
On Learning Conjunctions of Horn⊃ Clauses ?

J. Gaintzarain, M. Hermo and M. Navarro

Dpto de L.S.I., Facultad de Informática,
P.O. Box 649, 20080-San Sebastián, SPAIN.

Abstract. Horn⊃ is a logic programming language which extends usual
Horn clauses with intuitionistic implication. In this paper we study
the learnability of the concepts that are represented by conjunctions
of propositional Horn⊃ clauses.

1 Introduction

The problem of learning efficiently an unknown boolean formula under some de-
termined protocols has been widely studied. It is well known that, even restricted
to propositional formulas, the problem is hard [3, 10] in the usual learning mod-
els. Among these, we find the PAC model introduced by Valiant [19] and the
prediction model introduced by Pitt and Warmuth [18]. Both are passive models
in the sense that the learning algorithm has no control over the labeled exam-
ples, however they can be transformed into active ones by adding the ability to
make membership queries. Another usual model is the exact query model intro-
duced by Angluin [1], where the learning algorithm can make equivalence and/or
membership queries.

In the line of learning subclasses of boolean formulas, D. Angluin, M. Frazier
and L. Pitt [2] presented a positive result: a polynomial-time algorithm that
used equivalence and membership queries for exactly learning conjunctions of
propositionalHorn clauses. In this field we can also find negative results showing
that there are not efficient learning algorithms for a given class. Even there exist
relative results which, without solving the problem, give evidence to the effect
that some class is not learnable. This kind of relative result is based on the
concept of prediction-preserving reduction [18,3].

From the point of view of logic programming, different approaches for ex-
tending Horn clauses have been studied. Some of them consider to incorporate
into the language a new implication symbol, ⊃, with the aim of structuring logic
programs in some blocks with local clauses [4,7–9, 13–17]. These extensions can
also be seen as a sort of inner modularity in logic programming [5].

We consider here a particular extension named Horn⊃. This programming
language has been formally studied in [9, 8, 4, 11,17]. In [4] a natural extension of
classical first order logicFO with the intuitionistic implication (⊃), named FO⊃,
was presented as the underlying logic of the programming language Horn⊃.
It was also proved that the “good properties” that verify Horn clauses (as a
? This work has been partially supported by CICYT-project TIC2001-2476-C03-03

programming language) with respect to its underlying logic FO are conserved
byHorn⊃ with respect to FO⊃. In concrete, general models can be restricted to
Herbrand-like models, each program has a canonical model and the operational
semantics is an effective subcalculus of a complete calculus for FO⊃ (see also
[12,11]).

Our aim is to study the learnability of propositional Horn⊃ clauses since
this class of formulas, extending propositional Horn clauses, seems to be a good
candidate for improving the learnability results obtained by D. Angluin, M.
Frazier and L. Pitt [2].

This paper presents our first results on such study and it is organized as
follows: In Section 2 the preliminary notions in the area of learning are given.
In Section 3 the programming language Horn⊃ (restricted to the propositional
case) is presented. In Section 4 we show that any model-based translation from
Horn⊃ clauses to equivalent Horn clauses obtains, in general, an exponential
number of clauses. This result suggests us that finding a polynomial-time algo-
rithm for learning Horn⊃ language may be difficult. In section 5 we show that
boolean formulas are prediction preserving reducible to Horn⊃ clauses using
membership queries. As a consequence, we obtain the main result of this pa-
per: conjunctions of propositional Horn⊃ clauses are not predictable even with
membership queries under cryptographic assumptions. We conclude, in Section
6, by summarizing our results.

2 Learning preliminaries

Most of the terminology used in this section is borrowed from [3, 6]. Let S be a
fixed domain and let S∗ be the set of strings over S. |w| denotes the length of
the string w. Strings in S∗ will represent both examples and concept names.

A representation of concepts (or representation class) C is any subset of S∗ ×
S∗. We interpret an element 〈u, x〉 of S∗ × S∗ as consisting of a concept name
u and an example x. For instance, the representation of concepts CBF contains
pairs 〈u, x〉 where u is a boolean formula and x is any interpretation satisfying
such formula. Define the concept represented by u as KC(u) = {x | 〈u, x〉 ∈ C}.
The set of concepts represented by C is {KC(u) | u ∈ S∗}.

We use two models of learning, both of them fairly standard: Angluin’s model
of exact learning with queries [1] and the model of prediction with membership
queries as defined by Angluin and Kharitonov [3].

2.1 The exact query learning model

Let C be a representation class. An exact learning algorithm with queries is an
algorithm A that takes as input a bound s on the size of the target concept
representation. It may make any number of queries or requests, the responses to
which are determined by the unknown target concept c. The algorithm A must
eventually halt with an output concept name v. The concept KC(v) is interpreted
as a A’s guess of the target concept. The most common kinds of queries are

membership and equivalence queries. A membership query takes a string x in S∗

as input and returns 1 if x ∈ c and 0 otherwise. An equivalence query takes a
concept name h as input and returns 1 if KC(h) = c and a counterexample, in
the symmetric difference of c and KC(h), otherwise.

The algorithm A runs in polynomial time if its running time (counting one
step for each query) is bounded by a polynomial in s and the length of the largest
counterexample. We say that A exactly learns a representation of concepts C, if
and only if for all positive integer s, for all concept name u with |u| ≤ s, when
A runs with input s and a target concept c = KC(u), A outputs a concept name
v such that c = KC(v)

A representation of concepts C is polynomially learnable if there is a learning
algorithm A that runs in polynomial time and exactly learns C. In this paper,
we always suppose that A uses membership and equivalence queries.

2.2 The prediction model with membership queries

A prediction with membership algorithm, or pwm-algorithm is a possible ran-
domized algorithm A that takes as input a bound s as above, a bound n on the
length of examples, and an accuracy bound ε. It may make three different kinds
of queries or requests, the responses to which are determined by the unknown
target concept c and an unknown probability distribution D on Sn, as follows:
– A membership query takes a string x in S∗ as input and returns 1 if x ∈ c and
0 otherwise.
– A request for a random classified example takes no input and return a pair
〈x, b〉, where x is a string chosen independently according to D and b = 1 if
x ∈ c and b = 0 otherwise.
– A request for an element to predict takes no input and returns a string sol
chosen independently according to D.

The algorithm A may make any number of membership queries or requests
for random classified examples. However, A must eventually make one and only
one request for an element to predict and eventually halt with an output 1 or 0
without making any further query or request. The output is interpreted as A’s
guess of how the target concept classifies the element sol. We say that A runs in
polynomial time if its running time (counting one step for each query or request)
is bounded by a polynomial in s, n, and 1

ε .
We say that A predicts a representation of concepts C if and only if for all

positive integers s and n, for all positive rational ε, for all concept name u ∈ S∗

with |u| ≤ s, when A runs with inputs s, n, and ε, and a target concept c = KC(u)
and D, A asks queries or requests and the probability that the output of A is
not equal to the correct classification of sol by c is at most ε.

A representation of concepts C is polynomially predictable with membership
queries if and only if there is an algorithm A that runs in polynomial time and
predicts C.

Lemma 1. [3] If a representation of concepts is polynomially learnable, then it
is polynomially predictable with membership queries.

2.3 Reducibility among prediction problems

To compare the difficulty of learning problems in the prediction model we use
pwm-reducibility as defined in [3]. It is denoted by ≤pwm.

Definition 1. Let C and C′ be representations of concepts. Let > and ⊥ be two
different symbols not occurring in S. Then C is pwm-reducible to C′, if and only
if there exist three mappings g, f and h with the following properties:

1. There is a nondecreasing polynomial q such that for all natural numbers
s and n and for every u ∈ S∗ with |u| ≤ s, g(s, n, u) is a string u′ of length at
most q(s, n, |u|).

2. For all natural numbers s and n, for every u ∈ S∗ with |u| ≤ s, and for
every x ∈ S∗ with |x| ≤ n, f(s, n, x) is a string x′ and x ∈ KC(u) if and only if
x′ ∈ KC′ (g(s, n, u)).

3. For all natural numbers s and n, for every u ∈ S∗ with |u| ≤ s, and for
every x′ ∈ S∗, h(s, n, x′) is either >, ⊥ or a string x. If h(s, n, x′) = > then
x′ ∈ KC′ (g(s, n, u)); if h(s, n, x′) = ⊥ then x′ 6∈ KC′ (g(s, n, u)); and otherwise
x′ ∈ KC′ (g(s, n, u)) if and only if x ∈ KC(u). Moreover, h is computable in time
bounded by a polynomial in s, n and |x′|.

In the property (2), and independently, in the property (3), the expression “x ∈
KC(u)” can be replaced with “x 6∈ KC(u)”, as discussed in [3]. We denote these
options by properties (2)’ and (3)’ respectively.

The only properties of this reducibility that are needed in this paper were
established in [3]:

Lemma 2. The pwm-reduction is transitive, i.e., let C, C′, and C′′ be represen-
tations of concepts, if C ≤pwm C′ ≤pwm C′′ then C ≤pwm C′′.

Lemma 3. Let C and C′ be representations of concepts. If C ≤pwm C′ and C′

is polynomially predictable with membership queries, then C is also polynomially
predictable with membership queries.

3 The programming language Horn⊃

In this section we introduce the programming language Horn⊃ by showing its
syntax and its model semantics. Although the language is in general a first order
language (see [9,4]), in this paper we shall restrict our presentation only to this
language in the propositional setting.

3.1 The syntax

The syntax is an extension of the (propositional)Horn clause language by adding
the intuitionistic implication ⊃ in goals and clause bodies. Let Σ be a set of
propositional variables (or signature). The Σ-clauses, namedD, and the Σ-goals,
named G, are recursively defined as follows (where v stands for any propositional
variable in Σ):

G ::= v | G1 ∧G2 | D ⊃ G D ::= v | G→ v | D1 ∧D2

A Horn⊃ Σ-program is a finite set (or conjunction) of Σ-clauses. The main
difference with respect to Horn clauses is the use of a “local” clause set D in
goals of the kind D ⊃ G (and therefore also in clause bodies).

Example 1. The following set with three clauses is a Horn⊃ program over sig-
nature Σ = {a, b, c, d}

{((b→ c) ⊃ c) → a, b, ((a ∧ (b→ c)) ⊃ (((b → c) ∧ (a→ d)) ⊃ a)) → d}

The second program clause is simply b. The first and the third program clauses
are of the form G → v. In the first clause, the goal G is (b → c) ⊃ c. That is, it
contains a local set with one program clause. In the third clause, the goal G is
of the form D1 ⊃ (D2 ⊃ G3), where D1 = a ∧ (b → c), D2 = (b→ c) ∧ (a → d),
and G3 = a. D1 and D2 are local sets with two clauses and they can also be
written D1 = {a, (b→ c)} and D2 = {(b→ c), (a→ d)} respectively.

3.2 The model semantics

Model semantics for the programming language Horn⊃ is based on some Kripke
structures which, in the propositional setting, can be defined as follows.

Definition 2. Given a signature Σ, the model semantics for the propositional
Horn⊃ is given by the set of Kripke Σ-structures Mod(Σ) = {KI | I ⊆ Σ}
where KI denotes the partially ordered set of worlds {J ⊆ Σ | I ⊆ J}.

Well-formed Σ-formulas are built, from propositional variables in Σ, using clas-
sical connectives (¬, ∧, ∨ and →) and the intuitionistic implication (⊃). The
satisfaction relation |=Σ between a Σ-structure KI and a Σ-formula ϕ requires
the formula ϕ to be forced in the minimal world I in KI . The forcing relation is
defined between (the associated interpretation to) a world and a formula.

Definition 3. Let KI ∈ Mod(Σ) and ϕ a Σ-formula. We say that

(a) KI |=Σ ϕ (KI satisfies ϕ) iff I
Σ ϕ (ϕ is forced in I)
(b) The binary forcing relation
Σ (or simply
 if there is no confusion about

the signature) is inductively defined as follows:
I 6
 False
I
 v iff v ∈ I for v ∈ Σ
I
 ¬ϕ iff I 6
 ϕ
I
 ϕ ∧ ψ iff I
 ϕ and I
 ψ
I
 ϕ ∨ ψ iff I
 ϕ or I
 ψ
I
 ϕ → ψ iff if I
 ϕ then I
 ψ
I
 ϕ ⊃ ψ iff for all J ⊆ Σ such that I ⊆ J : if J
 ϕ then J
 ψ

Example 2. Let ϕ be the formula (in this case a goal) ((a ∧ c) → b) ⊃ (c ∧ b).
I
 ϕ for I = {a, b, c}, I = {a, c} and I = {b, c}. I 6
 ϕ for I = {a, b}, I = {a},
I = {b}, I = {c} and I = ∅. Note, for instance, that {a, b}
 (a ∧ c) → b and
{a, b} 6
 (c ∧ b).

This forcing relation does not behave monotonically with respect to the world
ordering for general formulas. For instance, a → b is forced in the world I = ∅
but it is not forced in J = {a}. We say that a formula is persistent whenever the
forcing relation behaves monotonically for it.

Definition 4. A Σ-formula ϕ is persistent when for any Σ-interpretation I, if
I
 ϕ then J
 ϕ for any Σ-interpretation J such that I ⊆ J .

From the following proposition we obtain, in particular, that any Σ-goal G is a
persistent formula.

Proposition 1. [4] Any v ∈ Σ is persistent. Any formula ϕ ⊃ ψ is persistent.
If ϕ and ψ are persistent then ϕ ∨ψ and ϕ ∧ ψ are persistent.

Definition 5. Two formulas ϕ and ψ are semantically equivalent if both have
the same meaning in each structure in Mod(Σ). In other words, if both are forced
in the same Σ-interpretations.

4 Trying to learn Horn⊃ programs with Horn programs

A way to learn a Horn⊃ program P might consist on using the well-known
algorithm of Angluin, Frazier and Pitt [2] for learning a conjunction of Horn
clauses equivalent to P . In this section, we show that this simple idea does not
work if we are looking for a learning algorithm that runs in polynomial time. We
prove that any translation from a Horn⊃ Σ-program P to an equivalent Horn
Σ-program P̂ yields a number of clauses that is exponential in the size of P .

Definition 6. For each Horn⊃ Σ-clause D, let Models(D) be the set {I ⊆
Σ | I
 D}. Let Min(D) be the set {I ⊆ Σ | I 6
 D but J
 D, for all J ⊂ I}.
That is, Min(D) contains the “minimal” interpretations not forcing D.

In the sequel, we intentionally consider I as a set or as a conjunction, as conve-
nient.

Definition 7. For each Horn⊃ Σ-clause D, the Horn Σ-program D̂ is defined
as follows:

For D = v, D̂ = {v}

For D = G→ v, D̂ =

{
∅, if Models(D) = P(Σ)⋃

I∈Min(D){I → v} in other case

In the following theorem we prove that D and D̂ are semantically equivalent,
that is, they have the same models.

Theorem 1. For each Σ-interpretation I and each Horn⊃ Σ-clause D it holds:
I
 D̂ ⇐⇒ I
 D

Proof. For D = v, the theorem is trivial. Let D be G→ v.

(=⇒) Let us suppose that I 6
 D. Then v 6∈ I. Since I 6
 D, Min(D) is not
empty. Therefore there exists some J ∈ Min(D) such that J ⊆ I and J → v

is a clause of the program D̂. Then I
 J and v 6∈ I imply I 6
 D̂.
(⇐=) Let us suppose that I
 D. If v ∈ I then trivially I
 D̂. If v 6∈ I then

I 6
 G. Let J → v be a clause in the program D̂ for some J ∈ Min(D)
(if D̂ were empty then trivially I
 D̂). If J were a (proper) subset of I,
by persistence of goals we obtain J 6
 G. But this implies J
 D which
contradicts J ∈Min(D). That is, each J ∈Min(D) is not a subset of I and
then trivially I
 J → v. Therefore I
 D̂.

Corollary 1. Each Horn⊃ Σ-program P is equivalent to a Horn Σ-program P̂ .

Now we are going to consider a concrete Horn⊃ clause D whose D̂ needs to have
an exponential number of clauses with respect to the symbols in D.

Lemma 4. Let D be the following Σ-clause

([(a11 → b) ∧ (a12 → b) ∧ . . .∧ (a1n → b)] ⊃ b ∧

. . .

[(an1 → b) ∧ (an2 → b) ∧ . . .∧ (ann → b)] ⊃ b) → a

where Σ = {aij | i, j ∈ {1, . . . , n}} ∪ {b, a}. Each Σ-interpretation of the form
{a1k1, a2k2, . . . , ankn}, with kj ∈ {1, . . . , n} belongs to Min(D).

Proof. Let I be one of such Σ-interpretations. Without loss of generality, let us
suppose I to be {a11, . . . , an1}. The given clause D is (G1 ∧ . . .∧Gn) → a where
each Gi is the goal ((ai1 → b) ∧ . . .∧ (ain → b)) ⊃ b. First let us prove that for
each proper subset J ⊂ I, it holds that J
 D. Since there exists some ai1 6∈ J ,
then J
 (ai1 → b) ∧ . . . ∧ (ain → b) and J 6
 b. Then J 6
 Gi and therefore
J
 (G1 ∧ . . .∧ Gn) → a. Now let us see that I 6
 D. Since a11 ∈ I, for every
Σ-interpretation K such that I ⊆ K and K
 (a11 → b) ∧ . . . ∧ (a1n → b) it
holds that K
 b and therefore I
 G1. Similarly, we can obtain I
 Gi for each
i ∈ {1, . . . , n} and then, since a 6∈ I, I 6
 D.

The set of Horn clauses D̂ obtained by Definition 7 from the Horn⊃ program
D in Lemma 4 contains at least these nn clauses:

{I → a | I is {a1k1 , a2k2, . . . , ankn}, with kj ∈ {1, . . . , n}} (1)

The next result shows that this set of Horn clauses is non-redundant.

Lemma 5. Any set of Horn clauses equivalent to (1) has at least nn clauses.

Proof. Denote by Ir → a the r-th clause in (1), for 1 ≤ r ≤ nn. Ir is not a model
of the r-th clause in (1), but satisfies any other clause in (1). In addition, for
each pair Ii, Ij with 1 ≤ i 6= j ≤ nn, the intersection Ii ∩ Ij is a model of (1).

Suppose that there exists a set H of Horn clauses equivalent to (1) whose
number of clauses is smaller than nn. There must be at least two different Σ-
interpretations Ii and Ij that falsify the same clause c in H. Since we are dealing
with Horn clauses, the interpretation Ii ∩ Ij falsifies c and therefore Ii ∩ Ij is
not a model of H which is a contradiction.

5 Boolean Formulas are pwm-reducible to Horn⊃

programs

In this section we present a relative solution about the non-learnability of the
class Horn⊃. We show that if Horn⊃ programs were learnable then boolean
formulas would be also learnable. Namely, we show that a set of especial Horn⊃

programs can simulate boolean formulas. The simulation is in the model of pre-
diction with membership queries, where the notion of simulation is characterized
by the concept of pwm-reduction.

The pwm-reduction from boolean formulas CBF to Horn⊃ is divided in two
stages. Let Σ be a fixed signature. Let GHorn⊃ (respectively DHorn⊃) be the
representation class whose elements are 〈u, x〉, where x is a Σ-interpretation
and u is a Σ-goal G (respectively a Σ-clause D). First we prove that GHorn⊃

is pwm-reducible to DHorn⊃ and then we present a pwm-reduction from CBF

to GHorn⊃.

Lemma 6. GHorn⊃ ≤pwm DHorn⊃

Proof. Let Σ be a fixed signature and b be a fixed variable that is not in Σ.
Consider the representation class GHorn⊃ over signature Σ and DHorn⊃ over
signature Σ ∪ {b}. For each Σ-goal G, G → b is a Σ ∪ {b}-clause. For any
Σ-interpretation I it holds that I
Σ G⇐⇒ I 6
Σ∪{b} (G→ b).

Formally we define functions g, h and f as follows. For all natural number s
and for every concept representation G such that |G| ≤ s, define g(s, |Σ|, G) =
G→ b. For every Σ-interpretation I, define f(s, |Σ|, I) = I and for every Σ∪{b}-
interpretation J define h(s, |Σ|, J) = > if b ∈ J or h(s, |Σ|, J) = J if b 6∈ J . These
functions preserve conditions (1), (2)’ and (3)’ in Definition 1.

The second step is based completely on the fact that monotone boolean circuits
are as hard to predict as general boolean circuits. This result was proved in [6].
An exhaustive analysis of its proof allows us to ensure that monotone boolean
formulas (denoted by CMBF) are as hard to predict as general ones.

Theorem 2. [6] CBF ≤pwm CMBF

Next, we reduce the class of monotone boolean formulas to GHorn⊃.

Theorem 3. CMBF ≤pwm GHorn⊃

Proof. Let C be a monotone boolean formula over signature Σ. From C we can
construct, by induction, a goal C′ over signature Σ ∪ {b}, where b 6∈ Σ.

1. If C is a variable v, then C′ is v
2. if C is of the form C1 ∧ . . .∧Ck, then C′ is C′

1 ∧ . . .∧C′
k

3. if C is of the form C1 ∨ . . .∨Ck, then C′ is ((C′
1 → b) ∧ . . .∧ (C′

k → b)) ⊃ b

The following proposition allows us to prove the theorem.

Proposition 2. Given a signature Σ, a variable b 6∈ Σ, and a monotone boolean
formula C over Σ: for all Σ-interpretation I, I
Σ C ⇐⇒ I
Σ∪{b} C

′

Proof. The proof is again by induction over the structure of C. The nontriv-
ial case is when C = C1 ∨ . . . ∨ Ck and we suppose the proposition holds
for C1, . . . , Ck. Let us see that I
Σ C1 ∨ . . . ∨ Ck ⇐⇒ I
Σ∪{b} ((C′

1 →
b) ∧ . . .∧ (C′

k → b)) ⊃ b

(=⇒) Suppose I 6
Σ∪{b} ((C′
1 → b) ∧ . . . ∧ (C′

k → b)) ⊃ b. There must exist J
such that: I ⊆ J ; for all i ∈ {1, . . . , k}, J
Σ∪{b} C

′
i → b; and J 6
Σ∪{b} b.

Therefore, for all i ∈ {1, . . . , k}, J 6
Σ∪{b} C
′
i. By persistence of goals, for

all i ∈ {1, . . . , k}, I 6
Σ∪{b} C
′
i. Hence, by hypothesis of induction, for all

i ∈ {1, . . . , k}, I 6
Σ Ci. Thus, I 6
Σ C1 ∨ . . .∨Ck.
(⇐=) Suppose I 6
Σ C1 ∨ . . .∨Ck. That is, for all i ∈ {1, . . . , k}, I 6
Σ Ci. By

hypothesis of induction, for all i ∈ {1, . . . , k}, I 6
Σ∪{b} C
′
i. Hence, for all

i ∈ {1, . . . , k}, I
Σ∪{b} C
′
i → b. Since b 6∈ I, I 6
Σ∪{b} ((C′

1 → b) ∧ . . . ∧
(C′

k → b)) ⊃ b.

Now we define functions g, h, and f . For all natural number s and for every
monotone boolean formulaC over Σ, such that |C| ≤ s, let C′ be the Σ∪{b}-goal
obtained from C as described above, where b 6∈ Σ. We define g(s, |Σ|, C) = C′.
For every Σ-interpretation I, f(s, |Σ|, I) = I and for every Σ∪{b}-interpretation
J , h(s, |Σ|, J) = > if b ∈ J or h(s, |Σ|, J) = J if b 6∈ J . These functions preserve
conditions (1), (2) and (3) in Definition 1.

Therefore, by Lemmas 2 and 3, if DHorn⊃ is polynomially predictable with
membership queries, then CBF is polynomially predictable with membership
queries. As a consequence, by Lemma 1, if DHorn⊃ is polynomially learnable,
then CBF is polynomially predictable with membership queries. However, the
well-known Angluin and Kharitonov’s result below (see [3]) ensures us that pre-
dicting CBF in polynomial time and using membership queries is a hard problem.

Theorem 4. [3] If we assume the intractability of any of the following three
problems: testing quadratic residues modulo a composite, inverting RSA encryp-
tion, or factoring Blum integers, then CBF is not polynomially predictable with
membership queries.

6 Conclusions

In this paper, we have presented a pwm-reduction from boolean formulas to
conjunctions of Horn⊃ clauses. Consequently, this class is not predictable even

with membership queries under cryptographic assumptions. This result gives rise
to other questions: Could we give a negative result about the learnability of the
class? Could we improve the relative result presented in this paper by showing
that conjunctions of Horn⊃ clauses are pwm-equivalent to boolean formulas?

References

1. Angluin, D. Queries and Concept Learning. Machine Learning, volume 2(4): 319–
342, (1988).

2. Angluin, D., Frazier, M. and Pitt, L. Learning Conjunctions of Horn Clauses.
Machine Learning, volume 9: 147–164, (1992).

3. Angluin, D. and Kharitonov, M. When won’t Membership Queries Help?. Journal
of Computer and System Sciences, 50(2): 336–355, April 1995.

4. Arruabarrena, R., Lucio P. and Navarro, M. A Strong Logic Programming View
for Static Embedded Implications. In: Proc. of FOSSACS’99, Springer-Verlag Lect.
Notes in Comput. Sciences 1578: 56–72 (1999).

5. Bugliesi, M., Lamma, E. and Mello, P. Modularity in Logic Programming. Journal
of Logic Programming, (19-20): 443–502, (1994).

6. Dalmau, V. A Dichotomy Theorem for Learning Quantified Boolean Formulas.
Machine Learning, volume 35(3): 207–224 (1999).

7. Gabbay, D. M. N-Prolog: An Extension of Prolog with Hypothetical Implications.
II. Logical Foundations and Negation as Failure. Journal of Logic Programming
2(4): 251–283 (1985).

8. Giordano, L., and Martelli, A. Structuring Logic Programs: A Modal Approach.
Journal of Logic Programming 21: 59–94 (1994).

9. Giordano, L., Martelli, A., and Rossi, G. Extending Horn Clause Logic with Impli-
cation Goals. Theoretical Computer Science 95: 43–74, (1992).

10. Kearns, M. and Valiant, L. Criptographic Limitations on Learning Boolean For-
mulae and Finite Automata. Journal of the ACM 41(1): 67–95, (1994).

11. Lucio, P. Structured Sequent Calculi for Combining Intuitionistic and Classical
First-Order Logic. In: Proc. of FroCoSS’2000,Springer-Verlag Lect. Notes in Arti-
ficial Intelligence 1794: 88–104 (2000).

12. Meseguer, J. Multiparadigm Logic Programming. In: Proc. of ALP’92, Springer-
Verlag Lect. Notes in Comput. Sciences 632: 158–200, (1992).

13. Miller, D. A Logical Analysis of Modules in Logic Programming. In: Journal of
Logic Programming 6: 79–108, (1989).

14. Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A. Uniform Proofs as a Foun-
dation for Logic Programming. Annals of Pure and App. Logic 51: 125–157, (1991).

15. Monteiro, L., Porto, A. Contextual Logic Programming. In: Proc. 6th International
Conf. on Logic Programming 284–299, (1989).

16. Moscowitz, Y., and Shapiro, E. Lexical Logic Programs. In: Proc. 8th International
Conf. on Logic Programming 349–363, (1991).

17. Navarro, M. From Modular Horn Programs to Flat Ones: a Formal Proof for the
Propositional Case. In: Proc. of ISIICT 2004 (Int. Symp. on Innovation in Infor-
mation and Communication Technology), Amman, Jordan. April 2004.

18. Pitt, L. and Warmuth, M.K. Prediction-Preserving Reducibility. Journal of Com-
puter and System Sciences, 41(3): 430–467 (1990)

19. Valiant L.G. A Theory of the Learnable. Communications of the ACM, 27: 1134–
1142 (1984)

