Proving satisfiability of constraint specifications on XML documents*

Marisa Navarro
Departamento de LSI
Universidad del Pais Vasco, San Sebastian

marisa.navarro@ehu.es

Abstract

In this paper we study a set of logical rules to
prove the satisfiability for a class of specifications
on XML documents. Specifications are sets of
constrains built on XPath patterns. In [8], it is
shown how to use graph constraints as a specifica-
tion formalism, which can be used to specify classes
of semi-structured documents, and how to reason
about these specifications, providing inference rules
that are sound and complete. Our aim is to formu-
late similar notions and to obtain similar results in
the framework of XML documents. Nevertheless,
the difference between both frameworks makes not
easy the adaptation of the graph constraints into our
setting. We present here a primer study on how ap-
proaching this problem.

1 Introduction

XPath [10, 14] is a well-known language for nav-
igating an XML document (or XML tree) and re-
turning a set of answer nodes. Since XPath is used
in many XML query languages as XQuery, XSLT
or XML Schema among others [13, 11, 12], a great
amount of papers deal with different aspects on dif-
ferent fragments of XPath. For instance, in [2] an
overview of formal results on XPath is presented
concerning the expressiveness of several fragments,
complexity bounds for evaluation of XPath queries,
as well as static analysis of XPath queries. More
concretely, in [3] it is studied the problem of deter-
mining, given a query p (in a given XPath fragment)
and a DTD D, whether or not there exists an XML
document conforming to D and satisfying p. They

*This work has been partially supported by the spanish CICYT
project FORMALISM (ref. TIN2007-66523)

Fernando Orejas
Departament de LSI
Universitat Politecnica de Catalunya, Barcelona

orejas@lIsi.upc.edu

show that the complexity ranges from PTIME to un-
decidible, depending on the XPath fragment and the
DTD chosen. The work presented in [4] deals with
the same problem (in a particular case) and it uses
Hybrid Modal Logic to model the documents and
some class of schemas and constraints. They pro-
vide a tableau proof technique for constraint satisfi-
ability testing in the presence of schemas.

Our approach is different than the previous ones
in the following two points. On the one hand, we
do not consider any DTD or schema, and we use
a simple fragment of XPath, where patterns can be
represented by means of simple “tree patterns”. In
this sense our approach is simpler than the previ-
ous ones. However, on the other hand, our aim is
to define specifications of classes of XML docu-
ments as sets of constraints (of some specific class)
on these documents, and to provide a form of rea-
soning about these specifications. In this sense, our
main question is satisfiability, that is, given a set of
constraints S, whether or not there exists an XML
document satisfying all constraints in S. Moreover,
we are looking for refutation procedures, based on
sound and complete inference rules. In addition to
checking satisfiability, these rules can be used to de-
duce other constraints from the given set, which can
help us to optimize the given specification.

Some other work, which shares part of our aims,
is the approach for the specification and verifica-
tion of semi-structured documents based on extend-
ing a fragment of first-order logic [1, 5] allow-
ing us to refer to the components of a given class
of documents (in particular, using XPath notation).
They present specification languages that allow us
to specify classes of documents, and tools that al-
low us to check if a given document (or a set of
documents) follows a given specification. However,

they do not consider the problem of defining deduc-
tive tools to analyze specifications, for instance to
look for inconsistencies.

Another approach that we know [6] has a more
practical nature. Schematron is a language and a
tool that is part of an ISO standard (DSDL: Doc-
ument Schema Description Languages). The lan-
guage allows us to specify constraints on XML doc-
uments by describing directly XML patterns (using
XML) and expressing properties about these pat-
terns. Then, the tool allows us to check if a given
XML document satisfies these constraints. How-
ever, as in the previous approach, Schematron pro-
vides no deductive capabilities.

Finally, we consider the work presented in [8]. It
shows how to use graph constraints as a specifica-
tion formalism, which can be used to specify classes
of semi-structured documents, and how to reason
about these specifications, providing refutation pro-
cedures based on inference rules that are sound and
complete.

Our aim is to follow the main ideas given in [8]
and try to apply them to XML documents. To de-
fine the constraints on some XPath notation, we se-
lect the representation of Xpath queries given in [7].
Miklau and Suciu study the containment and equiv-
alence problems for a class of XPath queries that
contain branching, label wildcards and can express
descendant relationships between nodes. In partic-
ular, they introducdree patternsas an alternative
representation of XPath queries consisting of these
usual elements: node tests, the child axis (/), the
descendent axis (//) and wildcards (*). The answer
nodes are marked wittw). For instance, Figure
1 shows a tree pattemm that when is applied to a
given XML documentt (which is also represented
by a tree but in this case without descendent axis
or wildcards), it must check: if the root node in
is labeleda, if some child node of the root node in
t is labeleddb, and if some descendent node of the
root node int has both a child node labeledand a
descendent node labeledif all of these conditions
are satisfied, the applicatigr(t) will return a set
with such last descendents (the marked nodes with
X); in other case, it will return the empty set.

Since our purpose is to reason on XML docu-
ments by means of a set of constraints, and not
to obtain the answer nodes, we shall consider tree
patterns without answer marks (which are called

Figure 1: A tree pattern with answer node (markgd

Boolean tree patterns in [7]). The application of
such a pattern to a documentvill return true, if

t satisfies the conditions specified by the pattern, or
false in other case.

As we said above, in this paper we follow the
main ideas given in [8] and try to apply them to
XML documents by defining three sorts of con-
straints. The first one Bp wherep is a tree pattern.
This constraint will be satisfied by a document
p(t) is true. The second one is3p that will be
satisfied by a documentf p(t) is false. The third
sort of constraint is writtetv(c : p — g), where
bothp andq are tree patterns (related byn a spe-
cial way) and, roughly speaking, it will be satisfied
by a document if p(t) impliesq(t). Nevertheless,
the particularization of graph constraints to our set-
ting is not trivial, mainly for two reasons that will
be explained in Section 3.

We assume that a specification consists of a set
of clauses, where a clause is a disjunction of con-
straints. To know if an XML document satisfies a
specification means to check if it satisfies each of
its clauses. However a set of clauses can be un-
satisfiable, that is, it may be happen that no docu-
ment can satisfy all clauses in the specification. To
avoid useless work, we consider the task to check
if a given specification is satisfiable. Our aim is to
study adequate inference rules to find a sound and
complete refutation procedure for checking satisfi-
ability of a given specification. The inference rules
take a similar format than the inference rules given
in [8], but again the particularization to our setting
needs to define appropriate operators and to prove
new results.

The paper is organized as follows. Section 2 con-
tains some basic notions and notational conventions
we are going to use along the paper. Section 3 in-

troduces the constraints and clauses that we are go- eachn € Nodes(p); but now the edges are distin-

ing to use to define our specifications. Section 4
presents the main inference rules for our refutation
procedure, proving soundness. We also give an ex-
ample of refutation for a given specification. Then,
in Section 5 we show work in progress we are doing
in order to obtain completeness for our refutation
procedure. Finally, in Section 6 we provide some
conclusions.

2 Basic definitions and notation

In this section we introduce some basic concepts
and notation that will be used along the paper. Most
of them are taken from [7].

2.1 XML documents and patterns

We consider aXXML documenas an unordered and
unranked tree with nodes labeled from an infinite
alphabetX. The symbols inX represent the el-
ement labels, attribute labels, and text values that
can occur in XML documents.Ts, denotes the
set of all trees on alphabét. We also call each
element inTx a document tree Given a docu-
ment treet € Tx, Nodes(t) and Edges(t) de-
note respectively the sets of nodes and edges in
the treet; Root(t) denotes its root node; and for
eachn € Nodes(t), Label(n) denotes the label
of such a noder. Edges™ (t) denotes the transi-
tive closure of Edges(t). Each edge inEdge(t)

is representedx, y) with z,y € Nodes(t). If
(z,y) € Edges™(t) then it represents a path in
from nodex to nodey.

As said in the Introduction, we use tree patterns
as an alternative representation of queries. In partic-
ular, we are interested in tree patterns without an-
swer nodes to build constraints. Now we give the
definition of a tree pattern and the definition of a
function, callecembeddingthat will serve us to de-
fine when a document satisfies a pattern.

Definition 2.1 Given a signature, a tree pattern
on X is a treep whose nodes are labeled with sym-
bols fromX U {x} and with two sorts of edges: the
descendent edges denoted and the child edges
denoted/. Ps denotes the set of all patterns on
alphabet>. We use the same notations as before:
Nodes(p), Edges(p), Root(p) and Label(n) for

guished,Edges(p) = Edges,,(p) U Edges;(p).

For the sake of simplicity, from now on we
omit the signature: , and tree patterns are sim-
ply called patterns. Along this paper, patterns
will be drawn in the figures as trees, but to write
them textually (in the examples) we will use the
following format: A patternp with root labeled
a and subtree., ..., p, will be textually writ-
tenp = a(!p1)...(!pn) where eaclp; is recur-
sively written in the same format, and ! being / or
/l to indicate the edge from the root to each sub-
tree p,. Some parenthesis can be omitted in the
case of having only one subtree. For instance, the
pattern given in Figure 1 can be textually written

a(/6)(// *(//e)(/d)).

Definition 2.2 Given a patterrp € P and a doc-
ument treet € T, an embeddingromp to ¢ is a
functione : Nodes(p) — Nodes(t) satisfying the
following conditions:

e Root-preservinge(Root(p)) = Root(t);

e Label-preserving: For eaclh € Nodes(p),
Label(n) = * or Label(n) = Label(e(n));

e Child-edge-preserving: For eacliz,y) €
Edges,(p), (e(x),e(y)) € Edges(t),

e Descendent-edge-preserving: For each

(z,y) € Edges;;/(p), (e(z),ely)) €
Edges™ (t).

From now on, we will also writec : p — ¢ for
e : Nodes(p) — Nodes(t). Miklau and Suciu [7]
define, for a patterp and a document treg that
p(t) is true if there exists an embeddiadrom p to
t. They give an algorithm to decide wheth#t) is
true. This algorithm runs in lineal time. In Figure
2 there is an example of an embedding p — ¢
from the patterm=a//*(/c)(/d) to the document
treet =a(/e/f(/c)(/d))(/b/g). The embedding
is drawn with dotted arrows.

2.2 Pattern satisfaction and pattern homomorphism

In the following we define the notion of (pattern)
satisfaction, and as it is usual in logic, from this no-
tion we can define the notion of (pattern) model.

Figure 2: An embedding: p — ¢t

Definition 2.3 Given a patterrp € P and a docu-
ment treet € T, we say that satisfies pdenoted

t E p, if there exists an injective embedding from
p to t. The model set of a pattemn is the set of
document trees satisfying

Mod(p) ={teT /tEp}

We must point out here a main difference be-
tween our approach and the approach given in [7].
Our notion of satisfaction ask the embedding to be
injective; that is,p(t) is true if there exists ann-
jectiveembedding fronmp to ¢. However, in [7], the
embedding is defined not necessarily injective.

Our definition is useful to distinguish repeated
nodes as different ones. For example: pdte the
pattern textually writteru(/b)(/b)(/c), that is, the
pattern with root labelled and three children la-
belledb, b andc respectively. Lety be the pattern
textually writtena(/b)(/c), that is, the pattern with
root labelleds and two children labelled andc. In
our approach, each modefor p must be a docu-
ment tree with a root labelled and at least three
children labelledh, b and ¢ respectively; therefore
each modet for p is also a model fog. On the
other hand, there exist trees that are modelsg fart
not models fomp, for instance:t = a(/b)(/c). That
is, Mod(p) C Mod(q) andMod(q) ¢ Mod(p).
However, in [7], such patternsandq would have
the same models.

Now we define the notion of homomorphism be-
tween patterns, similar to the notion of embedding
between a pattern and a document tree. Again we
shall use onlynjectivehomomorphisms.

Figure 3: A monomorhism : p — ¢

Definition 2.4 Since each pattern can be seen as a
tree with possible labels * and edges of type / or
/I, we can define Aomomorphisnfrom a pattern

p to a patterng as a functionh : Nodes(p) —
Nodes(q) that preserves all conditions of an em-
bedding but with the additional condition that each
edge / inp must be applied into an edge /dn That

is, we change only the following condition:

e Child-edge-preserving: For eaclfz,y) €
Edges,(p), (e(x), e(y)) € Edges;(q).

Note that the condition of “Descendent-edge-
preserving" remains as in Definition 2.2. Now
Edges™(q) denotes the transitive closure of
Edges(q) = Edges;;(q) U Edges,(q); that is,
(z,y) € Edgest(q) represents a path ip from
nodex to nodey with edges of type / or // .

Again we will simply writeh : p — ¢ for
h : Nodes(p) — Nodes(q). As usual, an in-
jective homomorphism is calledmonomorphism
Similarly, an injective embedding will be called a
mono-embedding In Figure 3 there is an exam-
ple of a monomorphismy : p — ¢ from the pat-
ternp = x/ /e to the pattery = a(/e)(//b/c). The
monomorphisnh is drawn with dotted arrows.

The following result relates monomorphisms and
models. The first point is easy to prove. The second
point is illustrated with an example in [7] .

Lemma 2.1 For p, q patterns:

o If there exists a monomorphism: p — ¢
thenMod(q) C Mod(p).

e It may happen that\fod(q) C Mod(p) but
there is not any monomorphishn: p — gq.

3 Constraints and clauses

We take from [8] the notion of graph constraint to
define our notion of pattern constraint. In that pa-
per one sort of constraints is of the fordd’, with

C being a graph. Then a given graggh is de-
fined to verify this constraint whe@ containsC'

as a subgraph. Here we are dealing with constraints
as some sort of formulas that we want that a doc-
ument verifies. The particularization to our setting
is not trivial mainly for two reasons: On the one
hand, although a tree is a particular case of a graph,
we deal with patterns that are trees having edges
of type //. For instance, with a pattern constraint
like Jp beingp the pattern textually writtem/ /b,

we can specify that there must exist a descendent
node labelled in our document with root labelled

a. However, graphs constraints do not work with
the relation “descendent". On the other hand, in the
setting of graph constraints, the models and the for-
mulas (or constraints) are both graphs, while in our
setting the models are documents and the formulas
are patterns. This second difference makes more
complicated to instance the results given in [8] into
our framework.

3.1 Constraints

The underlying idea of our constraints is that they
should specify that certain patterns must be satis-
fied (or must not be satisfied) in a given document.
For instance, the simplest kind of constraifp,
specifies that a given documenshould satisfyp.
Obviously, —3p specifies that a given document
should not satisfy. A more complex kind of con-
straints is of the fornv(c : p — ¢) where the pat-
ternp is a prefix tree of the patterqy indicated by
the monomorphism. Roughly speaking, this con-
straint specifies that whenever a documersrifies

the patterrp it should also verify the extended pat-
terng (see the formal definition below). In general
we will have clauses formed as disjunctions of these
three types of constraints.

Definition 3.1 Given two patterng andg, a func-
tion ¢ : Nodes(p) — Nodes(q) is a prefix func-
tion if satisfies the following conditions:

e Root-identity:c(Root(p)) = Root(q);

e Label-identity: For eachn € Nodes(p),
Label(n) = Label(c(n));

e Child-edge-identity: For each(z,y) €
Edges(p), (c(x), c(y)) € Edges,(q);

e Descendent-edge-identity: For eath,y) €
Edges;;(p), (c(z),c(y)) € Edges;;(q).

We will simply write c : p — ¢. Obviously each
prefix function is a monomorphism.

Now we formally define the constraints we are
going to use: positive and negative basic constraints
and conditional constraints. A constraint clause is a
disjunction of constraints.

Definition 3.2 A positive basic constrainis de-
noted3p, wherep is a pattern.

A negative basic constrairgt denoted-3p, wherep
is a pattern.

A conditional constrainis denotedv(c : p — q)
wherep andq are patterns and : p — g is a prefix
function.

Definition 3.3 A constraint clause(or simply
clausé « is a finite disjunction of literald.; vV Ly vV
...V L,, where, for each € {1,...,n}, the lit-
eral L; is a (positive or negative) basic constraint
or a conditional constraint. The empty disjunction
is called theempty clausand it can be represented
by FALSE.

Satisfaction of constraint clauses is defined in-
ductively, following the intuitions described above.

Definition 3.4 A document tre¢ € T satisfies a
constraint clausey, denoted |= «, if it holds:

e ¢ =Jpift E p (thatis, if there exists a mono-
embedding: : p — t);

e t = —3Jpift ¥ p (thatis, if there does not exist
a mono-embedding: p — t);

et = V(c : p — gq) if for every mono-
embeddinge : p — t there is a mono-
embeddingf : ¢ — ¢ such thate = f o c.

et =LiVLyV...VL,ift |= L; for some
1€{l,...,n}.

3.2 Example of specification

We assume that our specifications consist of con-
straint clauses. To know if an XML documensat-
isfies an specificatiod means to check if = «,

for every clausex € C. However a set of clauses
can be unsatisfiable, that is, it may be happen that
no document satisfies all clausesdn To avoid
useless work, we should consider to check first if a
given specification is satisfiable. Our aimis to find a
sound and complete refutation procedure for check-
ing satisfiability of specifications consisting of con-
straint clauses as defined above.

First let us see with some examples what does the
satisfaction of a conditional constraint mean. Then
we give an example of an unsatisfiable specifica-
tion.

We consider the conditional constraif{c : p —

q) with p = x//a, ¢ = *//a/b andc being the
obvious prefix function fronp to ¢q. By Definition
3.4, adocument treesatisfies this constraint if each
node (descendent of the root) labeletias a child
node labeled. For instance, the document tree
g(/a/b)(/a/h) does not satisfy the constraint: For
the mono-embedding : p — ¢, that applies the
nodea in p into the second node in ¢, there does
not exist a mono-embeddinfy : ¢ — ¢ such that

e = f oc. Inwords: “this mono-embeddingfrom

p tot can not be extended to another one fromo

t". However, note that = p andt¢ = q. Therefore,
in general, to verify the conditional constraifc :

p — q) is stronger than to verify the clauge =
—3p V dq, that may be seen as a conditional clause.

Example 3.1 Consider the specificatiof = {C1,
Ca, C3, CsywhereCy = 3(x//b) vV I(x//e), Ca =
V(ea : x//b— *(//b)(/e)), Cs =V(cs : x//e —
#(//€)(/b)), andCy = =3(x(/b)(/e)).

Clause C; specifies that the document tree must
have a nodé or e; C> says that if the document
tree has some nodethen its root must have a node
child e; similarly, C's says that if the document tree
has some node then the root must have a node
child b; and finally, Cy, says that the root cannot
have two childrerb ande.

The document; = a(/b)(/f/e) satisfiesC1, Cs
andCy butt; [= C2. The document; = a/e sat-
isfiesC1, C2 and Cy4 butts = Cs. There is no
document satisfying all clausesdn

4 Rules for a refutation procedure

As it is often done in the area of automatic reason-
ing, the refutation procedure that we present in this
paper is defined by means of some inference rules.
Each rule tells us that if certain premises are sat-
isfied then a given consequence will also hold. In
this context, a refutation procedure can be seen as a
(possibly nonterminating) nondeterministic compu-
tation where the current state is given by the set of
formulas that have been inferred until the given mo-
ment, and where a computation step means adding
to the given state the result of applying an inference
rule to that state. In our case, we assume that in
general the inference rules have the form:

rn I
I's

where the premiseE;, I'; and the conclusiod's
are (constrained) clauses. Clauses are seen as sets of
literals. This means that if we write that a clause has
the formL Vv T, this does not necessarily imply that
L is the leftmost literal of the given clausé. v T"
denotes a clause with literdl andT the rest of the
disjunction. Similarly, we consider that the clause
T' v Lis the same as the clauBe/ L V L.

Then, arefutation procedurdfor a set of con-
straint clause€ is a sequence of inferences:

C0:>61:>$Cl:>

where the initial state is the original specification
(i.e.,Co = C) and where we write€€; = C;41 if
there is an inference rule such that I'» € C;, and
Cit+1 = C; U {T's}. Moreover, we will assume that
C; C Ciy1, 1.e. T's ¢ C;, to avoid useless infer-
ences.

In this framework, proving the unsatisfiability of
a set of constraints means inferring the empty clause
(FALSB, provided that the procedure is sound and
complete. Since the procedures are nondeterminis-
tic, there is the possibility that we never apply some
key inference. To avoid this problem we will always
assume that our procedurdasr, which means that,
if at any momenti, there is a possible inference
C; = C; U {I'}, for some clausé’, then at some
moment; we have thal® € C;. This means that
inferences are not postponed forever, i.e. every in-
ference will eventually be performed.

Then, a refutation procedure fdt is soundif
whenever the procedure infers the empty clause we

have that is unsatisfiable. And a procedurecism-
pleteif, wheneverC is unsatisfiable, we have that
the procedure inferBALSE

It may be noted that if a refutation procedure is
sound and complete then we may know in a finite
amount of time if a given set of constraints is unsat-
isfiable. However, it may be impossible to know in
a finite amount of time if the set of constraints is sat-
isfiable. For this reason, sometimes the above def-
inition of completeness is called refutational com-
pleteness, using the term completeness when both
satisfiability and unsatisfiability are decidable.

4.1 Inference rules

Here we present three inference rules (R1), (R2)
and (R3), for our refutation procedure. In our con-
text, the clauses are disjunction of literals where
each literal can be of the forp, —3p, or V(c :

p — q). We are going to present and explain each
rule giving some examples of them.

le Vv Fl —apg Vv FQ
It vy
if there exists a monomorphism : p2 — p1

(R1)

Rule (R1) is similar to the Resolution rule, since
the two premises have literals that are, in some
sense, “complementary": one is a positive basic
constraint, the other one is a negative one, and the
condition about the monomorphism fropa to p:
plays the same role than unification. Note that when
I'; andT'; are empty, the rule (R1) infers the empty
clause.

For instance, ifpy = a(/e)(// * (/¢)(/b)) and
p2 = %/ /b, then there exists a monomorphism from
p2 to p1 that applies the root gf. (labeled *) into
the root ofp, (labeleda), the node irp, labeledb
into the node irp; labeledb, and the edge // ip2
into a path inp; formed by // followed by /. Then
the empty clause is obtained frafp, and—3p- by
rule (R1).

le V Fl sz V F2
(VPEP1®P2) VI VI

(R2)

Rule (R2) builds a disjunction of positive ba-
sic constraints from two positive basic constraints.
It uses the operatop that we define below. In-
formally speaking, given two patterns and po,
p1®p2 denotes the set of patterns that can be ob-
tained by “combining"p; and p. in all possible
ways.

For instance, given the pattern®; =
a(/b/e)(//c)andpz =a//b/z, the sep; ®p2 con-
tains the two patternss: = a(/b(/e)(/x))(//c)
andsz = a(/b/e)(//b/z)(//c). Each one corre-
sponds with a way of combining; and p»; the
nodes labeled are shared is; while there are two
different node$ in s2.

The underlying idea is that all patternsin
p1®p2 must verify that every document tree that is
a model ofs must be a model gf; and a model of
p2. Conversely, every document tree that is a model
of both p; andp2 must be a model of somein
p1®p2. It must be noted that if the roots pf and
p2 have different labels, for instance are labeted
andb, then no combination is possible. This im-
plies that, in some cases, the empty clause can also
be produced by rule (R2).

Now we formalize these ideas within the follow-
ing definitions.

Definition 4.1 Given two patterng and ¢, pRq is
defined as the set of patterng:® g ={s € P/
there exist jointly surjective monomorphisimg1 :
p — sandinc2 : ¢ — s} where “joinly surjec-
tive" means thatVodes(s) = incl(Nodes(p)) U
inc2(Nodes(q)).

Definition 4.2 join : (X U {x}) x (T U {x}) —
> U {x} is a partial function which returns a label
as the result of joining two labels:

e join(a,a) = join(x,a) = join(a,*) = a,
for each labek € 3 ;

e join(x,*) =% ;
e join(a,b) = undefined, for a,b € ¥ and
a #b.

Lemma 4.1 Given two patterng and ¢, the set
of patternsp ® ¢ is the empty set if and only if
join(Label(Root(p)),Label(Root(q))) = undefined.

Note that if the sep; ® p» is the empty set then

Voeps op, P IS the clause”ALSE.

Proposition 4.1 (Pair Factorization Property)
Given three patterns p, g, r, and two monomor-
phisms f1: p-r and f2: g—r, there exists a pat-
tern sspRq and monomorphisms incl=ps, inc2:
g—s, and h: s-r such thath o incl = f1 and

h oinc2 = f2. In the particular case when is a
documenttreef1, f2 andh are mono-embeddings.
Graphically:

incl
r

f1
h
_—

inc2 /
Proof. Since f1, f2 are monomorphisms,
join(Label(Root(p)), Label(Root(q))) is de-
fined. Moreover, somg € p ® ¢ holds this
property. Such pattern must be chosen such that,
for everym € Nodes(p) andn € Nodes(q): if
fl(m) = f2(n) thenincl(m) = inc2(n) and
if f1(m) is an ancestor (respectively descendent)
of f2(n), incl(m) must not be a descendent

QR <=3

(respectively ancestor) ofnc2(n). Thenh is
well-defined. [|
Ip1 V1 VY(c:p2 —q) VT2 (R3)

(vp€p1®e,mq) VI VI

if there is a monomorpm : p2 — p1 that canno
be extended tg : ¢ — p; such thatf o c = m.

Rule (R3) is similar to rule (R2) in the sense that
given a positive basic constraifip; and a condi-
tional constraint/(c : p2 — q), it builds a dis-
junction of positive basic constraints. This rule is
applied when there is a monomorphism frgm
to p1 that cannot be extended to another one from
q to p1 via c. That is, there is a monomorphism
m : pe — pi but there is no monomorphism
f :q— pisuchthatf oc=m.

Rule (R3) uses the operatar. ,, that we define
below. Informally speaking, given two patterps,
pa2, a prefix functione : p» — ¢, and a monomor-
phismm : p2 — pi1, p1 ®c,m g denotes the set of
patterns that can be obtained by combiningand

q in all possible ways, but maintaining shared.

Definition 4.3 Given two patterng:, p2, a prefix
functionc : p» — ¢, and a monomorphism :
p2 — 1, P1 Qe.m q is defined as the following set
of patterns:

p1 Qc,m q ={s € P [there exist jointly surjective
monomorphismséncl : p1 — sandinc2 : ¢ — s
such thatincl o m = inc2 o c}. Graphically:

1

p
P2 S
q

Sincec is a prefix function (andr is a monomor-
phism),join(Label(Root(p1)), Label(Root(q)))
is defined. Moreoverp; ®.m ¢ is always a non-
empty set. The patternsin p; ®.., ¢ are obtained
by adding tap; all nodes (and edges) in-c(p2) in
the place where m indicatedn particular, at least
ones in p1 ®.,m ¢ can be obtained giving the fol-
lowing steps:

First lets = p; andincl = identity. Second,
let inc2(n) = incl(m(c t(n))) for each node:
in c(p2). Finally, extendinc2 by adding intos the
following subtrees of;: If n is a node in:(p2) and
subtr is a maximal subtree af in ¢ formed with
nodes all ing — ¢(p2) then addsubtr as a maximal
subtree of the nodéic2(n).

For instance, given the following patterns:
pr = a(/bje)(//c/i), p» = *//b, and ¢ =
x(//b//a)(//c/d), the unique monomorphism :
p2 — p1 and the prefix functior: : p2 — ¢, the
pattern obtained by following the steps explained
above is s = a(/b(/e)(//a)(//c/D)(//c/d).
However, in this case, the 38t® ., g also contains
the patterns, = a(/b(/e)(//a))(//c(/i)(/d)) that
is similar tos; but with only one node labeled

The underlying idea is that all patternsin
p1 ®c,m g Must verify that every document tree
that is a model ok must be a model op; and a
model ofgq. However, such a document tregs
not necessary a model of the conditional constraint
V(c : p2 — q). Conversely, every document tree
that is a model of botlp; and¥(c : p — ¢) must

be a model of somein p1 ®.,m g, as we will prove
in Lemma 4.2.

4.2 Soundness of the inference rules

For proving soundness of a refutation procedure it
is enough to prove the soundness of the inference
rules.

Lemma 4.2 Rules (R1), (R2), and (R3) are sound.

Proof. A rule with premised™; andI'2 and con-
clusionT's is sound if for every document tree if
t =T andt |=T'; thent = T's.

(Rule R1). Lett be a document tree and suppose
thatt = 3p1 VI'y, t = —3p2 VT2, and there exists
a monomorphismn : po — p;. It cannot happen
thatt = 3p: andt = —3p., since ift |= Ip: then
there exists a mono-embeddifng: p; — ¢t and
this implies thath o m : po — t is also a mono-
embedding, meaning that= Jp,. Thereforet =
't v,

Rule (R2). Lett be a document tree such that
t = 3p1 VI andt |= Ip2 V I's. The cases where
t = TI'yort = I'y are trivial. Suppose that =
Jp:1 andt |= Jp2. This means that there are two
mono-embedings; : p1 — t andez : p2 — t.
By Proposition 4.1, there exists somes p1 ® p2
verifying the pair factorization propertywith » :

s — t being a mono-embedding. Ther= 3s and
thereforet =V ¢, 0p, P

Rule (R3). Lett be a document tree such that
t = 3pi VI andt = V(c: p2 — q) VI, and
suppose that the condition of the rule is fulfilled for
the monomorphismn : p2 — p1. The cases where
t =T ort = I'; are again trivial. Suppose that
t = Jp1 andt = V(e : p2 — q), and let us see that
t = 3s for somes in p1 ®c,m ¢. Sincet = Ipa,
there exists a mono-embeddiag: p1 — t. Then
e1om is also a mono-embedding fropa to¢. From
here, since = V(¢ : p2 — q), there is a mono-
embeddingz; : ¢ — ¢ such thate; o m = ez o c.
On other hand, we now that for each elemeri
D1 ®e,m q it holds thatincl om =inc2oc. Now we
can choose one such that, for each pair of nodes,
x in p; andy in g, the following properties hold:

a) If e1(z) = e2(y) thenincl(z) = inc2(y).

b) If e1(z) is an ancestor (respectively descen-
dent) ofex(y) in ¢ thenincl(z) is not a descendent
(repectively an ancestor) ofic2(y) in patterns.

Then we can build a mono-embeddiag s — ¢
verifying e o incl = e; ande o inc2 = e3. Such an
embedding: is defined as follows: For each node
inincl(p1): e(z) = e1(incl~'(z)). For each node
zininc2(q): e(z) = e2(inc2™(2)).

By property a),e is well-defined for the nodes in
incl(p1) Ninc2(q); by property b)e : s — tisa
mono-embedding. Therefote= 3s. Graphically:

b

1

m €1
incl

e

D2

inc2
c eo

W/

4.3 Example of refutation

Consider the specification given in Example 3.1,
C = {C1, Cy, C3, C4} with constraint clauses:
Chr = 3(x//b) vV 3(x//e), Co =V(c2 : *//b —
#(//b)(/€)), Cs =V(cs = x/[e — x(//e)(/b)),
andCy = —3(x(/b)(/e)).

We can prove that this set of clauses is unsatisfi-
able by applying the inference rules until obtaining
the empty clause, in the following way:

1.- (R3) applied toC; and C> gives Cs
3(//b)(/e)) v A/ /e)

2.- (R3) applied toCs and Cs gives Cs =
3(//0)(/e) (/b)) v 3(x(/e) (/b)) V I(x//€)

3.- (R1) applied toCs and C, gives C7 =
3(x(/e)(/b)) v 3(x//e)

4.- (R1) applied toC7 and Cy gives Cs =
3(+//e)

5.- (R3) applied toCs and Cs gives Cy =
3(x(//e)(/b))

6.- (R3) applied toCy and C> gives Cig =
3x(//e)(/b)(/e)) v 3(x(/b)(/e))

7.- (R1) applied toCyo and C4 gives Cq1 =
3(/b)(/e)

8.- (R1) applied ta”1; andCy givesFALSE.

It may be noted that in step 2, the disjunction
3(x(//b)(/e)(/b)) V I(x(/e)(/b)) is the result of
doing Ve, 0..,.q 3P for p1 = «(//b)(/e) and
Y(c:p2 — q) = Cs. Similarly in step 6.

5 Looking for completeness

We have seen that our refutation procedure consist-
ing of the three inference rules (R1), (R2) and (R3)
is sound. That is, whenever the procedure infers
the empty clause from a set of constrained clauses
C, we have proven thaf is unsatisfiable. How-
ever, our procedure is not complete. It cannot infer
FALSEfor some unsatisfiable sétas the following
example shows.

Example 5.1 Consider the specificatiof = {C1,
C-, C3} with constraint clauses:C; = 3(a//b),
Co=—3(a/ * //b),andCs = =3(a/b).

Obviously, rules (R2) and (R3) cannot be used
here. Rule (R1) cannot be applied ¢ and Cx,
because there does not exist a monomorphism from
(a/ = //b) to (a//b). And (R1) cannot be ap-
plied to C; and Cs, because there does not exist
a monomorphism fronia/b) to (a//b). However
it is clear thatC, is equivalent to the claus€; =
3(a/*//b)VI(a/b), since for every document tree
titholds: t = Cy if and only ift = C7. Therefore
C is unsatisfiable but our procedure does not infer
FALSE.

The problem detected in the previous example
can be resolved by adding to our refutation proce-
dure some new rules to allownfoldinga pattern
like a//bin the two cases/b anda/ = //b. Then,
by transformingC; into C1, the procedure can in-
fer FALSEfrom the set {U1, C2, Cs} by applying
twice the rule (R1).

Asa/ =« //banda// x /b are equivalent patterns,
we will need to have two different ways of unfold-
ing a descendent edge //. To indicate the specific
edge //in atree T to be unfolded we will write T[//].
The two unfolding rules are the following:

dpv T
levEngvF

forp="T[//]: pr =T[/] andpz = T[/,, //]

(Unfoldl)

Ipv T
dp1 Vdp2 VI

forp="T[//]:p1 =T[/] andp: =T[//,*, /]

(Unfold2)

The rule (Unfold1) substitutes inside a clause the
positive basic constraiftp by 3p; V Ip2, wherep;
(respectivelyp-) is obtained fronp by substituting
an edge // irp by the edge / i1 (respectively by
the sequence /,*,// ip2). The rule (Unfold2) is sim-
ilar, but substituting // by the sequence //,*,/7p.
Both rules are sound: for every document tte#
holds that ift = 3p thent = 3p1 V Ipo.

5.1 About termination and completeness

With the two unfolding rules added to our refutation
procedure, it is possible to infer the empty clause in
more cases than without them, as we have seen in
the previous example. Nevertheless, the repeated
application of the unfolding rules can be infinite,
giving rise to a termination problem.

The idea is to apply finitely the unfolding rules,
only in the necessary cases. In concrete, if we have
the two premises of Rule (R1) with complemen-
tary basic constraintSp and -3¢ and there is no
monomorphism frong to p, then we are able to un-
fold an edge // ip so many times agindicates. We
need to look for sequencesqrof the form !*1...1*]
with » nodes *, each ! is either/ or // but at least one
of them must be //. Then we unfold the edge /pin
exactlyn times. Moreover, the sequence *!...1* in
q tells us which unfolding rule must be applied. We
show this idea in the following example.

Example 5.2 Consider the specificatiofi = {C1,
C5, C3} with constraint clausesCy = 3(a//c/d),
Cy = —3(a/ * /d), andCs = =3(a/ * // * /c).

Rule (R3) is not used here because there is no
conditional constraint. Rule (R2) can not be ap-
plied sinceC has only one positive constraint. We
can see that is not possible to apply the rule (R1)
to C1 and Cs since there is no monomorphism
from the patterng = (a/ *x // x /c) to the pat-
ternp = a//c/d. However, it can be detected that
a monomorphism would be possible if the edge //
froma to cin p, is unfolded until matching with the
sequence /*//*/ fromu to ¢ in q. The form of this
sequence tells us first to apply (Unfold1)(i//c)
to obtain(a/ * //c), and then to apply (Unfold2)
to (a/ * //c) to obtain(a/ x // % /c). More pre-
cisely: Rule (Unfold1) is applied t64 givingCy =
I(a/c/d) V I(a/ = //c/d). Rule (Unfold2) is ap-
pliedtoCy givingCs = 3(a/c/d)V3(a/* [c/d)V
Aa/ x /] * [c/d).

Now, the rule (R1) can already be applieddg
andCj3 givingCs = 3(a/c/d) V I(a/ * /c/d). To
finish, the rule (R1) can be applied @ and C>
givingC7 = 3(a/ * /c/d).

Finally, we can consider another classical notion,
the subsumptiorof clauses, to build a more effi-
cient refutation procedure. Subsumed clauses are
redundant and it seems obvious that they must be
deleted as soon as possible in the refutation proce-
dure. However, we must have into account that, in
some cases, introducing deleting rules may cause
that a different strategy is needed to prove the com-
pleteness of the procedure [9]. Following with
the previous example, we show now the subsumed
clauses that can be deleted in each step of our pro-
cedure.

Example 5.3 Taking into account that, given two
clausesC and D, C subsume® (or equivalently,
D is subsumed by) if Mod(C) C Mod(D), in
the previous example we have thét; replacesC,
after the application of (Unfoldl), therefo@, is
deleted; C5 replacesC.y after the application of
(Unfold2), thereforeC, is deleted;Cs subsumes
Cs, soC5 can be deleted after the first application
of (R1); andC~ subsume€’s, soCs can be deleted
after the second application of (R1). Taking into
account these subsumptions, the sequence of infer-
ences from the specificatiah= { C1, C2, C3} can

be then summarized as follows:

C = {C4, Cz, C3} = {Cs, C2, C3} = {Cs, Co,
03} = {07, 02, Cg}

In this step of the refutation procedure, the ac-
tual state is the set of clauseg’7, Cs, Cs}=
{3(a/*/c/d),~3(a/*/d) ,~(a/*//*/c)}. In
this moment, no rule can be applied (note that the
unfolding rules are only applied on positive basic
constraints) and therefore the procedure finishes.
As FALSE has not been inferred, the actual set of
clauses (and then also the initial state) is satisfiable.

6 Conclusion

As said in the Introduction, our aim is to define a
class of specifications on XML documents and to
reason about these specifications. In this paper, we
first propose the specifications as sets of clauses,
where a clause is a disjunction of constraints built

on boolean XPath-patterns. In particular, we have
defined three sorts of constrains: positive and neg-
ative basic constraints, and conditional constraints.
We define when a document satisfies a constraint
and therefore when a specification is satisfiable.

In order to reason about these specifications, we
study adequate inference rules to find a sound and
complete refutation procedure for checking the sat-
isfiability of a given specification. In particular, we
consider three inference rules (R1), (R2) and (R3),
which take a similar format than the inference rules
for graphs given in [8] but defining the appropriate
operatorsf ® g andp ®.,m) for our setting. We
prove soundness of the refutation procedure. Then
we show that some other inference rules are needed
in order to obtain completeness. In concrete, we
introduce two unfolding rules and also the idea of
using subsumption rules. This part of the paper
shows work in progress. It is informally presented
by means of examples, where we can observe that
the unfolding rules must be applied in some spe-
cific way to avoid termination problems of the pro-
cedure. We need to set up clearly the use of the un-
folding rules and to define the subsumption rules.
Then we plan to define formally the refutation pro-
cedure, using all the above inference rules, and to
prove that it is complete.

Finally, as regards termination, we think that
our refutation procedure may not terminate, which
means that the procedure would be just refutation-
ally complete. However, if we restrict our logic to
the basic constraints then we think that the refuta-
tion procedure would terminate.

References

[1] Alpuente. M., Ballis, D., and Falaschi, Mu-
tomated Verification of Web Sites Using Par-
tial Rewriting Software Tools for Technology
Transfer, 8 (2006), 565-585.

Benedikt, M., and Koch, CXPath Leashed
ACM Computing Surveys, Vol 41, N1, Article
3 (2008).

(2]

Benedikt, M., Fan, W., and Geerts, KPath
satisfiability in the presence of DTDBroceed-
ings of the 24th Symposium on Principles of
Database Systems (PODS 2005). Journal of the
ACM 55, n. 2 (2008).

(3]

[4] Bidoit, N., and Colazzo DTesting XML con-
straint satisfiability Proceedings of the Inter-
national Workshop on Hybrid Logic (HyLo
2006). ENTCS 174, n. 6 (2007), 45-61.

[5] Ellmer, E., Emmerich, W., Finkelstein, A., and
Nentwich, C.Flexible Consistency Checking
ACM Transaction on Software Engineering and
Methodology, 12(1) (2003), 28—-63.

[6] Jelliffe, R. Schematron Internet Document,
http://xml.ascc.net/resource/ schematron/.

[7] Miklau, G., and Suciu, D.Containment and
equivalence for a fragment of XPatlournal of
the ACM, Vol. 51, N 1, (2004) 2-45.

[8] Orejas, F., Ehrig, H., and Prange, AlLogic of
Graph Constraints Fundamental Approaches
to Software Engineering, 11th Int. Conference,
FASE 2008. LNCS 4961 (2008) 179-198.

[9] Pichler, R.Completeness and Redundancy in
Constrained Clause Logit NCS 1761 (2000),
221-235.

[10] WORLD WIDE WEB CONSORTIUM.
1999a XML path language (XPath) recommen-
dation, http://www.w3c.org/TR/xpath/.

[11] WORLD WIDE WEB CONSORTIUM.
1999b. XSL transformations (XSLT).
W3C recommendation version 1.0
http://www.w3.0org/TR/xslt.

[12] WORLD WIDE WEB CONSORTIUM. 2001.
XML schema part 0: Primer. W3C recommen-
dation, http://www.w3c.org/XML/Schema.

[13] WORLD WIDE WEB CONSORTIUM.
2002. XQuery 1.0 and XPath 2.0 for-
mal semantics. W3C working draft
http://www.w3.org/TR/query-algebra/.

[14] WORLD WIDE WEB CONSORTIUM. 2007.
XML path language (XPath) 2.0.

