General Solar Position Calculations

First, the fractional year (γ) is calculated, in radians.

$$
\gamma=\frac{2 \pi}{365} *\left(d a y_{-} \text {of } y e a r-1+\frac{\text { hour }-12}{24}\right)
$$

From γ, we can estimate the equation of time (in minutes) and the solar declination angle (in radians).

$$
\begin{aligned}
\text { eqtime }= & 229.18 *(0.000075+0.001868 \cos \gamma-0.032077 \sin \gamma \\
& -0.014615 \cos 2 \gamma-0.040849 \sin 2 \gamma) \\
\text { decl }= & 0.006918-0.399912 \cos \gamma+0.070257 \sin \gamma-0.006758 \cos 2 \gamma \\
& +0.000907 \sin 2 \gamma-0.002697 \cos 3 \gamma+0.00148 \sin 3 \gamma
\end{aligned}
$$

Next, the true solar time is calculated in the following two equations. First the time offset is found, in minutes, and then the true solar time, in minutes.

$$
\text { time_offset }=\text { eqtime }-4 * \text { longitude }+60 * \text { timezone }
$$

where eqtime is in minutes, longitude is in degrees, timezone is in hours from UTC (Mountain Standard Time $=+7$ hours).

$$
t s t=h r * 60+m n+s c / 60+\text { time_offset }
$$

where hr is the hour $(0-23)$, mn is the minute $(0-60)$, sc is the second $(0-60)$.
The solar hour angle, in degrees, is:

$$
h a=(t s t / 4)-180
$$

The solar zenith angle (ϕ) can then be found from the following equation:

$$
\cos \phi=\sin (l a t) \sin (d e c l)+\cos (l a t) \cos (d e c l) \cos (h a)
$$

And the solar azimuth (θ, clockwise from north) is:

$$
\cos (180-\theta)=-\frac{\sin (l a t) \cos \phi-\sin (d e c l)}{\cos (l a t) \sin \phi}
$$

Sunrise/Sunset Calculations

For the special case of sunrise or sunset, the zenith is set to 90.833° (the approximate correction for atmospheric refraction at sunrise and sunset), and the hour angle becomes:

$$
h a= \pm \arccos \left(\frac{\cos (90.833)}{\cos (\text { lat }) \cos (\text { decl })}-\tan (\text { lat }) \tan (\text { decl })\right)
$$

where the positive number corresponds to sunrise, negative to sunset.
Then the UTC time of sunrise (or sunset) in minutes is:

$$
\text { sunrise }=720+4(\text { longitude }- \text { ha })-\text { eqtime }
$$

where longitude and hour angle are in degrees and the equation of time is in minutes.
Solar noon for a given location is found from the longitude (in degrees) and the equation of time (in minutes):

$$
\text { snoon }=720+4 * \text { longitude }- \text { eqtime }
$$

