E2 = ⊥ or E1 = t1 
Θ1, E2 = t2 
Θ2

and mgu(t1, t2) does not exist

E2 if E1 = >
E1 if E2 = >
s 
Θ if E1 = t1 
Θ1, E2 = t2 
Θ2, s = mgi(t1, t2) and

Θ = [θ�Var(s) | θ is the minimal version of mgu(s, t1θ1)

for θ1 ∈ Θ1 or mgu(s, t2θ2) for θ2 ∈ Θ2]

Example 6. Let L = {a/0, f/1, g/1} and the two ct-expressions

E1 = (f(v1), v1, v2, v2︸ ︷︷ ︸
t1

) 
 [ (v1, v2)← (w1, w1)︸ ︷︷ ︸
θ1

, v2 ← f(w2)︸ ︷︷ ︸
θ2

]

E2 = (z1, z2, g(z3), z4︸ ︷︷ ︸
t2

) 
 [ (z1, z2)← (a, g(w))︸ ︷︷ ︸
θ′1

, z4 ← g(a)︸ ︷︷ ︸
θ′2

]

Then, wnf(E1 u E2) = (f(v1), v1, g(z3), g(z3)) 
 [ z3 ← a ] because

mgu((f(v1), v1, g(z3), g(z3)), t2θ
′
2)�v1,z3,v3 = z3 ← a

is the only unifier –of the four possible candidates– that exists.

Proposition 6. For all L and all atomic E1, E2 ∈ EkL(X ) in wnf, wnf(E1 u
E2) ≡L E1 u E2.

Proof. By Definitions 2 and 10. ut

On the basis of all the above results, we can now prove that any ct-expression
can be transformed into an equivalent one in wnf.
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Theorem 1. Let L be a language. Any ct-expression E ∈ EkL(X ) can be trans-
formed into an L-equivalent ct-expression wnf(E) ∈ EkL(X ) that is in wnf.

Proof. By structural induction on E. The base cases are given by Propositions
4, 5 and 6. The inductive step relies on the following two definitions:

wnf(E u E′) =
⊔

F∈wnf(E)
F ′∈wnf(E′)

wnf(F u F ′)

wnf(∼E) = wnf(wnf(∼E1) u . . . u wnf(∼En)) where wnf(E) = E1 t . . . t En.ut

The notion of wnf works different for infinite and finite languages. Whereas
for infinite languages checking the emptiness of wnf(E) suffices to ensure the
emptiness of E, that is not enough in the case of finite languages.

Theorem 2. Let L be an infinite language. For any ct-expression E ∈ EkL(X ),
JEKL = ∅ if and only if wnf(E) = ⊥.

Proof. Since L is an infinite language, there are infinitely-many function symbols
in L, whereas only a finite subset of them occurs in wnf(E). Let us consider any
t
Θ ∈ wnf(E) and any ground instance tσ of t such that range(σ) use symbols
from L that do neither occur in t nor in Θ. Obviously tσ ∈ Jt
ΘKL, and, hence,
tσ ∈ Jwnf(E)KL. ut

However, when L is a finite language (that is, L has finitely-many function
symbols), the syntactic conditions required by the wnf notion do not allow to
decide whether the set of ground terms represented by a ct-expression is empty.
For example, if L = {a/0, g/2, f/1}, then the ct-expression

E = g(v) 
 [v ← a, v ← f(w), v ← g(w1, w2)]

represents the empty set of ground terms although E is in wnf. It is easy to see
that none of the substitutions v ← a, v ← f(w), v ← g(w1, w2) is ε and all of
them are minimal. Hence, it is necessary to provide a different condition to check
the emptiness of the represented set of ground terms. In Section 6, we introduce
a restriction of the notion of weak normal form that overcomes that problem.

6 Normal Form

In this section, we introduce the notion of normal form and prove the equivalence
result that, in particular, provides a syntactic check of the emptiness of the set
of terms represented by a ct-expression. First,we first extend the notion of term
instance to atomic ct-expressions instance.

Definition 11. An atomic ct-expression E ∈ EkL(X ) is in normal form (shortly,
nf) if and only if E is in wnf and, if E = t
Θ, then every θ ∈ Θ is non-linear.
A compound ct-expression E ∈ EkL(X ) is in nf if and only if E is of the form
E1t. . .tEn where, for each 1 ≤ i ≤ n, Ei is a non-constant atomic ct-expression.
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We are going to explain how to transform any ct-expression that is already
in wnf into nf. This transformation is an a adaptation to our framework and
our purposes of the algorithm uncover presented in [12]. This algorithm was
designed to decide whether an implicit generalization (similar to a ct-expression)
can be transformed (or not) into an equivalent explicit generalization (in our
terminology, a union of terms which may, in general, be non-ground).

Definition 12. The instance of t 
Θ with a substitution β such that dom(β) ⊆
Var(t), denoted by (t 
Θ)β, is the ct-expression wnf((t 
Θ) u (tβ)).

Since wnf(E) is either one of constant ct-expressions (⊥,>) or the union of (at
least one) atomic ct-expressions of the form t
Θ in wnf, it suffices to define the
normal form for a t 
Θ in wnf.

Definition 13. Let L be finite. Let E = t 
 Θ ∈ EkL(X ) in wnf. If E is in nf
(according to Definition 11) then nfL(E) = E. Otherwise, let θ ∈ Θ be linear
and let v ← f(s) ∈ θ, both arbitrarily chosen.6 We recursively define nfL(t
Θ)
as follows⊔

{nfL((t 
Θ)σg) | g ∈ L, g 6= f} t nfL((t 
Θ′){v ← f(u)})

where

– σg = {v ← g(z)} for some tuple z of fresh variables, and
– Θ′ = (Θ \ {θ}) ∪ {(θ \ {v ← f(s)}) ∪ (u← s)} for some fresh tuple u.

It is worthy to note that nf depends on the (finite) language whereas wnf does not
depends on the language. The union of ct-expressions (in Definition 13) ranging
on the symbols of the language corresponds to the use of the Explosion Rule in
traditional quantifier elimination methods for solving equational constraints.

Example 7. Let L = {a/0, f/1} and

E = (x1, x2) 
 [(x1, x2)← (w1, w1)︸ ︷︷ ︸
θ1

, (x1, x2)← (f(f(w2)), a)︸ ︷︷ ︸
θ2

]

Suppose that θ2 and x1 ← f(f(w2)) are chosen. Then, σa = {x1 ← a} and the
former component of nfL(E) is nfL(((x1, x2)
{θ1, θ2}){x1 ← a}) = nfL(((x1, x2)

{θ1, θ2}) u (a, x2)) = nfL((a, x2) 
 x2 ← a). Further, let u = x3 (x3 is fresh),
we have that (x1, x2){x1 ← f(x3)} = (f(x3), x2) and Θ′ = {θ1, (x3, x2) ←
(f(w2), a)}. Since the instance ((x1, x2) 
 Θ′){x1 ← f(x3)} = (f(x3), x2) 

[(x3, x2)← (w3, f(w3)), (x3, x2)← (f(w2), a)], then nfL(E) is the union of both
nfL((a, x2) 
 x2 ← a) and nfL((f(x3), x2) 
 [(x3, x2) ← (w3, f(w3)), (x3, x2) ←
(f(w2), a)]).

Theorem 3. Let L be a finite language. For any ct-expression E, nfL(E) ≡L E.
In particular, JEKL = ∅ if and only if nfL(E) = ⊥.

Proof. This result follows from Theorem 1 and Definition 13, by induction. ut
This provides an alternative proof of correctness for the algorithm uncover [12].

6 Note that, since t
Θ is in wnf but not in nf, it should be at least one θ ∈ Θ that is
linear and minimal. This two properties ensure the existence of v ← f(s) in θ.
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7 Projection

In this section, we provide the projection operation that enables the elimination
of quantifiers. Projection depends on whether the language is finite or infinite.
Indeed, the case of an infinite language is much simpler.

Definition 14. Let L be an infinite language. Let t t
′ 
 Θ be an atomic ct-

expression in wnf, v = Var(t) and w = Var(t
′
). We say that ∆ is the L-

projection of Θ on t if and only if ∆ exactly contains all the θ�v such that
θ ∈ Θ, rgVar(θ�v) ∩ rgVar(θ�w) = ∅ and either θ�w = ε or θ�w is a renaming.

For a finite language, normal form (hence, ER) is used in a controlled way.

Definition 15. Let L be a finite language. Let t t
′
Θ be a ct-expression in wnf,

v = Var(t) and w = Var(t
′
). Let Γ = {θ | θ ∈ Θ and rgVar(θ�v) ∩ rgVar(θ�w) =

∅}. We say that ∆ is the L-projection of Θ on t if and only if ∆ is the maximal
set of substitutions such that:

(a) θ�v ∈ ∆ if θ ∈ Γ and nfL((t t
′ 
Θ)θ�v) = ⊥.

(b) θ�vσ ∈ ∆ if θ ∈ Θ\Γ , z = rgVar(θ�v)∩rgVar(θ�w), nfL((t t
′
Θ)θ�vσ) = ⊥,

and σ ∈ {mgu(t t
′
θ, r)�z | (r 
Ω) ∈ nfL(t t

′ 
 Γ ) for some Ω}.

Example 8. Let L1 = {a/0, f/1} and let E be the ct-expression

(f(v1)︸ ︷︷ ︸
t

, v1, v2, v2︸ ︷︷ ︸
t
′

)) 
 [ (v1, v2)← (w1, w1)︸ ︷︷ ︸
θ1

, v2 ← f(w2)︸ ︷︷ ︸
θ2

].

We are going to check that the L1-projection of {θ1, θ2} on the 1-tuple f(v1)
consists of a unique substitution v1 ← a, whereas the L2-projection of {θ1, θ2} on
f(v1) is empty for any language L2 that extends L1 with at least one symbol. For
infinite L2 it is very easy to check that ∆ —as defined in Definition 14— is empty.
For finite languages, let us first consider θ1 ∈ Θ \ Γ . We look for a candidate
σ such that θ1�v1σ satisfies conditions of Definition 15(b). Then, rgVar(θ1�v1)∩
rgVar(θ1�v2) = {w1} 6= ∅, nfL1((f(v1), v1, v2, v2) 
 [θ2]) = (f(v1), v1, a, a), and

σ = mgu((f(v1), v1, v2, v2){(v1, v2)← (w1, w1)}, (f(v1), v1, a, a)) = w1 ← a.

So that, nfL1(Eθ1�v1{w1 ← a}) = nfL1((f(a), a, v2, v2)
 [v2 ← a, v2 ← f(w2)]),
which obviously yields ⊥. However, nfL2

(Eθ1�v1{w1 ← a}) 6= ⊥ for any finite
language L2 that extends L1. To sum up θ1�v1σ = v1 ← a is in the L1-projection,
but not in the L2-projection. Let us now consider θ2 ∈ Γ , since θ2�v1 = ε, then

nfLi
(t t
′ 
 [θ1θ2]θ2�v1) = nfLi

(t t
′ 
 [θ1θ2]) 6= ⊥ for any i ∈ {1, 2}. By Definition

15(a), θ2�v1 is not in the Li-projection of {θ1, θ2} on f(v1), for any i ∈ {1, 2}.

Theorem 4. Let L be any language. Let t t
′ 
Θ be an atomic ct-expression in

wnf, and let k and k′ be the respective arities of t and t
′
. If ∆ is the L-projection

of Θ on t, then for all s ∈ T kL :

s ∈ Jt 
∆KL if and only if there exists s′ ∈ T k
′

L such that s s′ ∈ Jt t′ 
Θ)KL.

11



Proof. For infinite L the result easily follows from the fact that, according to
Definition 14, for all θ ∈ Θ: θ�v ∈ ∆ if and only if Jt t′ 
 θ�wKL = ∅.
For finite L, the right-to-left implication is proved by contradiction. That is, we
assume that there exists s ∈ T kL and s′ ∈ T k′L such that s s′ ∈ Jt t′ 
 Θ)KL
but s 6∈ Jt 
 ∆KL. Then, s s′ ∈ Jt t′KL and s s′ 6∈ Jt t′θKL for every θ ∈ Θ.
Further, since s ∈ JtKL, then s ∈ JtδKL for some δ ∈ ∆. However, since ∆ is

the L-projection of Θ on t, every δ in ∆ satisfies that nfL((t t
′ 
 Θ)δ) = ∅. By

Theorem 3 and Definition 12, that means J(t t′ 
 Θ) u (t t
′
δ)KL = ∅. This is a

contradiction because s s′ is in such intersection. Note that dom(δ) ⊆ Var(t) and

s′ ∈ Jt′KL.
For the reverse implication, we consider some fixed s ∈ T kL such that s ∈ Jt
∆KL.

Let σ0 = mgu(s, t). It is obvious that J(t t′ 
 Θ)σ0KL ⊆ J(t t′ 
 Θ)KL, hence to

ensure the existence of at least one s′ ∈ T k′L such that s s′ ∈ Jt t′ 
 Θ)KL
it suffices to check that J(t t′ 
 Θ)σ0KL 6= ∅. Let v = Var(t), w = Var(t

′
),

and Γ = {θ | θ ∈ Θ and rgVar(θ�v) ∩ rgVar(θ�w) = ∅}. By Definition 12, the

instance (t t
′ 
Θ)σ0 = wnf((t t

′ 
Θ) u (t t
′
)σ0) which, by Definition 10, is the

ct-expression (t t
′
)σ0 
 Λ where

Λ = [ minimal version of mgu(s (t
′
σ0), (t t

′
)θ)�w | θ ∈ Θ].

Note that t t
′
σ0 = s (t

′
σ0). We are going to prove, by contradiction, that the

two equivalent expressions (t t
′ 
Θ)σ0 and s t

′
σ0 
Λ represent a non-empty set

of ground tuples. For that suppose that J(t t′ 
 Θ)σ0KL = Js t′σ0 
 ΛKL = ∅.
Then, for all s′ ∈ Jt′σ0KL there exists some θ ∈ Θ such that s s′ ∈ Jt′λKL where

λ = mgu(s t
′
σ0, t t

′
θ)�w. Now, let us consider some arbitrary fixed s′ ∈ Jt′σ0KL,

we are going to see that the existence of such θ ∈ Θ leaves to a contradiction.
We proceed by cases on θ.
For the first case, suppose that θ ∈ Γ . Since s ∈ Jt 
∆KL, θ�v can not be in ∆,

hence by Definition 15(a), J(t t′ 
Θ)θ�vKL 6= ∅. This contradicts our hypothesis

J(t t′ 
Θ)σ0KL = Js t′σ0 
ΛKL = ∅. To realize such contradiction, note that any

element in J(t t′ 
 Θ)θ�vKL should belong to Jt t′θ�vKL and, the existence of the

associated λ = mgu(s t
′
σ0, t t

′
θ)�w enables that such element is also in Js t′σ0KL,

hence it also belongs to (t t
′ 
Θ)σ0 or equivalently to Js t′σ0 
 ΛKL.

For the second case, suppose θ ∈ Θ\Γ and name by z the non-empty tuple of all

common variables in the ranges of θ�v and θ�w. If nfL(t t
′ 
Γ ) does not contain

some disjunct of the form r 
 Ω such that s s′ ∈ JrKL, then there exist some

θ′ ∈ Γ such that s s′ ∈ Jtt′θ′KL. Then, one gets a contradiction by applying the
above first case to θ′ ∈ Γ (as the above θ ∈ Γ ). Hence, to complete the proof we
can assume the existence of some r (which is not necessarily ground) such that
s s′ ∈ JrKL and, for some Ω, there is a ct-expression r
Ω in the union of atomic

ct-expressions given by nfL(t t
′ 
 Γ ). Let σ = mgu(t t

′
θ, r). Since s ∈ Jt 
∆KL,

the substitution θ�vσ 6∈ ∆. Therefore, by Definition 15(b), J(t t′ 
Θ)θ�vσKL 6= ∅.
This contradict our hypothesis J(t t′ 
Θ)σ0KL = Js t′σ0 
 ΛKL = ∅, because the

existence of r and σ ensures that J(t t′ 
Θ)θ�vσKL ⊆ J(t t′ 
Θ)σ0KL. ut
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8 Projective Quantifier Elimination

In this section, we provide the PQE technique and prove that it is complete.

Definition 16. Let ϕ = Q1y
1Q2y

2 . . . Qny
n(α) ∈ CL(X ) (for some n ≥ 0) in

prenex form and let x = Free(ϕ) be a k-tuple. We associate to ϕ the prenex

ct-expression of arity k: P xϕ = Q1y
1Q2y

2 . . . Qny
n(Ex y

1...yn

α ) where Ex y
1...yn

α

is the ct-expression associated to α by Definition 5.

Note that P xϕ = Exα when n = 0. We omit the sub/super-index in (prenex) ct-
expressions whenever they are not relevant. Let us extend the semantic function
to prenex ct-expressions.

Definition 17. Let v be a k-tuple, y an m-tuple, and P v y any prenex ct-
expression of arity k +m. We define

J∃y(P v y)KL = {s | s ∈ T kL and s r ∈ JP v yKL for some r ∈ T mL }

J∀y(P v y)KL = {s | s ∈ T kL and s r ∈ JP v yKL for all r ∈ T mL }

Proposition 7. Let P xϕ be associated to ϕ as in Definition 16. For all assign-

ment θ: θ is an L-solution of ϕ if and only if xθ ∈ JP xϕKL.

Proof. An easy induction on the length n of the prefix of quantifiers. The case
n = 0 trivially follows from Proposition 1. The induction hypothesis along with
Definition 17 suffice to complete the proof. ut

In QE techniques, it is usual to reduce the elimination of the universal quantifier
to the existential one, using the classical equivalence ∀x(ϕ) ≡ ¬∃x(¬ϕ).

Proposition 8. For every atomic ct-expression Ev y, there exists n ≥ 1 atomic
ct-expressions Ev1 , . . . , E

v
n such that ∀y(Ev y) ≡L Ev1 t · · · t Evn.

Proof. First, by Definition 17 and Theorem 1, J∀y(Ev y)KL = J∼(∃y(∼Ev y))KL =

J∼ (∃y(wnf(∼ Ev y)))KL. Now, let F v y1 , . . . , F v ym the atomic ct-expression such

that J∼(∃y(wnf(∼Ev y)))KL = J∼(∃y(F v y1 t · · · t F v ym ))KL. Then, ∀y(Ev y) ≡L
∼(∃y(F v y1 )t· · ·t∃y(F v ym )). By Theorem 4, there exists m atomic ct-expression

Gvi (i ∈ {1, . . . ,m}) such that ∃y(F v yi ) ≡L Gvi . Therefore, by Theorem 1,

there exists n ≥ 1 atomic ct-expressions Ev y1 , . . . , Ev yn such that ∀y(Ev y) ≡L
wnf(∼(Gv1 t · · · tGvm)) ≡L Ev1 t · · · t Evn. ut

Theorem 5. Let L be any language. For all n ≥ 0 and all prenex ct-expression
P x = Q1y

1Q2y
2 . . . Qny

n(Ex y
1...yn), there exists m ≥ 1 atomic ct-expressions

Exi in wnf such that P xϕ and Ex1 t · · · t Exm are L-equivalent.

Proof. By induction on the length n of the prefix of quantifiers in Pϕ. The
case n = 0 follows from Theorem 1. For the inductive step, we can assume
that Ex y

1...yn−1yn is an atomic ct-expression in wnf. Such assumption relies
on Theorem 1 along with the reduction of ∀ to ∃ by two complements, and
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the distributive property of ∃ over t. By Theorem 4 or Proposition 8, re-
spectively depending on whether Qn is ∃ or ∀, we have m ≥ 1 (m = 1 for

Qn = ∃) atomic ct-expressions F x y
1...yn−1

i such that Qny
n(Ex y

1...yn−1yn) is L-

equivalent to F x y
1...yn−1

1 t · · · t F x y1...yn−1

m . Therefore P xϕ is L-equivalent to

Q1y
1Q2y

2 . . . Qn−1y
n−1(F x y

1...yn−1

1 t· · ·tF x y1...yn−1

m ). The induction hypothe-
sis applied to the latter prenex ct-expression gives the desired ct-expressions Exi
such that Ex1 t · · · t Exm is L-equivalent to the latter and hence also to P xϕ . ut

Corollary 1. Let L be any language. For all ϕ ∈ CL(X ) such that Free(ϕ) = x,
there exists m ≥ 1 atomic ct-expressions Exi in wnf such that: HL |= ϕθ if and
only if xθ ∈ JEx1 t · · · t ExmKL for every assignment θ such that dom(θ) = x.

Example 9. Continuing Example 8, the following prefix ct-expression

∃y1y2y3(((f(v1), v1, v2, v2)) 
 [(v1, v2)← (w1, w1), v2 ← f(w2)])x y1y2y3)

is L1-equivalent to (f(v1) 
 [v1 ← a])x and L2-equivalent to f(v1)x.

9 Conclusion

We have presented a complete QE technique for equational constraint solving
that, in particular, provides a decision procedure for the free equality theory of
any (finite or infinite) language. Complete QE techniques for solving quantified
first-order formulas (in decidable theories) is one of the main current challenges
in automated reasoning. A remarkable application of them is the improvement
of the quantifier reasoning of SMT solvers, especially because its valuable appli-
cation for solving quantified verification conditions (see e.g. [11]). As a complete
decision procedure, PQE provides a good method for proving quantified verifica-
tion conditions on algebraic datatypes whose model are the (free) term algebra.
Moreover, as a solutions generator, PQE can be applied in the improvement
of programming languages capabilities (such as e.g. constructive negation). For
that purposes efficiency is essential. Using our terminology, traditional meth-
ods (see [5, 8, 6, 10, 13, 14]) keep the matrix in nf, whereas in the PQE technique
the matrix is kept in wnf. This difference is crucial because the transformation
into nf involves ER applications, whereas wnf does not. Unlike traditional meth-
ods, PQE uses nf not to explode the matrix but only to calculate the projection.
Moreover, such calculation sometimes requires the computation of the nf of some
subexpression (of the matrix), though most often only need to decide whether a
nf is equivalent to ⊥. For that, one does not need to calculate the whole expres-
sion in nf. Actually, as soon as a solution appears one can stop reporting that the
nf is not ⊥. Hence, minimal explosion is performed. Experimental results using
a prototype and formal complexity analysis are near future work. We also plan
to study how to obtain similar algebraic-style QE procedures for other decidable
(equality) theories, e.g. the theory of the algebra of (infinite) rational terms.
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