
From Modular Horn Programs to Flat Ones: a Formal

Proof for the Propositional Case. ?

M. Navarro

Dpto de L.S.I., Facultad de Informática, Paseo Manuel de Lardizabal, 1, Apdo 649, 20080-San
Sebastián, SPAIN. Tel: +34 (9)43 015072, Fax: +34 (9)43 219306, e-mail: marisa@si.ehu.es.

Abstract. Horn⊃ is a logic programming language, defined on the underlying logic
FO⊃ (an extension of FO with intuitionistic implication), which permits a form of
inner modularity in terms of open blocks of local clauses [8, 7, 3, 1, 9]. A translation
from these logic programs with embedded implications to Horn clause programs is an
interesting approach not only for giving logical foundation to this kind of extended
logic programs but also for making it useful for implementation issues. In this paper
we present a suitable translation algorithm from Horn⊃ programs to Horn clause
programs, in the propositional setting, and we formally prove that this translation
preserves the original operational semantics in Horn⊃ by means of SLD-resolution on
the translation result. We also give an implementation of the translation algorithm
written in Haskell and we show execution examples.

1 Introduction

Many approaches are concerned with extending Horn clauses with some features for
program structuring that can be seen as a form of modularity in logic programming
(see for instance [3] for a survey). Some of them consider the extension of Horn clauses
with implication goals of the form D ⊃ G, called blocks, where D can be seen as a set
of local clauses for proving the goal G. This approach yields to different extensions of
Horn clause programming depending on the given semantics to such blocks.
A first basic distinction is between closed blocks: G can be proved only using local
clauses from D, and open blocks: G can be proved using D and also the external envi-
ronment. In general, by dealing with open blocks, a module can extend the definition
of a predicate already defined in the environment. That is, different definitions of the
same predicate could have to be considered, depending on the collection of modules
corresponding to different goals. Therefore, open blocks require scope rules to fix the
interplay between the predicate definitions inside a module D and those in the envi-
ronment. There are mainly two scoped rules, named static and dynamic, allowing this
kind of extension of predicate definitions.
In the dynamic case the set of modules used for proving a goal G can only be deter-
mined from the sequence of goals generated until G whereas in the static case this
set of modules can be determined (for each goal) statically from the program block
structure. Different proposals of logic programming languages for open blocks with dy-
namic scope have been presented and studied in several papers (e.g.[4–6, 12–15]). In [12]
Miller proves that the proof-theoretic semantics for its dynamic scope programming
language is based on intuitionistic logic. The static scope approach was introduced

? This work has been partially supported by CICYT-project TIC2001-2476-C03-03

in [8] and formally studied in [8, 7, 1, 9]. In [3, 7] both different approaches are com-
pared. The formal study developed in [1] on the logical foundations of the static scope
programming language introduces the complete logic FO⊃, which is an extension of
FO with intuitionistic implication (see [9] for details of this logic) and it gives a new
characterization of the semantics for the static scope programming language Horn⊃

as a strong logic programming language on the underlying logic FO⊃. The notion of
strong logic programming language is formalized in [10, 11] and it basically means to set
which subclasses of formulas correspond to the classes of programs and queries or goals
and to prove that the underlying logic, for these subclasses, must satisfy three desir-
able properties: mathematical semantics, goal completeness and operational semantics.

A different approach to give logical foundations to this kind of logic programming lan-
guages (or in general to Horn clause extensions) is the transformational one that con-
sists of translating programs into the language of some well-known logic. For instance,
in [7] a transformational logical foundation to both static and dynamic languages (those
defined in [8] and [12] respectively) is given, translating them to S4-modal logic. In-
side this setting, a translation method from a modal programming language (with
modalities and embedded implication) to Horn clause programs is introduced in [2].
This method consists of two steps: the first one eliminates embedded implications
by introducing new modalities, and the second one eliminates modalities (by adding
an argument to all predicates). The transformational approach is also taken in [16]
where (in some more restricted sense) logic programs with embedded implications are
translated to Horn clause programs by introducing new predicates. This is a direct
mapping because the definition of a predicate in a new module overrides its definition
in previous modules. However, as it is pointed in [3, 16], when predicate extension is
allowed, the translation of each predicate definition (inside a module) raises different
predicate definitions, each one depending on a collection of modules to be used. In
the dynamic case such collection can only be determined in run-time, but in the case
of the static programming language Horn⊃ there is a lexical way to determine such
collection of modules (for each goal) making this approach useful for implementation
issues. However, this translation is not direct because of the multiple transformation
of each original predicate.

Our aim is to study and implement a translation method for the static scope pro-
gramming language Horn⊃ into Horn clause language. We propose a one-step method
where embedded implications are eliminated by introducing new predicates, so both
source and target languages have the same underlying logic FO⊃. This translation must
preserve the original operational semantics in Horn⊃ by means of SLD-resolution on
the translation result. Therefore a proof of the correctness of the algorithm is necessary.

In this paper, as starting point in our study, we restrict it to the propositional case
and we present a suitable translation algorithm from Horn⊃ programs to Horn clause
programs, a detailed proof of soundness and completeness of the translation, and a
concrete implementation of the algorithm. Some clues on how to proceed in the first
order case are also given in the last section. In concrete, the paper is organized as
follows: In Section 2 the static programming language Horn⊃ is presented by giving
its syntax and (operational) semantics (by means of the `⊃ deduction). Also some
examples of goal deductions from Horn⊃ programs are shown. In Section 3 we introduce
the (abstract) translation algorithm by means of two mutually recursive functions for
translating program clauses and goals. Because of the operational semantics of the

language, this translation has to be extended to sequences of Horn⊃ programs. In
Section 4 we show within two examples how the translation proceeds. Section 5 is the
core of the paper where the soundness and completeness results are proved. Concretely,
the translation of a (program, goal) pair in Horn⊃ to a new (program, goal) pair in
Horn preserves the original operational semantics of the extended language, which
is now simulated by SLD-resolution. In Section 6 a (concrete) translation algorithm
written in Haskell is shown together an example of execution. We conclude, in Section
7, by summarizing our results and by showing further work we plan to do.

2 Preliminaries

In this section we introduce the static scope programming language Horn⊃ by showing
its syntax and operational semantics. The syntax is an extension of the Horn clause lan-
guage, by adding the intuitionistic implication ⊃ in goals and clause bodies. A Horn⊃

program is a finite set of closed D-clauses. The program clauses, named D-clauses, and
the goals, named G-clauses, are recursively defined as follows (where A stands for an
atomic formula):

G := A | G1 ∧ G2 | D ⊃ G | ∃xG D := A | G → A | D1 ∧ D2 | ∀xD

The main difference with respect to Horn clauses is the use of a local clauses set D in
goals of the kind D ⊃ G (and therefore also in program clause bodies). Moreover, in
the first order case, the extended language needs to use quantifiers explicitly. In the
propositional case, the previous definitions are simplified to:

G := A | G1 ∧ G2 | D ⊃ G D := A | G → A | D1 ∧ D2

The way of proving a goal D ⊃ G from a program P is to ”add” D to P , named P | D,
and to prove G from P | D. Since G can itself be (or contain) a goal D′ ⊃ G′ the
length of the sequence P | D | D′ . . . can be arbitrarily large.

Following [8, 1], we use a simple definition of the operational semantics of Horn⊃,
given by a non-deterministic set of rules which define when a goal G is operationally
derivable from a program sequence ∆ = D0|D1| . . . |Dn, in symbols ∆ `⊃ G. For the
sake of simplicity we only present here the set of rules simplified to the propositional
case. These rules are given in Figure 1 where A ∈ ∆ means that A belongs to some of
the programs in the sequence ∆.

(1) ∆ `⊃ A if A is atomic and A ∈ ∆

(2)
D0| . . . |Di `⊃ G

D0| . . . |Di| . . . |Dn `⊃ A
if G → A ∈ Di and 0 ≤ i ≤ n

(3) ∆ `⊃ G1 ∆ `⊃ G2

∆ `⊃ G1 ∧ G2

(4)
∆|{D} `⊃ G
∆ `⊃ D ⊃ G

Fig. 1. Operational Semantics for Propositional Horn⊃.

A sequence ∆ = D0|D1| . . . |Dn can be viewed as a stack with top element Dn. There-
fore rule (2) says that if the clause G → A selected for proving A from ∆ belongs to Di

then the body G must be proved from clauses only in D0| . . . |Di (that is, Di+1, . . .Dn

cannot be used). On the other hand, the stack is enlarged by means of rule (4).
The following example illustrates the operational behaviour of this language.

Example 1. Let the program with two clauses P = {((b → c) ⊃ c) → a, b} and let the
goal G1 = a. A proof of P `⊃ G1 is given by the following steps (applying rules in
Figure 1):

P `⊃ a holds by Rule (2) for the clause ((b → c) ⊃ c) → a in P if
P `⊃ (b → c) ⊃ c which holds by Rule (4) if
P | {b → c} `⊃ c which holds by Rule (2) for the clause b → c if
P | {b → c} `⊃ b which holds by Rule (1) since b ∈ P | {b → c}

That is, in this case, for proving P `⊃ a it is necessary to prove c from the ”extended
program” P | {b → c} which finally holds.
Now let the program with an unique clause Q = {((b → c) ⊃ c) → a} and let the goal
G2 = b ⊃ a. The only way to look for a proof of Q `⊃ G2 is by giving the following
steps:

Q `⊃ b ⊃ a by Rule (4) if
Q | {b} `⊃ a by Rule (2) for the clause in Q if
Q `⊃ (b → c) ⊃ c by Rule (4) if
Q | {b → c} `⊃ c by Rule (2) for the clause b → c if
Q | {b → c} `⊃ b which does not hold

Therefore Q 6`⊃ G2. It must be noted that at the second step the ”extension” {b}
disappears since the chosen clause belongs to Q.

This example also shows the ”static scope rule” meaning: the set of clauses which can
be used to solve a goal depends on the program block structure. Whereas G1 = a can
be proved from the program P because b was defined in P , in the case of G2 = b ⊃ a
and the program Q the ”external” definition of b in the sequence Q|{b} is not permitted
for proving the body of a clause in Q. This is a major difference with the ”dynamic
scope rule” used in [12].

3 The Abstract Translation Algorithm

In this section we introduce the translation algorithm, where ”renamings” for locally
defined predicates are abstracted to be ”new”. Given a renaming σ for a set Σ of
predicates, ext(σ) will denote the set of D-clauses {A → Aσ / A ∈ Σ}
The algorithm consists of defining the functions tradP for D-clauses and tradG for
G-clauses as follows:

tradP (A) = {A}
tradP (G → A) = {G′ → A} ∪ P ′ where (G′, P ′) = tradG(G)
tradP (D1 ∧ D2) = tradP (D1) ∪ tradP (D2)

tradG(A) = (A, ∅)
tradG(G1 ∧ G2) = (G′

1 ∧ G′
2, P1 ∪ P2) where

(G′
1, P1) = tradG(G1) and (G′

2, P2) = tradG(G2)

tradG(D ⊃ G) = (G′, P1 ∪P2 ∪P3) where σ is a new renaming for predicates defined
in D, (G′, P1) = tradG(Gσ), P2 = tradP (Dσ) and P3 = ext(σ)

Note 1. We shall use 1tradG(G) and 2tradG(G) for the first and second components
(respectively) of tradG(G)

Since the language Horn⊃ works with sequences of programs, it is necessary to extend
tradP to a new function trad∆ which translates a sequence of Horn⊃ programs to a
single Horn program.

Definition 2. Given a sequence of Horn⊃ programs ∆n = D0|D1| . . . |Dn, the set of
Horn clauses trad∆(∆n) is recursively defined in the following way:

– For n = 0 (i.e. ∆n = D0): trad∆(∆n) = tradP (D0)
– For n = i + 1 (i.e. ∆n = ∆i|Di+1):

trad∆(∆n) = trad∆(∆i) ∪ tradP (Di+1σ1 . . . σi+1) ∪ ext(σi+1) where σi+1 is a
new renaming for predicates defined in Di+1σ1 . . . σi

Again in the previous definition each renaming σi is defined as ”new” in an abstract
way. To concrete this fact, the following remark explains how the algorithm has to
proceed to assure that the predicates are extended in a correct manner.

Remark 3. Let ∆n = D0|D1| . . . |Dn be a sequence of Horn⊃ programs and let Σ
be the set of predicate names in ∆n. The algorithm proceeds by translating first D0

and obtaining tradP (D0) whose predicates belong to the signature Σ ∪ Σ′
0, with Σ′

0

containing the new added predicates for the internal blocks of D0 such that Σ∩Σ′
0 = ∅.

Now it looks for the predicates defined in D1 (that is, those in the head of clauses in
D1) and it selects a ”new” renaming σ1 for them. This means that σ1 can be viewed
as a function σ1 : DefPred(D1) → Σσ1 , such that Σσ1 ∩ (Σ ∪ Σ′

0) = ∅. Then the
algorithm proceeds by translating D1σ1 and obtaining tradP (D1σ1) whose predicates
belong to the signature (Σ ∪ Σσ1)∪ Σ′

1. Σ′
1 contains the new added predicates for the

internal blocks of D1σ1 so that, as before, (Σ ∪ Σσ1) ∩ Σ′
1 = ∅. But now it must also

verify that Σ′
1 ∩ Σ′

0 = ∅. With the rest of the sequence the algorithm follows in the
same way.

From this fact the following particular observation can be deduced:

Remark 4. If G → A is a Horn clause in tradP (Diσ1 . . . σi)∪ext(σi) then G can neither
include predicate names defined in tradP (Djσ1 . . . σj) nor those defined in ext(σj) for
j > i.
Since trad∆(D0|D1| . . . |Dn)=tradP (D0) ∪ . . .∪ tradP (Diσ1 . . . σi) ∪ ext(σi) ∪ . . .∪
tradP (Dnσ1 . . . σn) ∪ ext(σn), if such G is deduced (by SLD-resolution) from the
set of Horn clauses trad∆(D0|D1| . . . |Dn) it means that G is indeed deduced from
trad∆(D0|D1| . . . |Di).

4 Examples

In this section we shall show how a concrete implementation (in the sense of selecting
some renaming) of the translation algorithm proceeds within two examples. In these
examples, the translated clauses will also be written as it is usual in Logic Programming
(i.e., a clause G → A will be denoted A : −G.) for the sake of readability.

Example 5. Let ∆2 = D0|D1|D2 be a sequence of Horn⊃ programs where
D0 = s ∧ (r → p), D1 = p ∧ (s → q) and D2 = (p → t) ∧ (q → p).
The translation of ∆2 can follow these steps:

1. tradP (D0) = {s., p : −r.}
2. Since DefPred(D1) = {p, q} the first renaming is σ1 = {p1/p, q1/q}. Then

tradP (D1σ1) = {p1., q1 : −s.} and ext(σ1) = {p1 : −p., q1 : −q.}.
3. Now we consider D2σ1 = (p1 → t) ∧ (q1 → p1). Since DefPred(D2σ1) = {t, p1}

the second renaming is σ2 = {p2/p1, t1/t}. Then tradP (D2σ1σ2) = {t1 : −p2.,
p2 : −q1.} and ext(σ2) = {t1 : −t., p2 : −p1}.

Therefore the set of Horn clauses obtained by the translation of ∆2 is trad∆(∆2) =
tradP (D0) ∪ tradP (D1σ1) ∪ ext(σ1) ∪ tradP (D2σ1σ2) ∪ ext(σ2) = {s., p : −r., p1.,
q1 : −s., p1 : −p., q1 : −q., t1 : −p2., p2 : −q1., t1 : −t., p2 : −p1}.

Example 6. Let ∆1 = D0|D1 be a sequence of Horn⊃ programs where
D0 = r ∧ ((D′

0 ⊃ q) → p) ∧ ((D′′
0 ⊃ q) → h), with D′

0 = r → q and D′′
0 = s → q and

where D1 = r → q.
The translation of ∆1 follows these steps:

1. The translation algorithm starts by translating D0 as before, but in this case
D0 contains two sets of local clauses D′

0 and D′′
0 which are independent of each

other. By definition of tradP : tradP (D0) = tradP (r) ∪ tradP ((D′
0 ⊃ q) → p) ∪

tradP ((D′′
0 ⊃ q) → h).

Now by taking the renaming σ′
0 = {q′0/q} for the local clauses in D′

0, it is obtained
that tradP ((D′

0 ⊃ q) → p) = {p : −q′0., q′0 : −r., q′0 : −q.}. Similarly, by taking σ′′
0

= {q′′0 /q} as (new) renaming for the local clauses in D′′
0 , tradP ((D′′

0 ⊃ q) → h) =

{h : −q′′0 ., q′′0 : −s., q′′0 : −q.}.
That is, tradP (D0) = {r., p : −q′0., q′0 : −r., q′0 : −q., h : −q′′0 ., q′′0 : −s., q′′0 : −q.}.

2. Since DefPred(D1) = {q}, the renaming σ1 can be {q1/q}, which must be disjoint
from the previous local renamings σ′

0 and σ′′
0 . Then tradP (D1σ1) = {q1 : −r.} and

ext(σ1) = {q1 : −q.}.
Therefore the set of Horn clauses obtained by the translation of ∆1 is trad∆(∆1) =
tradP (D0) ∪ tradP (D1σ1) ∪ ext(σ1) = {r., p : −q′0., q′0 : −r., q′0 : −q., h : −q′′0 .,
q′′0 : −s., q′′0 : −q., q1 : −r., q1 : −q.}.

5 Soundness and Completeness

The aim of this section is to prove that the given translation algorithm is suitable
for simulating the `⊃ deduction by means of SLD-deduction. More concretely, given a
Horn⊃ program P and given an atom A, P `⊃ A if and only if tradP (P) `SLD A.
To prove this result it is necessary to prove a more general result which is established
in the following lemmas 7 and 10.

Lemma 7. For every sequence of Horn⊃ programs ∆n = D0|D1| . . . |Dn with n ≥ 0,
and every goal G, it holds:

∆n `⊃ G =⇒ trad∆(∆n) ∪ 2tradG(Gσ1 . . . σn) `SLD 1tradG(Gσ1 . . . σn)

Proof. We proceed by induction on the number of steps (m) in the deduction proof of
∆n `⊃ G.

Case m=1 In this case, G is necessarily an atom B belonging to Di for some i ∈
{0 . . . n}. Therefore 1tradG(Gσ1 . . . σn) = Bσ1 . . . σn and 2tradG(Gσ1 . . . σn) = ∅.
Then we have to prove that trad∆(∆n) `SLD Bσ1 . . . σn.
Since B ∈ Di it holds Bσ1 . . . σi ∈ tradP (Diσ1 . . . σi) and then trad∆(∆n) `SLD

Bσ1 . . . σi in one step. But for each j ∈ {i + 1 . . . n}, either the program clause
Bσ1 . . . σj−1 → Bσ1 . . . σj belongs to ext(σj) or Bσ1 . . . σj−1 is the same than
Bσ1 . . . σj. Therefore trad∆(∆n) `SLD Bσ1 . . . σn by applying several deduction
steps in `SLD .

Induction hypothesis The lemma holds whenever the number of steps in the deduction
proof of ∆n `⊃ G is less or equal than m, for every ∆n and G.

Case m+1 It is supposed that ∆n `⊃ G in m+1 steps with m + 1 > 1. We proceed
by case analysis on G:

– If G = B then there exist i ∈ {0 . . . n} and G1 such that G1 → B ∈ Di and
∆i `⊃ G1 in a number of steps less or equal than m. Since G is an atom, again
we have to prove that trad∆(∆n) `SLD Bσ1 . . . σn. By induction hypothesis,
trad∆(∆i) ∪ 2tradG(G1σ1 . . . σi) `SLD 1tradG(G1σ1 . . . σi). Now G1 → B ∈
Di implies that the Horn clause 1tradG(G1σ1 . . . σi) → Bσ1 . . . σi and the
Horn clauses in the set 2tradG(G1σ1 . . . σi) belong to tradP (Diσ1 . . . σi) ⊆
trad∆(∆i).
Then trad∆(∆n) `SLD Bσ1 . . . σi and therefore (as in the case m = 1) also
trad∆(∆n) `SLD Bσ1 . . . σn

– If G = G1 ∧ G2 then both ∆n `⊃ G1 and ∆n `⊃ G2, each deduction in a
number of steps ≤ m. By induction hypothesis,
trad∆(∆n) ∪ 2tradG(Gkσ1 . . . σn) `SLD 1tradG(Gkσ1 . . . σn) for k = 1, 2.
Then it holds trad∆(∆n) ∪ 2tradG(G1σ1 . . . σn) ∪ 2tradG(G2σ1 . . . σn) `SLD

1tradG(G1σ1 . . . σn)∧1tradG(G2σ1 . . . σn) which is equivalent to trad∆(∆n)∪
2tradG((G1 ∧ G2)σ1 . . . σn) `SLD 1tradG((G1 ∧ G2)σ1 . . . σn)

– If G = Dn+1 ⊃ G′ then for ∆n+1 = ∆n|Dn+1 it holds ∆n+1 `⊃ G′ in a
number of steps less or equal than m and by induction hypothesis
trad∆(∆n+1) ∪ 2tradG(G′σ1 . . . σn+1) `SLD 1tradG(G′σ1 . . . σn+1).
But from definition of tradG it holds trad∆(∆n+1) ∪ 2tradG(G′σ1 . . . σn+1)
= trad∆(∆n) ∪ tradP (Dn+1σ1 . . . σn+1) ∪ ext(σn+1) ∪ 2tradG(G′σ1 . . . σn+1)
= trad∆(∆n) ∪ 2tradG((Dn+1 ⊃ G′)σ1 . . . σn) and 1tradG(G′σ1 . . . σn+1) =
1tradG((Dn+1 ⊃ G′)σ1 . . . σn). Then, we have obtained that trad∆(∆n) ∪
2tradG((Dn+1 ⊃ G′)σ1 . . . σn) `SLD 1tradG((Dn+1 ⊃ G′)σ1 . . . σn).
Case m + 1 has finished and therefore the proof of this lemma.

In the particular case when the sequence of programs is a single program P and the
goal is an atom A the following corollary is obtained:

Corollary 8. For every Horn⊃ program P and every atom A, it holds:

P `⊃ A =⇒ tradP (P) `SLD A

This corollary is the ”completeness” of the translation algorithm in this sense: Given
a Horn⊃ program P , every atom A that can be deduced from P (within `⊃) can also
be deduced by SLD-resolution from the translated program tradP (P).
With respect to more general goals, this result is directly generalised to conjunctions
of atoms, but in the case of implication goals the translation has to be made on the
program and the goal in the following way:

Corollary 9. For every Horn⊃ program P and every Horn⊃ goal G, it holds:

P `⊃ G =⇒ P ′ `SLD G′ where (G′, P ′) is the result of tradG(P ⊃ G)

Proof. It is obvious from P `⊃ G =⇒ ∅ `⊃ (P ⊃ G) and Lemma 7.

In order to prove the ”soundness” of the translation algorithm, we need again a general
result, namely, the converse of Lemma 7.

Lemma 10. For every sequence of Horn⊃ programs ∆n = D0|D1| . . . |Dn with n ≥ 0,
and every goal G, it holds:

trad∆(∆n) ∪ 2tradG(Gσ1 . . . σn) `SLD 1tradG(Gσ1 . . . σn) =⇒ ∆n `⊃ G

Proof. We proceed by induction on the number m of steps in the `SLD deduction proof
and, inside each case of m, by structural induction on the goal.
Case m=1 In this case, 1tradG(Gσ1 . . . σn) is necessarily an atom B1 belonging to

trad∆(∆n) ∪ 2tradG(Gσ1 . . . σn). Since B1 is an atom then either
(1) G = B for some atom B (with B1 = Bσ1 . . . σn) or
(2) G = Dn+1 ⊃ G′ for some goal G′ (with B1 = 1tradG(G′σ1 . . . σn+1)).
In the subcase (1) we have that trad∆(∆n) `SLD Bσ1 . . . σn in one step; that is,
Bσ1 . . . σn ∈ trad∆(∆n). Then there exists i ∈ {0 . . . n} such that Bσ1 . . . σn =
Bσ1 . . . σi ∈ tradP (Diσ1 . . . σi) and therefore B ∈ Di. Then ∆n `⊃ B.
In the subcase (2) it holds B1 ∈ trad∆(∆n) ∪ 2tradG(Gσ1 . . . σn) = trad∆(∆n)
∪ tradP (Dn+1σ1 . . . σn+1) ∪ ext(σn+1) ∪ 2tradG(G′σ1 . . . σn+1) = trad∆(∆n+1)
∪ 2tradG(G′σ1 . . . σn+1), for ∆n+1 = ∆n|Dn+1. Then we have obtained that
trad∆(∆n+1) ∪ 2tradG(G′σ1 . . . σn+1) `SLD 1tradG(G′σ1 . . . σn+1) in one step
and, by applying the lemma to G′ (subterm of G), it is obtained ∆n+1 `⊃ G′ and
therefore ∆n `⊃ Dn+1 ⊃ G′.

Induction Hypothesis (I.H) The lemma holds for a `SLD-deduction of m steps.
Case m+1 We proceed by structural induction on G:

– If G = B then by hypothesis trad∆(∆n) `SLD Bσ1 . . . σn in m + 1 steps.
Then there exists a program clause G′ → Bσ1 . . . σn ∈ trad∆(∆n) such that
trad∆(∆n) `SLD G′ in m steps. By definition of trad∆(∆n), it must occur
either
(1.1) there exists i ∈ {0 . . . n} such that G′ → Bσ1 . . . σn ∈ tradP (Diσ1 . . . σi)
or
(1.2) there exists i ∈ {1 . . . n} such that G′ → Bσ1 . . . σn ∈ ext(σi).
In both subcases Bσ1 . . . σn = Bσ1 . . . σi since the new renamings σi+1, . . . , σn

do not affect tradP (Diσ1 . . . σi) ∪ ext(σi). On the other hand, as it is said
in Remark 4, trad∆(∆n) `SLD G′ in m steps implies that also trad∆(∆i)
`SLD G′ in m steps.
In the subcase (1.1), there exists a goal G1 such that G1 → B ∈ Di (i.e.,
G1σ1 . . . σi → Bσ1 . . . σi ∈ Diσ1 . . . σi) with 1tradG(G1σ1 . . . σi) = G′ and
2tradG(G1σ1 . . . σi) ⊆ tradP (Diσ1 . . . σi) ⊆ trad∆(∆i).
Since trad∆(∆i) `SLD G′ in m steps then trad∆(∆i) ∪ 2tradG(G1σ1 . . . σi)
`SLD 1tradG(G1σ1 . . . σi) in m steps and then, by applying (I.H), ∆i `⊃ G1.
But G1 → B ∈ Di and therefore ∆n `⊃ B.
In the subcase (1.2), by definition of ext(σi), it holds that G′=Bσ1 . . . σi−1.
Then trad∆(∆n) `SLD Bσ1 . . . σi−1 in m steps which implies (see Remark 4)
trad∆(∆i−1) `SLD Bσ1 . . . σi−1 in m steps. Now by applying (I.H) ∆i−1 `⊃ B
and therefore also ∆n `⊃ B.

– If G = G1 ∧ G2 then by the hypothesis trad∆(∆n) ∪ 2tradG(G1σ1 . . . σn) ∪
2tradG(G2σ1 . . . σn) `SLD 1tradG(G1σ1 . . . σn) ∧ 1tradG(G2σ1 . . . σn) in m+
1 steps. Let Q be trad∆(∆n) ∪ 2tradG(G1σ1 . . . σn) ∪ 2tradG(G2σ1 . . . σn).
Then both Q `SLD 1tradG(G1σ1 . . . σn) and Q `SLD 1tradG(G2σ1 . . . σn)
in a number of steps less or equal than m. But in order to apply the (I.H)
we need to have Qk `SLD 1tradG(Gkσ1 . . . σn) with Qk being trad∆(∆n)
∪ 2tradG(Gkσ1 . . . σn) for k = 1, 2. This fact is satisfied because, as it was
explained in Remark 3, the renamings are parewise disjoint. The clauses in
(for instance) 2tradG(G2σ1 . . . σn) define new predicates for the inner blocks
of G2σ1 . . . σn which do not appear in 1tradG(G1σ1 . . . σn). Thus such set of
clauses is not used to prove such goal (and similarly for the other case). Then
the (I.H) can be applied to obtain ∆n `⊃ Gk for k = 1, 2 and therefore
∆n `⊃ G1 ∧ G2.

– If G = Dn+1 ⊃ G′ then trad∆(∆n) ∪ tradP (Dn+1σ1 . . . σn+1) ∪ ext(σn+1)
∪ 2tradG(G′σ1 . . . σn+1) `SLD 1tradG(G′σ1 . . . σn+1) in m +1 steps. That is,
trad∆(∆n+1) ∪ 2tradG(G′σ1 . . . σn+1) `SLD 1tradG(G′σ1 . . . σn+1) in m + 1
steps, with ∆n+1 = ∆n|Dn+1. As we did before (in subcase (2) of Case m = 1),
the lemma can now be applied to G′ (subterm of G) and m+1 steps to obtain
∆n+1 `⊃ G′ and therefore ∆n `⊃ Dn+1 ⊃ G′.
Case m + 1 has finished and therefore the proof of this lemma.

The soundness and completeness result is given in the following theorem:

Theorem 11. For every Horn⊃ program P and every atom A, it holds:

P `⊃ A ⇐⇒ tradP (P) `SLD A

Proof. Obvious from Corollary 8 and the previous Lemma (when the sequence of pro-
grams is a single program P and the goal is an atom A).

6 A Concrete Translation Algorithm in Haskell

In this section we implement the translation algorithm in the functional programming
language Haskell. We have chosen a functional language since it is straightforward for
implementing the two mutually recursive functions tradP and tradG. Basic types for
representing programs and goals are given, where a program is represented by a list of
program clauses, program clauses and goals are represented within two algebraic types
and a substitution is given by a list of atom pairs.

-- Types --

type TProgram = [TClause]

data TClause = Flecha TAtom TGoal | And TClause TClause deriving (Eq,Show)

data TGoal = TRUE | At TAtom | AndG TGoal TGoal | Implica T TGoal

deriving (Eq,Show)

type TAtom = String

type Sust = [(TAtom,TAtom)]

The functions tradP and tradG are defined in Haskell, according to the representation
types, following the previously given abstract translation algorithm. The only difference
is given by ”concreting” the ”renaming” for locally defined predicates. The translation
functions are the following:

-- Translating a program --

tradP :: TProgram -> TProgram

tradP p = fst(tradLisC (p,[]))

-- Translating a list of program clauses --

tradLisC :: (TProgram,Sust) -> (TProgram,Sust)

tradLisC ([],s) =([],s)

tradLisC (d:res,s) = (p1++p2,s2)

where

(p1,s1) = tradC(d,s)

(p2,s2) = tradLisC(res,s1)

-- Translating a program clause --

tradC :: (TClause,Sust) -> (TProgram,Sust)

tradC (Flecha a g,s)

| (g == TRUE) = ([Flecha a g],s)

| otherwise = ((Flecha a gnew):prognew,s1)

where (gnew,prognew,s1) = tradG(g,s)

tradC (And d1 d2,s) = (p1++p2,s2)

where

(p1,s1) = tradC(d1,s)

(p2,s2) = tradC(d2,s1)

-- Translating a goal --

tradG :: (TGoal,Sust) -> (TGoal, TProgram, Sust)

tradG (TRUE,s) = (TRUE,[],s)

tradG (At a,s) = (At a,[],s)

tradG (AndG g1 g2,s) = (AndG g1new g2new,p1++p2,s2)

where

(g1new,p1,s1) = tradG (g1,s)

(g2new,p2,s2) = tradG (g2,s1)

tradG (Implica d g,s)

= (gnew,prog,s3)

where

lpr_loc = lPredClaus d

sust = [(q, nuevo(q,s)) | q <- lpr_loc]

clausExt = [Flecha newq (At oldq) | (oldq,newq) <- sust]

s1 = union (s,sust)

(p,s2) = tradC (aplicarC sust d,s1)

(gnew,pnew,s3) = tradG (aplicarG sust g,s2)

prog = p ++ clausExt ++ pnew

-- Defined predicate list in a clause --

lPredClaus :: TClause-> [TAtom]

lPredClaus (Flecha a g) = [a]

lPredClaus (And d1 d2) = quitarRep (lPredClaus d1 ++ lPredClaus d2)

-- Applying a substitution to a clause --

aplicarC :: Sust -> TClause-> TClause

aplicarC sust (Flecha a g) = Flecha (aplicarA sust a) (aplicarG sust g)

aplicarC sust (And d1 d2) = And (aplicarC sust d1) (aplicarC sust d2)

-- Applying a substitution to a goal --

aplicarG :: Sust -> TGoal -> TGoal

aplicarG sust TRUE = TRUE

aplicarG sust (At a) = At (aplicarA sust a)

aplicarG sust (AndG g1 g2) = AndG (aplicarG sust g1) (aplicarG sust g2)

aplicarG sust (Implica d g) = Implica (aplicarC sust d) (aplicarG sust g)

-- Applying a substitution to an atom --

aplicarA :: Sust -> TAtom -> TAtom

aplicarA sust np = if (lis == []) then np else head lis

where lis = [q | (p,q) <- sust, p == np]

-- Auxiliar functions --

union :: (Sust,Sust) -> Sust

union (s1,s2) = refine (s1 ++ s2)

where

refine [] = []

refine ((p,q):res)

| (filter ((== p).fst) res) /= [] = refine res

| otherwise = (p,q): refine res

nuevo :: (TAtom,Sust) -> TAtom

nuevo (p,s)

| (lis == []) = p++"_1"

| otherwise = actualp

where

lis = filter ((== p).fst) s

np = snd(head lis)

(n,r) = break (==’_’) (reverse np)

actualp = reverse r ++ suma1 (reverse n)

suma1 st = show (aNum st + 1)

aNum :: String -> Int

aNum s = foldr1 f [ord c - ord ’0’| c <- s] where f n m = n*10 + m

quitarRep :: Eq a => [a] -> [a]

quitarRep [] = []

quitarRep (x:xs) = if x ‘elem‘ xs then quitarRep xs else x:quitarRep xs

To illustrate this concrete algorithm, let us take the following Horn⊃ program, with
four clauses (already written in Haskell):

prog = [Flecha "p" TRUE,

Flecha "t" TRUE,

Flecha "r" (AndG g1 g2),

Flecha "s" g3]

where

g1 = Implica d1 (At "q")

g2 = Implica d2 (At "q")

d1 = Flecha "q" (At "p")

d2 = Flecha "q" (At "t")

goal = AndG (At "q") goal2

goal2 = Implica d3 (AndG (At "q") (At "p"))

d3 = And d1 (Flecha "p" (At "r"))

g3 = Implica (Flecha "q" (At "r")) goal

The translation algorithm gives the following result:

tradP prog = [Flecha "p" TRUE,

Flecha "t" TRUE,

Flecha "r" (AndG (At "q_1") (At "q_2")),

Flecha "q_1" (At "p"),

Flecha "q_1" (At "q"),

Flecha "q_2" (At "t"),

Flecha "q_2" (At "q"),

Flecha "s" (AndG (At "q_3") (AndG (At "q_3_1") (At "p_1"))),

Flecha "q_3" (At "r"),

Flecha "q_3" (At "q"),

Flecha "q_3_1" (At "p_1"),

Flecha "p_1" (At "r"),

Flecha "q_3_1" (At "q_3"),

Flecha "p_1" (At "p")]

For the sake of legibility, a Haskell function ”pr” has been added to the algorithm.
This function permits to show clauses in a Prolog style, with the added connective
”imp” for ⊃. Here is an example of execution for the previous program ”prog” and its
translation:

Main> pr prog

p .

t .

r :- ({q :- p .} imp (q)) , ({q :- t .} imp (q)) .

s :- ({q :- r .} imp (q , ({q :- p ., p :- r .} imp (q , p)))) .

Main> pr (tradP prog)

p .

t .

r :- q_1 , q_2 .

q_1 :- p .

q_1 :- q .

q_2 :- t .

q_2 :- q .

s :- q_3 , q_3_1 , p_1 .

q_3 :- r .

q_3 :- q .

q_3_1 :- p_1 .

p_1 :- r .

q_3_1 :- q_3 .

p_1 :- p .

7 Conclusions and Further Work

In this paper we have introduced a translation from Horn⊃ programs to Horn clause
programs, in the propositional case. Our main aim has been to prove that this trans-
lation is sound and complete with respect to the semantics of both programming lan-
guages. In concrete, the original operational semantics in the extended language Horn⊃

can be now simulated by SLD-resolution in Horn.
The translation has been given first by an algorithm that can be considered ”abstract”
in two senses. On the one hand, we have forgotten ”some details” in order to make
more legible the proof of soundness and completeness and, on the other hand, it has
been presented free of implementation language details. Later the forgotten details
have been concreted, by selecting a particular way of renaming the new predicates,
and a particular language (Haskell) has been used to implement the algorithm. Some
examples have also been given in both levels of abstraction.
We think that the proposed translation algorithm is simple and that it is easy to see
the relation between a Horn⊃ program P and its translation tradP (P). However, to
formally establish the correspondence between the `⊃ deduction of an atom A from P
and the corresponding `SLD deduction of A from tradP (P), it has been necessary to
define the function trad∆, which translates a sequence of Horn⊃ programs to a single
Horn program, and to establish a more general result (given in lemmas 7 and 10) for
an arbitrary sequence of programs (or blocks) and a goal.

With respect to further work, we are actually working on lifting this translation to the
first order case and we plan to prove it formally. The idea is to extend the algorithm
in such a way that, for instance, the Horn⊃ program P = {∀X(p(X) → q(X))., p(a).,
∀Y ((D ⊃ r(c, Y)) → q(Y)).} with D = {∀X(p(X) → r(X,X))., p(c).} would be
translated to the Horn program tradP (P) = {q(X) : −p(X)., p(a)., q(Y) : −r1(c,Y).,
r1(Z,Z) : −p1(Z)., p1(c)., r1(U,V) : −r(U, V)., p1(T) : −p(T).}
As we can see in this example, besides introducing two new predicates (r1 and p1), the
algorithm needs to distinguish between variables and constants and it has to extend
each new predicate accordingly to its number of arguments.
We think that for Horn⊃ programs with only ”closed” sets of local clauses (that is,
each D being itself also a program) an extended translation can easily be defined to
conserve, as in the propositional case, the original semantics. However, for the whole
class of Horn⊃ programs where in general a local block D can have free variables which
are seen as global variables for D (see [8, 1]) such translation may have more difficulties
since it seems to yield to parameterised Horn programs.

References

1. Arruabarrena, R., Lucio P. and Navarro, M. A Strong Logic Programming View
for Static Embedded Implications. In: Proc. of FOSSACS’99,Springer-Verlag Lect.
Notes in Comput. Sciences 1578:56-72 (1999).

2. Baldoni, M., Giordano, L., and Martelli, A. Translating a Modal Language with
Embedded Implication into Horn Clause Logic In: Proc. of 5 Int. Worhshop of
Extensions of Logic Programming, ELP’96, Springer-Verlag Lect. Notes in Comput.
Sciences 1050(1996).

3. Bugliesi, M., Lamma, E. and Mello, P. Modularity in Logic Programming. Journal
of Logic Programming, (19-20): 443-502, (1994).

4. Bonner, A. J., McCarty, L. T., and Vadaparty, K. Expresing Database Queries with
Intuitionistic Logic. In: Proc. of the North American Conf. on Logic Programming,
MIT Press, 831-850, (1989).

5. Gabbay, D. M. N-Prolog: An Extension of Prolog with Hypothetical Implications.
II. Logical Foundations and Negation as Failure. Journal of Logic Programming
2(4):251-283 (1985).

6. Gabbay, D. M. and Reyle, U. N-Prolog: An Extension of Prolog with Hypothetical
Implications. I. Journal of Logic Programming 1(4):319-355 (1984).

7. Giordano, L., and Martelli, A. Structuring Logic Programs: A Modal Approach.
Journal of Logic Programming 21:59-94 (1994).

8. Giordano, L., Martelli, A., and Rossi, G. Extending Horn Clause Logic with Im-
plication Goals. Theoretical Computer Science 95:43-74, (1992).

9. Lucio, P. Structured Sequent Calculi for Combining Intuitionistic and Classical
First-Order Logic. In: Proc. of FroCoSS’2000,Springer-Verlag Lect. Notes in Arti-
ficial Intelligence 1794:88-104 (2000).

10. Meseguer, J. General Logics. In: Ebbinghaus H.-D. et al. (eds), Logic Collo-
quium’87, North-Holland, 275-329, (1989).

11. Meseguer, J. Multiparadigm Logic Programming. In: Proc. of ALP’92, Springer-
Verlag Lect. Notes in Comput. Sciences 632:158-200, (1992).

12. Miller, D. A Logical Analysis of Modules in Logic Programming. In: Journal of
Logic Programming 6:79-108, (1989).

13. Miller, D. Abstraction in Logic Programs. In: Odifreddi, P. (ed), Logic and Com-
puter Science, Academic Press, 329-359, (1990).

14. Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A. Uniform Proofs as a Foun-
dation for Logic Programming. Annals of Pure and App. Logic 51:125-157, (1991).

15. Monteiro, L., Porto, A. Contextual Logic Programming. In: Proc. 6th International
Conf. on Logic Programming 284-299, (1989).

16. Moscowitz, Y., and Shapiro, E. Lexical logic programs. In: Proc. 8th International
Conf. on Logic Programming 349-363, (1991).

