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Abstract

In this paper we study a set of logical rules to
prove the satisfiability for a class of specifications
on XML documents. Specifications are sets of
constrains built on XPath patterns. In [8], it is
shown how to use graph constraints as a specifica-
tion formalism, which can be used to specify classes
of semi-structured documents, and how to reason
about these specifications, providing inference rules
that are sound and complete. Our aim is to formu-
late similar notions and to obtain similar results in
the framework of XML documents. Nevertheless,
the difference between both frameworks makes not
easy the adaptation of the graph constraints into our
setting. We present here a primer study on how ap-
proaching this problem.

1 Introduction

XPath [10, 14] is a well-known language for nav-
igating an XML document (or XML tree) and re-
turning a set of answer nodes. Since XPath is used
in many XML query languages as XQuery, XSLT
or XML Schema among others [13, 11, 12], a great
amount of papers deal with different aspects on dif-
ferent fragments of XPath. For instance, in [2] an
overview of formal results on XPath is presented
concerning the expressiveness of several fragments,
complexity bounds for evaluation of XPath queries,
as well as static analysis of XPath queries. More
concretely, in [3] it is studied the problem of deter-
mining, given a query p (in a given XPath fragment)
and a DTD D, whether or not there exists an XML
document conforming to D and satisfying p. They
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show that the complexity ranges from PTIME to un-
decidible, depending on the XPath fragment and the
DTD chosen. The work presented in [4] deals with
the same problem (in a particular case) and it uses
Hybrid Modal Logic to model the documents and
some class of schemas and constraints. They pro-
vide a tableau proof technique for constraint satisfi-
ability testing in the presence of schemas.

Our approach is different than the previous ones
in the following two points. On the one hand, we
do not consider any DTD or schema, and we use
a simple fragment of XPath, where patterns can be
represented by means of simple “tree patterns". In
this sense our approach is simpler than the previ-
ous ones. However, on the other hand, our aim is
to define specifications of classes of XML docu-
ments as sets of constraints (of some specific class)
on these documents, and to provide a form of rea-
soning about these specifications. In this sense, our
main question is satisfiability, that is, given a set of
constraints S, whether or not there exists an XML
document satisfying all constraints in S. Moreover,
we are looking for refutation procedures, based on
sound and complete inference rules. In addition to
checking satisfiability, these rules can be used to de-
duce other constraints from the given set, which can
help us to optimize the given specification.

Some other work, which shares part of our aims,
is the approach for the specification and verifica-
tion of semi-structured documents based on extend-
ing a fragment of first-order logic [1, 5] allow-
ing us to refer to the components of a given class
of documents (in particular, using XPath notation).
They present specification languages that allow us
to specify classes of documents, and tools that al-
low us to check if a given document (or a set of
documents) follows a given specification. However,



they do not consider the problem of defining deduc-
tive tools to analyze specifications, for instance to
look for inconsistencies.

Another approach that we know [6] has a more
practical nature. Schematron is a language and a
tool that is part of an ISO standard (DSDL: Doc-
ument Schema Description Languages). The lan-
guage allows us to specify constraints on XML doc-
uments by describing directly XML patterns (using
XML) and expressing properties about these pat-
terns. Then, the tool allows us to check if a given
XML document satisfies these constraints. How-
ever, as in the previous approach, Schematron pro-
vides no deductive capabilities.

Finally, we consider the work presented in [8]. It
shows how to use graph constraints as a specifica-
tion formalism, which can be used to specify classes
of semi-structured documents, and how to reason
about these specifications, providing refutation pro-
cedures based on inference rules that are sound and
complete.

Our aim is to follow the main ideas given in [8]
and try to apply them to XML documents. To de-
fine the constraints on some XPath notation, we se-
lect the representation of Xpath queries given in [7].
Miklau and Suciu study the containment and equiv-
alence problems for a class of XPath queries that
contain branching, label wildcards and can express
descendant relationships between nodes. In partic-
ular, they introducetree patternsas an alternative
representation of XPath queries consisting of these
usual elements: node tests, the child axis (/), the
descendent axis (//) and wildcards (*). The answer
nodes are marked with(x). For instance, Figure
1 shows a tree patternp that when is applied to a
given XML documentt (which is also represented
by a tree but in this case without descendent axis
or wildcards), it must check: if the root node int
is labeleda, if some child node of the root node in
t is labeledb, and if some descendent node of the
root node int has both a child node labeledd and a
descendent node labeledc. If all of these conditions
are satisfied, the applicationp(t) will return a set
with such last descendents (the marked nodes with
x); in other case, it will return the empty set.

Since our purpose is to reason on XML docu-
ments by means of a set of constraints, and not
to obtain the answer nodes, we shall consider tree
patterns without answer marks (which are called
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Figure 1: A tree pattern with answer node (markedx)

Boolean tree patterns in [7]). The application of
such a pattern to a documentt will return true, if
t satisfies the conditions specified by the pattern, or
false in other case.

As we said above, in this paper we follow the
main ideas given in [8] and try to apply them to
XML documents by defining three sorts of con-
straints. The first one is∃p wherep is a tree pattern.
This constraint will be satisfied by a documentt if
p(t) is true. The second one is¬∃p that will be
satisfied by a documentt if p(t) is false. The third
sort of constraint is written∀(c : p → q), where
bothp andq are tree patterns (related byc in a spe-
cial way) and, roughly speaking, it will be satisfied
by a documentt if p(t) impliesq(t). Nevertheless,
the particularization of graph constraints to our set-
ting is not trivial, mainly for two reasons that will
be explained in Section 3.

We assume that a specification consists of a set
of clauses, where a clause is a disjunction of con-
straints. To know if an XML document satisfies a
specification means to check if it satisfies each of
its clauses. However a set of clauses can be un-
satisfiable, that is, it may be happen that no docu-
ment can satisfy all clauses in the specification. To
avoid useless work, we consider the task to check
if a given specification is satisfiable. Our aim is to
study adequate inference rules to find a sound and
complete refutation procedure for checking satisfi-
ability of a given specification. The inference rules
take a similar format than the inference rules given
in [8], but again the particularization to our setting
needs to define appropriate operators and to prove
new results.

The paper is organized as follows. Section 2 con-
tains some basic notions and notational conventions
we are going to use along the paper. Section 3 in-



troduces the constraints and clauses that we are go-
ing to use to define our specifications. Section 4
presents the main inference rules for our refutation
procedure, proving soundness. We also give an ex-
ample of refutation for a given specification. Then,
in Section 5 we show work in progress we are doing
in order to obtain completeness for our refutation
procedure. Finally, in Section 6 we provide some
conclusions.

2 Basic definitions and notation

In this section we introduce some basic concepts
and notation that will be used along the paper. Most
of them are taken from [7].

2.1 XML documents and patterns

We consider anXML documentas an unordered and
unranked tree with nodes labeled from an infinite
alphabetΣ. The symbols inΣ represent the el-
ement labels, attribute labels, and text values that
can occur in XML documents.TΣ denotes the
set of all trees on alphabetΣ. We also call each
element inTΣ a document tree. Given a docu-
ment treet ∈ TΣ, Nodes(t) and Edges(t) de-
note respectively the sets of nodes and edges in
the treet; Root(t) denotes its root node; and for
eachn ∈ Nodes(t), Label(n) denotes the label
of such a noden. Edges+(t) denotes the transi-
tive closure ofEdges(t). Each edge inEdge(t)
is represented(x, y) with x, y ∈ Nodes(t). If
(x, y) ∈ Edges+(t) then it represents a path int
from nodex to nodey.

As said in the Introduction, we use tree patterns
as an alternative representation of queries. In partic-
ular, we are interested in tree patterns without an-
swer nodes to build constraints. Now we give the
definition of a tree pattern and the definition of a
function, calledembedding, that will serve us to de-
fine when a document satisfies a pattern.

Definition 2.1 Given a signatureΣ, a tree pattern
onΣ is a treep whose nodes are labeled with sym-
bols fromΣ ∪ {∗} and with two sorts of edges: the
descendent edges denoted// and the child edges
denoted/. PΣ denotes the set of all patterns on
alphabetΣ. We use the same notations as before:
Nodes(p), Edges(p), Root(p) andLabel(n) for

eachn ∈ Nodes(p); but now the edges are distin-
guished,Edges(p) = Edges//(p) ∪ Edges/(p).

For the sake of simplicity, from now on we
omit the signatureΣ , and tree patterns are sim-
ply called patterns. Along this paper, patterns
will be drawn in the figures as trees, but to write
them textually (in the examples) we will use the
following format: A patternp with root labeled
a and subtreesp1, . . . , pn will be textually writ-
ten p = a(!p1) . . . (!pn) where eachpi is recur-
sively written in the same format, and ! being / or
// to indicate the edge from the root to each sub-
tree pi. Some parenthesis can be omitted in the
case of having only one subtree. For instance, the
pattern given in Figure 1 can be textually written
a(/b)(// ∗ (//c)(/d)).

Definition 2.2 Given a patternp ∈ P and a doc-
ument treet ∈ T , an embeddingfrom p to t is a
functione : Nodes(p) → Nodes(t) satisfying the
following conditions:

• Root-preserving:e(Root(p)) = Root(t);

• Label-preserving: For eachn ∈ Nodes(p),
Label(n) = ∗ or Label(n) = Label(e(n));

• Child-edge-preserving: For each(x, y) ∈
Edges/(p), (e(x), e(y)) ∈ Edges(t);

• Descendent-edge-preserving: For each
(x, y) ∈ Edges//(p), (e(x), e(y)) ∈
Edges+(t).

From now on, we will also writee : p → t for
e : Nodes(p) → Nodes(t). Miklau and Suciu [7]
define, for a patternp and a document treet, that
p(t) is true if there exists an embeddinge from p to
t. They give an algorithm to decide whetherp(t) is
true. This algorithm runs in lineal time. In Figure
2 there is an example of an embeddinge : p → t
from the patternp = a//∗(/c)(/d) to the document
treet = a(/e/f(/c)(/d))(/b/g). The embeddinge
is drawn with dotted arrows.

2.2 Pattern satisfaction and pattern homomorphism

In the following we define the notion of (pattern)
satisfaction, and as it is usual in logic, from this no-
tion we can define the notion of (pattern) model.
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Figure 2: An embeddinge : p → t

Definition 2.3 Given a patternp ∈ P and a docu-
ment treet ∈ T , we say thatt satisfies p, denoted
t � p, if there exists an injective embedding from
p to t. The model set of a patternp is the set of
document trees satisfyingp:

Mod(p) = {t ∈ T / t � p}

We must point out here a main difference be-
tween our approach and the approach given in [7].
Our notion of satisfaction ask the embedding to be
injective; that is,p(t) is true if there exists anin-
jectiveembedding fromp to t. However, in [7], the
embedding is defined not necessarily injective.

Our definition is useful to distinguish repeated
nodes as different ones. For example: Letp be the
pattern textually writtena(/b)(/b)(/c), that is, the
pattern with root labelleda and three children la-
belledb, b andc respectively. Letq be the pattern
textually writtena(/b)(/c), that is, the pattern with
root labelleda and two children labelledb andc. In
our approach, each modelt for p must be a docu-
ment tree with a root labelleda and at least three
children labelledb, b andc respectively; therefore
each modelt for p is also a model forq. On the
other hand, there exist trees that are models forq but
not models forp, for instance:t = a(/b)(/c). That
is, Mod(p) ⊂ Mod(q) andMod(q) 6⊂ Mod(p).
However, in [7], such patternsp andq would have
the same models.

Now we define the notion of homomorphism be-
tween patterns, similar to the notion of embedding
between a pattern and a document tree. Again we
shall use onlyinjectivehomomorphisms.

* // a
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Figure 3: A monomorhismh : p → q

Definition 2.4 Since each pattern can be seen as a
tree with possible labels * and edges of type / or
// , we can define ahomomorphismfrom a pattern
p to a patternq as a functionh : Nodes(p) →
Nodes(q) that preserves all conditions of an em-
bedding but with the additional condition that each
edge / inp must be applied into an edge / inq. That
is, we change only the following condition:

• Child-edge-preserving: For each(x, y) ∈
Edges/(p), (e(x), e(y)) ∈ Edges/(q).

Note that the condition of “Descendent-edge-
preserving" remains as in Definition 2.2. Now
Edges+(q) denotes the transitive closure of
Edges(q) = Edges//(q) ∪ Edges/(q); that is,
(x, y) ∈ Edges+(q) represents a path inq from
nodex to nodey with edges of type / or // .

Again we will simply write h : p → q for
h : Nodes(p) → Nodes(q). As usual, an in-
jective homomorphism is called amonomorphism.
Similarly, an injective embedding will be called a
mono-embedding. In Figure 3 there is an exam-
ple of a monomorphismh : p → q from the pat-
ternp = ∗//e to the patternq = a(/e)(//b/c). The
monomorphismh is drawn with dotted arrows.

The following result relates monomorphisms and
models. The first point is easy to prove. The second
point is illustrated with an example in [7] .

Lemma 2.1 For p, q patterns:

• If there exists a monomorphismh : p → q
thenMod(q) ⊆ Mod(p).

• It may happen thatMod(q) ⊆ Mod(p) but
there is not any monomorphismh : p → q.



3 Constraints and clauses

We take from [8] the notion of graph constraint to
define our notion of pattern constraint. In that pa-
per one sort of constraints is of the form∃C, with
C being a graph. Then a given graphG is de-
fined to verify this constraint whenG containsC
as a subgraph. Here we are dealing with constraints
as some sort of formulas that we want that a doc-
ument verifies. The particularization to our setting
is not trivial mainly for two reasons: On the one
hand, although a tree is a particular case of a graph,
we deal with patterns that are trees having edges
of type //. For instance, with a pattern constraint
like ∃p beingp the pattern textually writtena//b,
we can specify that there must exist a descendent
node labelledb in our document with root labelled
a. However, graphs constraints do not work with
the relation “descendent". On the other hand, in the
setting of graph constraints, the models and the for-
mulas (or constraints) are both graphs, while in our
setting the models are documents and the formulas
are patterns. This second difference makes more
complicated to instance the results given in [8] into
our framework.

3.1 Constraints

The underlying idea of our constraints is that they
should specify that certain patterns must be satis-
fied (or must not be satisfied) in a given document.
For instance, the simplest kind of constraint,∃p,
specifies that a given documentt should satisfyp.
Obviously,¬∃p specifies that a given documentt
should not satisfyp. A more complex kind of con-
straints is of the form∀(c : p → q) where the pat-
ternp is a prefix tree of the patternq, indicated by
the monomorphismc. Roughly speaking, this con-
straint specifies that whenever a documentt verifies
the patternp it should also verify the extended pat-
ternq (see the formal definition below). In general
we will have clauses formed as disjunctions of these
three types of constraints.

Definition 3.1 Given two patternsp andq, a func-
tion c : Nodes(p) → Nodes(q) is a prefix func-
tion if satisfies the following conditions:

• Root-identity:c(Root(p)) = Root(q);

• Label-identity: For eachn ∈ Nodes(p),
Label(n) = Label(c(n));

• Child-edge-identity: For each(x, y) ∈
Edges/(p), (c(x), c(y)) ∈ Edges/(q);

• Descendent-edge-identity: For each(x, y) ∈
Edges//(p), (c(x), c(y)) ∈ Edges//(q).

We will simply write c : p → q. Obviously each
prefix function is a monomorphism.

Now we formally define the constraints we are
going to use: positive and negative basic constraints
and conditional constraints. A constraint clause is a
disjunction of constraints.

Definition 3.2 A positive basic constraintis de-
noted∃p, wherep is a pattern.
A negative basic constraintis denoted¬∃p, wherep
is a pattern.
A conditional constraintis denoted∀(c : p → q)
wherep andq are patterns andc : p → q is a prefix
function.

Definition 3.3 A constraint clause(or simply
clause) α is a finite disjunction of literalsL1∨L2∨
. . . ∨ Ln, where, for eachi ∈ {1, . . . , n}, the lit-
eral Li is a (positive or negative) basic constraint
or a conditional constraint. The empty disjunction
is called theempty clauseand it can be represented
byFALSE.

Satisfaction of constraint clauses is defined in-
ductively, following the intuitions described above.

Definition 3.4 A document treet ∈ T satisfies a
constraint clauseα, denotedt |= α, if it holds:

• t |= ∃p if t � p (that is, if there exists a mono-
embeddinge : p → t);

• t |= ¬∃p if t 2 p (that is, if there does not exist
a mono-embeddinge : p → t);

• t |= ∀(c : p → q) if for every mono-
embeddinge : p → t there is a mono-
embeddingf : q → t such thate = f ◦ c.

• t |= L1 ∨ L2 ∨ . . . ∨ Ln if t |= Li for some
i ∈ {1, . . . , n}.



3.2 Example of specification

We assume that our specifications consist of con-
straint clauses. To know if an XML documentt sat-
isfies an specificationC means to check ift |= α,
for every clauseα ∈ C. However a set of clauses
can be unsatisfiable, that is, it may be happen that
no document satisfies all clauses inC. To avoid
useless work, we should consider to check first if a
given specification is satisfiable. Our aim is to find a
sound and complete refutation procedure for check-
ing satisfiability of specifications consisting of con-
straint clauses as defined above.

First let us see with some examples what does the
satisfaction of a conditional constraint mean. Then
we give an example of an unsatisfiable specifica-
tion.

We consider the conditional constraint∀(c : p →
q) with p = ∗//a, q = ∗//a/b and c being the
obvious prefix function fromp to q. By Definition
3.4, a document treet satisfies this constraint if each
node (descendent of the root) labeleda has a child
node labeledb. For instance, the document treet =
g(/a/b)(/a/h) does not satisfy the constraint: For
the mono-embeddinge : p → t, that applies the
nodea in p into the second nodea in t, there does
not exist a mono-embeddingf : q → t such that
e = f ◦ c. In words: “this mono-embeddinge from
p to t can not be extended to another one fromq to
t". However, note thatt |= p andt |= q. Therefore,
in general, to verify the conditional constraint∀(c :
p → q) is stronger than to verify the clauseC =
¬∃p∨ ∃q, that may be seen as a conditional clause.

Example 3.1 Consider the specificationC = { C1,
C2, C3, C4} whereC1 = ∃(∗//b)∨∃(∗//e), C2 =
∀(c2 : ∗//b → ∗(//b)(/e)), C3 = ∀(c3 : ∗//e →
∗(//e)(/b)), andC4 = ¬∃(∗(/b)(/e)).
ClauseC1 specifies that the document tree must
have a nodeb or e; C2 says that if the document
tree has some nodeb then its root must have a node
child e; similarly, C3 says that if the document tree
has some nodee then the root must have a node
child b; and finally, C4 says that the root cannot
have two childrenb ande.
The documentt1 = a(/b)(/f/e) satisfiesC1, C3

andC4 but t1 6|= C2. The documentt2 = a/e sat-
isfiesC1, C2 and C4 but t2 6|= C3. There is no
document satisfying all clauses inC.

4 Rules for a refutation procedure

As it is often done in the area of automatic reason-
ing, the refutation procedure that we present in this
paper is defined by means of some inference rules.
Each rule tells us that if certain premises are sat-
isfied then a given consequence will also hold. In
this context, a refutation procedure can be seen as a
(possibly nonterminating) nondeterministic compu-
tation where the current state is given by the set of
formulas that have been inferred until the given mo-
ment, and where a computation step means adding
to the given state the result of applying an inference
rule to that state. In our case, we assume that in
general the inference rules have the form:

Γ1 Γ2

Γ3

where the premisesΓ1, Γ2 and the conclusionΓ3

are (constrained) clauses. Clauses are seen as sets of
literals. This means that if we write that a clause has
the formL∨Γ, this does not necessarily imply that
L is the leftmost literal of the given clause.L ∨ Γ
denotes a clause with literalL andΓ the rest of the
disjunction. Similarly, we consider that the clause
Γ ∨ L is the same as the clauseΓ ∨ L ∨ L.

Then, arefutation procedurefor a set of con-
straint clausesC is a sequence of inferences:

C0 ⇒ C1 ⇒ . . . ⇒ Ci ⇒ . . .

where the initial state is the original specification
(i.e., C0 = C) and where we writeCi ⇒ Ci+1 if
there is an inference rule such thatΓ1, Γ2 ∈ Ci, and
Ci+1 = Ci ∪ {Γ3}. Moreover, we will assume that
Ci ⊂ Ci+1, i.e. Γ3 /∈ Ci, to avoid useless infer-
ences.

In this framework, proving the unsatisfiability of
a set of constraints means inferring the empty clause
(FALSE), provided that the procedure is sound and
complete. Since the procedures are nondeterminis-
tic, there is the possibility that we never apply some
key inference. To avoid this problem we will always
assume that our procedure isfair, which means that,
if at any momenti, there is a possible inference
Ci ⇒ Ci ∪ {Γ}, for some clauseΓ, then at some
momentj we have thatΓ ∈ Cj . This means that
inferences are not postponed forever, i.e. every in-
ference will eventually be performed.

Then, a refutation procedure forC is sound if
whenever the procedure infers the empty clause we



have thatC is unsatisfiable. And a procedure iscom-
plete if, wheneverC is unsatisfiable, we have that
the procedure infersFALSE.

It may be noted that if a refutation procedure is
sound and complete then we may know in a finite
amount of time if a given set of constraints is unsat-
isfiable. However, it may be impossible to know in
a finite amount of time if the set of constraints is sat-
isfiable. For this reason, sometimes the above def-
inition of completeness is called refutational com-
pleteness, using the term completeness when both
satisfiability and unsatisfiability are decidable.

4.1 Inference rules

Here we present three inference rules (R1), (R2)
and (R3), for our refutation procedure. In our con-
text, the clauses are disjunction of literals where
each literal can be of the form∃p, ¬∃p, or ∀(c :
p → q). We are going to present and explain each
rule giving some examples of them.

∃p1 ∨ Γ1 ¬∃p2 ∨ Γ2

Γ1 ∨ Γ2
(R1)

if there exists a monomorphismm : p2 → p1

Rule (R1) is similar to the Resolution rule, since
the two premises have literals that are, in some
sense, “complementary": one is a positive basic
constraint, the other one is a negative one, and the
condition about the monomorphism fromp2 to p1

plays the same role than unification. Note that when
Γ1 andΓ2 are empty, the rule (R1) infers the empty
clause.

For instance, ifp1 = a(/e)(// ∗ (/c)(/b)) and
p2 = ∗//b, then there exists a monomorphism from
p2 to p1 that applies the root ofp2 (labeled *) into
the root ofp1 (labeleda), the node inp2 labeledb
into the node inp1 labeledb, and the edge // inp2

into a path inp1 formed by // followed by /. Then
the empty clause is obtained from∃p1 and¬∃p2 by
rule (R1).

∃p1 ∨ Γ1 ∃p2 ∨ Γ2

(
W

p∈p1⊗p2
∃p) ∨ Γ1 ∨ Γ2

(R2)

Rule (R2) builds a disjunction of positive ba-
sic constraints from two positive basic constraints.
It uses the operator⊗ that we define below. In-
formally speaking, given two patternsp1 and p2,
p1⊗p2 denotes the set of patterns that can be ob-
tained by “combining"p1 and p2 in all possible
ways.

For instance, given the patternsp1 =
a(/b/e)(//c) andp2 = a//b/x, the setp1⊗p2 con-
tains the two patterns:s1 = a(/b(/e)(/x))(//c)
and s2 = a(/b/e)(//b/x)(//c). Each one corre-
sponds with a way of combiningp1 and p2; the
nodes labeledb are shared ins1 while there are two
different nodesb in s2.

The underlying idea is that all patternss in
p1⊗p2 must verify that every document tree that is
a model ofs must be a model ofp1 and a model of
p2. Conversely, every document tree that is a model
of both p1 andp2 must be a model of somes in
p1⊗p2. It must be noted that if the roots ofp1 and
p2 have different labels, for instance are labeleda
and b, then no combination is possible. This im-
plies that, in some cases, the empty clause can also
be produced by rule (R2).

Now we formalize these ideas within the follow-
ing definitions.

Definition 4.1 Given two patternsp andq, p⊗q is
defined as the set of patterns:p ⊗ q = { s ∈ P /
there exist jointly surjective monomorphismsinc1 :
p → s and inc2 : q → s} where “joinly surjec-
tive" means thatNodes(s) = inc1(Nodes(p)) ∪
inc2(Nodes(q)).

Definition 4.2 join : (Σ ∪ {∗}) × (Σ ∪ {∗}) →
Σ ∪ {∗} is a partial function which returns a label
as the result of joining two labels:

• join(a, a) = join(∗, a) = join(a, ∗) = a,
for each labela ∈ Σ ;

• join(∗, ∗) = ∗ ;

• join(a, b) = undefined, for a, b ∈ Σ and
a 6= b.

Lemma 4.1 Given two patternsp and q, the set
of patternsp ⊗ q is the empty set if and only if
join(Label(Root(p)),Label(Root(q))) = undefined.

Note that if the setp1 ⊗ p2 is the empty set thenW
p∈p1⊗p2

∃p is the clauseFALSE.



Proposition 4.1 (Pair Factorization Property)
Given three patterns p, q, r, and two monomor-
phisms f1: p→r and f2: q→r, there exists a pat-
tern s∈p⊗q and monomorphisms inc1: p→s, inc2:
q→s, and h: s→r such thath ◦ inc1 = f1 and
h ◦ inc2 = f2. In the particular case whenr is a
document tree,f1, f2 andh are mono-embeddings.
Graphically:

p

inc1

��

f1

&&NNNNNNNNNNNNN

s
h // r

q

inc2

OO

f2

88ppppppppppppp

Proof. Since f1, f2 are monomorphisms,
join(Label(Root(p)), Label(Root(q))) is de-
fined. Moreover, somes ∈ p ⊗ q holds this
property. Such patterns must be chosen such that,
for everym ∈ Nodes(p) andn ∈ Nodes(q): if
f1(m) = f2(n) then inc1(m) = inc2(n) and
if f1(m) is an ancestor (respectively descendent)
of f2(n), inc1(m) must not be a descendent
(respectively ancestor) ofinc2(n). Then h is
well-defined.

∃p1 ∨ Γ1 ∀(c : p2 → q) ∨ Γ2

(
W

p∈p1⊗c,mq ∃p) ∨ Γ1 ∨ Γ2
(R3)

if there is a monomorp.m : p2 → p1 that cannot
be extended tof : q → p1 such thatf ◦ c = m.

Rule (R3) is similar to rule (R2) in the sense that
given a positive basic constraint∃p1 and a condi-
tional constraint∀(c : p2 → q), it builds a dis-
junction of positive basic constraints. This rule is
applied when there is a monomorphism fromp2

to p1 that cannot be extended to another one from
q to p1 via c. That is, there is a monomorphism
m : p2 → p1 but there is no monomorphism
f : q → p1 such thatf ◦ c = m.

Rule (R3) uses the operator⊗c,m that we define
below. Informally speaking, given two patternsp1,
p2, a prefix functionc : p2 → q, and a monomor-
phismm : p2 → p1, p1 ⊗c,m q denotes the set of
patterns that can be obtained by combiningp1 and

q in all possible ways, but maintainingp2 shared.

Definition 4.3 Given two patternsp1, p2, a prefix
function c : p2 → q, and a monomorphismm :
p2 → p1, p1 ⊗c,m q is defined as the following set
of patterns:
p1 ⊗c,m q = { s ∈ P / there exist jointly surjective
monomorphismsinc1 : p1 → s and inc2 : q → s
such thatinc1 ◦m = inc2 ◦ c}. Graphically:

p1

inc1

&&NNNNNNNNNNNNN

p2

m

77ppppppppppppp

c
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q

inc2
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Sincec is a prefix function (andm is a monomor-
phism),join(Label(Root(p1)), Label(Root(q)))
is defined. Moreover,p1 ⊗c,m q is always a non-
empty set. The patternss in p1 ⊗c,m q are obtained
by adding top1 all nodes (and edges) inq−c(p2) in
the place where m indicates. In particular, at least
ones in p1 ⊗c,m q can be obtained giving the fol-
lowing steps:

First lets = p1 andinc1 = identity. Second,
let inc2(n) = inc1(m(c−1(n))) for each noden
in c(p2). Finally, extendinc2 by adding intos the
following subtrees ofq: If n is a node inc(p2) and
subtr is a maximal subtree ofn in q formed with
nodes all inq − c(p2) then addsubtr as a maximal
subtree of the nodeinc2(n).

For instance, given the following patterns:
p1 = a(/b/e)(//c/i), p2 = ∗//b, and q =
∗(//b//a)(//c/d), the unique monomorphismm :
p2 → p1 and the prefix functionc : p2 → q, the
pattern obtained by following the steps explained
above is s1 = a(/b(/e)(//a))(//c/i)(//c/d).
However, in this case, the setp1⊗c,mq also contains
the patterns2 = a(/b(/e)(//a))(//c(/i)(/d)) that
is similar tos1 but with only one node labeledc.

The underlying idea is that all patternss in
p1 ⊗c,m q must verify that every document treet
that is a model ofs must be a model ofp1 and a
model of q. However, such a document treet is
not necessary a model of the conditional constraint
∀(c : p2 → q). Conversely, every document tree
that is a model of bothp1 and∀(c : p2 → q) must



be a model of somes in p1⊗c,m q, as we will prove
in Lemma 4.2.

4.2 Soundness of the inference rules

For proving soundness of a refutation procedure it
is enough to prove the soundness of the inference
rules.

Lemma 4.2 Rules (R1), (R2), and (R3) are sound.

Proof. A rule with premisesΓ1 andΓ2 and con-
clusionΓ3 is sound if for every document treet: if
t |= Γ1 andt |= Γ2 thent |= Γ3.

(Rule R1). Lett be a document tree and suppose
thatt |= ∃p1 ∨Γ1, t |= ¬∃p2 ∨Γ2, and there exists
a monomorphismm : p2 → p1. It cannot happen
thatt |= ∃p1 andt |= ¬∃p2, since ift |= ∃p1 then
there exists a mono-embeddingh : p1 → t and
this implies thath ◦ m : p2 → t is also a mono-
embedding, meaning thatt |= ∃p2. Therefore,t |=
Γ1 ∨ Γ2.

Rule (R2). Lett be a document tree such that
t |= ∃p1 ∨ Γ1 andt |= ∃p2 ∨ Γ2. The cases where
t |= Γ1 or t |= Γ2 are trivial. Suppose thatt |=
∃p1 and t |= ∃p2. This means that there are two
mono-embedingse1 : p1 → t ande2 : p2 → t.
By Proposition 4.1, there exists somes ∈ p1 ⊗ p2

verifying the pair factorization propertywith h :
s → t being a mono-embedding. Thent |= ∃s and
thereforet |=

W
p∈p1⊗p2

∃p.
Rule (R3). Lett be a document tree such that

t |= ∃p1 ∨ Γ1 andt |= ∀(c : p2 → q) ∨ Γ2, and
suppose that the condition of the rule is fulfilled for
the monomorphismm : p2 → p1. The cases where
t |= Γ1 or t |= Γ2 are again trivial. Suppose that
t |= ∃p1 andt |= ∀(c : p2 → q), and let us see that
t |= ∃s for somes in p1 ⊗c,m q. Sincet |= ∃p1,
there exists a mono-embeddinge1 : p1 → t. Then
e1◦m is also a mono-embedding fromp2 to t. From
here, sincet |= ∀(c : p2 → q), there is a mono-
embeddinge2 : q → t such thate1 ◦ m = e2 ◦ c.
On other hand, we now that for each elements in
p1⊗c,m q it holds thatinc1◦m = inc2◦c. Now we
can choose ones such that, for each pair of nodes,
x in p1 andy in q, the following properties hold:

a) If e1(x) = e2(y) theninc1(x) = inc2(y).
b) If e1(x) is an ancestor (respectively descen-

dent) ofe2(y) in t theninc1(x) is not a descendent
(repectively an ancestor) ofinc2(y) in patterns.

Then we can build a mono-embeddinge : s → t
verifying e ◦ inc1 = e1 ande ◦ inc2 = e2. Such an
embeddinge is defined as follows: For each nodez
in inc1(p1): e(z) = e1(inc1−1(z)). For each node
z in inc2(q): e(z) = e2(inc2−1(z)).
By property a),e is well-defined for the nodes in
inc1(p1) ∩ inc2(q); by property b),e : s → t is a
mono-embedding. Thereforet |= ∃s. Graphically:
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��

e1
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p2

m
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4.3 Example of refutation

Consider the specification given in Example 3.1,
C = {C1, C2, C3, C4} with constraint clauses:
C1 = ∃(∗//b) ∨ ∃(∗//e), C2 = ∀(c2 : ∗//b →
∗(//b)(/e)), C3 = ∀(c3 : ∗//e → ∗(//e)(/b)),
andC4 = ¬∃(∗(/b)(/e)).

We can prove that this set of clauses is unsatisfi-
able by applying the inference rules until obtaining
the empty clause, in the following way:

1.- (R3) applied toC1 and C2 gives C5 =
∃(∗(//b)(/e)) ∨ ∃(∗//e)

2.- (R3) applied toC5 and C3 gives C6 =
∃(∗(//b)(/e)(/b)) ∨ ∃(∗(/e)(/b)) ∨ ∃(∗//e)

3.- (R1) applied toC6 and C4 gives C7 =
∃(∗(/e)(/b)) ∨ ∃(∗//e)

4.- (R1) applied toC7 and C4 gives C8 =
∃(∗//e)

5.- (R3) applied toC8 and C3 gives C9 =
∃(∗(//e)(/b))

6.- (R3) applied toC9 and C2 gives C10 =
∃(∗(//e)(/b)(/e)) ∨ ∃(∗(/b)(/e))

7.- (R1) applied toC10 and C4 gives C11 =
∃(∗(/b)(/e))

8.- (R1) applied toC11 andC4 givesFALSE.
It may be noted that in step 2, the disjunction

∃(∗(//b)(/e)(/b)) ∨ ∃(∗(/e)(/b)) is the result of
doing

W
p∈p1⊗c,mq ∃p for p1 = ∗(//b)(/e) and

∀(c : p2 → q) = C3. Similarly in step 6.



5 Looking for completeness

We have seen that our refutation procedure consist-
ing of the three inference rules (R1), (R2) and (R3)
is sound. That is, whenever the procedure infers
the empty clause from a set of constrained clauses
C, we have proven thatC is unsatisfiable. How-
ever, our procedure is not complete. It cannot infer
FALSEfor some unsatisfiable setC as the following
example shows.

Example 5.1 Consider the specificationC = { C1,
C2, C3} with constraint clauses:C1 = ∃(a//b),
C2 = ¬∃(a/ ∗ //b), andC3 = ¬∃(a/b).

Obviously, rules (R2) and (R3) cannot be used
here. Rule (R1) cannot be applied toC1 and C2,
because there does not exist a monomorphism from
(a/ ∗ //b) to (a//b). And (R1) cannot be ap-
plied to C1 and C3, because there does not exist
a monomorphism from(a/b) to (a//b). However
it is clear thatC1 is equivalent to the clauseC′

1 =
∃(a/∗//b)∨∃(a/b), since for every document tree
t it holds: t |= C1 if and only ift |= C′

1. Therefore
C is unsatisfiable but our procedure does not infer
FALSE.

The problem detected in the previous example
can be resolved by adding to our refutation proce-
dure some new rules to allowunfolding a pattern
like a//b in the two casesa/b anda/ ∗ //b. Then,
by transformingC1 into C′

1, the procedure can in-
fer FALSEfrom the set {C′

1, C2, C3} by applying
twice the rule (R1).

As a/ ∗ //b anda// ∗ /b are equivalent patterns,
we will need to have two different ways of unfold-
ing a descendent edge //. To indicate the specific
edge // in a tree T to be unfolded we will write T[//].
The two unfolding rules are the following:

∃p ∨ Γ

∃p1 ∨ ∃p2 ∨ Γ
(Unfold1)

for p = T [//] : p1 = T [/] andp2 = T [/, ∗, //]

∃p ∨ Γ

∃p1 ∨ ∃p2 ∨ Γ
(Unfold2)

for p = T [//] : p1 = T [/] andp2 = T [//, ∗, /]

The rule (Unfold1) substitutes inside a clause the
positive basic constraint∃p by∃p1∨∃p2, wherep1

(respectivelyp2) is obtained fromp by substituting
an edge // inp by the edge / inp1 (respectively by
the sequence /,*,// inp2). The rule (Unfold2) is sim-
ilar, but substituting // by the sequence //,*,/ inp2.
Both rules are sound: for every document treet, it
holds that ift |= ∃p thent |= ∃p1 ∨ ∃p2.

5.1 About termination and completeness

With the two unfolding rules added to our refutation
procedure, it is possible to infer the empty clause in
more cases than without them, as we have seen in
the previous example. Nevertheless, the repeated
application of the unfolding rules can be infinite,
giving rise to a termination problem.

The idea is to apply finitely the unfolding rules,
only in the necessary cases. In concrete, if we have
the two premises of Rule (R1) with complemen-
tary basic constraints∃p and¬∃q and there is no
monomorphism fromq to p, then we are able to un-
fold an edge // inp so many times asq indicates. We
need to look for sequences inq of the form !*!...!*!
with n nodes *, each ! is either / or // but at least one
of them must be //. Then we unfold the edge // inp
exactlyn times. Moreover, the sequence !*!...!*! in
q tells us which unfolding rule must be applied. We
show this idea in the following example.

Example 5.2 Consider the specificationC = { C1,
C2, C3} with constraint clauses:C1 = ∃(a//c/d),
C2 = ¬∃(a/ ∗ /d), andC3 = ¬∃(a/ ∗ // ∗ /c).

Rule (R3) is not used here because there is no
conditional constraint. Rule (R2) can not be ap-
plied sinceC has only one positive constraint. We
can see that is not possible to apply the rule (R1)
to C1 and C3 since there is no monomorphism
from the patternq = (a/ ∗ // ∗ /c) to the pat-
tern p = a//c/d. However, it can be detected that
a monomorphism would be possible if the edge //
froma to c in p, is unfolded until matching with the
sequence /*//*/ froma to c in q. The form of this
sequence tells us first to apply (Unfold1) to(a//c)
to obtain(a/ ∗ //c), and then to apply (Unfold2)
to (a/ ∗ //c) to obtain(a/ ∗ // ∗ /c). More pre-
cisely: Rule (Unfold1) is applied toC1 givingC4 =
∃(a/c/d) ∨ ∃(a/ ∗ //c/d). Rule (Unfold2) is ap-
plied toC4 givingC5 = ∃(a/c/d)∨∃(a/∗/c/d)∨
∃(a/ ∗ // ∗ /c/d).



Now, the rule (R1) can already be applied toC5

andC3 giving C6 = ∃(a/c/d) ∨ ∃(a/ ∗ /c/d). To
finish, the rule (R1) can be applied toC6 and C2

givingC7 = ∃(a/ ∗ /c/d).

Finally, we can consider another classical notion,
the subsumptionof clauses, to build a more effi-
cient refutation procedure. Subsumed clauses are
redundant and it seems obvious that they must be
deleted as soon as possible in the refutation proce-
dure. However, we must have into account that, in
some cases, introducing deleting rules may cause
that a different strategy is needed to prove the com-
pleteness of the procedure [9]. Following with
the previous example, we show now the subsumed
clauses that can be deleted in each step of our pro-
cedure.

Example 5.3 Taking into account that, given two
clausesC andD, C subsumesD (or equivalently,
D is subsumed byC) if Mod(C) ⊆ Mod(D), in
the previous example we have that:C4 replacesC1

after the application of (Unfold1), thereforeC1 is
deleted; C5 replacesC4 after the application of
(Unfold2), thereforeC4 is deleted;C6 subsumes
C5, soC5 can be deleted after the first application
of (R1); andC7 subsumesC6, soC6 can be deleted
after the second application of (R1). Taking into
account these subsumptions, the sequence of infer-
ences from the specificationC = { C1, C2, C3} can
be then summarized as follows:

C ⇒ {C4, C2, C3} ⇒ {C5, C2, C3} ⇒ {C6, C2,
C3} ⇒ {C7, C2, C3}.

In this step of the refutation procedure, the ac-
tual state is the set of clauses{C7, C2, C3}=
{∃(a/∗/c/d) ,¬∃(a/∗/d) ,¬∃(a/∗//∗/c)}. In
this moment, no rule can be applied (note that the
unfolding rules are only applied on positive basic
constraints) and therefore the procedure finishes.
As FALSE has not been inferred, the actual set of
clauses (and then also the initial state) is satisfiable.

6 Conclusion

As said in the Introduction, our aim is to define a
class of specifications on XML documents and to
reason about these specifications. In this paper, we
first propose the specifications as sets of clauses,
where a clause is a disjunction of constraints built

on boolean XPath-patterns. In particular, we have
defined three sorts of constrains: positive and neg-
ative basic constraints, and conditional constraints.
We define when a document satisfies a constraint
and therefore when a specification is satisfiable.

In order to reason about these specifications, we
study adequate inference rules to find a sound and
complete refutation procedure for checking the sat-
isfiability of a given specification. In particular, we
consider three inference rules (R1), (R2) and (R3),
which take a similar format than the inference rules
for graphs given in [8] but defining the appropriate
operators (p ⊗ q andp ⊗c,m q) for our setting. We
prove soundness of the refutation procedure. Then
we show that some other inference rules are needed
in order to obtain completeness. In concrete, we
introduce two unfolding rules and also the idea of
using subsumption rules. This part of the paper
shows work in progress. It is informally presented
by means of examples, where we can observe that
the unfolding rules must be applied in some spe-
cific way to avoid termination problems of the pro-
cedure. We need to set up clearly the use of the un-
folding rules and to define the subsumption rules.
Then we plan to define formally the refutation pro-
cedure, using all the above inference rules, and to
prove that it is complete.

Finally, as regards termination, we think that
our refutation procedure may not terminate, which
means that the procedure would be just refutation-
ally complete. However, if we restrict our logic to
the basic constraints then we think that the refuta-
tion procedure would terminate.
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