|  |  
      
       
        
 
        -
Machine Learning in
general, specially for learning predictive models
 
          | I am member of the "Intelligent Systems 
              Group" research team, which leader is Jose 
              A. Lozano. I'm a professor at the "Intelligent 
              Systems Group", of the University of the Basque Country. The 
              research group is located in the Computer 
              Science and AI Department, 
			Computer 
              Engineering Faculty, in Donostia - San Sebastián, 
			Basque Country, north of Spain.
 My PhD advisor was
			Pedro 
			Larrañaga. You can take a look to the web pages of my 
			friends-colleagues Yvan 
			Saeys, Joao Gama 
			and Gavin Brown.
 I co-supervised the International-PhD thesis of
			Mario Martinez-Garcia,
			Ander Carreño, 
			Rubén 
			Armañanzas,
			Jose A. Fernándes,
		Jerónimo Hernández, Jonathan Ortigosa, Pablo Rozas-Larraondo, Aritz 
			Pérez and
			Rosa Blanco.
     
              
              	
              
              
                
                  
 
                  | post: Iñaki 
					Inza Computer Science Faculty
 University of the Basque Country (Campus Ibaeta)
 Paseo Manuel de Lardizabal s/n
 20018 Donostia - San Sebastián
 Basque Country, Spain
 | email: 
					
					
					inaki.inza at ehu.es |  
 
                  | phone:     
					+34 943 015026 | fax:     
					+34 943 015590 |  | 
			  |  - Non-standard classification scenarios with label uncertainty: weakly supervised 
		classification, semi-supervised 
		classification, learning from crowds...
 - Feature Subset Selection in Machine Learning and Data Mining (FSS)
 - Learning with streaming data
 
    - Applications in Biomedicine and Bioinformatics: biomarker identification- Applications in Weather Forecasting, Oceanographic and Ecological data
 - Applications in Official Statistics
 
    Google Scholar profile     
      ORCID ID profile
 
		   You can find in the following webpage 
		
		a compilation of data mining applications which attracted my 
		attention. Although 
		the used methodology is mentioned, they are written in a divulgative 
		style, where emphasis is put on the problem solved.
 
 
       
        
        Refereed JCR-Impact factor Journals: 
		
 
 
			
            
            
            
            
            U. Salaberria-Flaño, A. Nappa, A. Artetxe, G. Artetxe, I. Inza (2025). SCGAN-enhanced surrogate modeling for FEM analysis of induction motors: A practical use case  Results in Engineering, vol. 27, 106061.
 M. Martínez-García, I. Inza, J.A. Lozano (2025). Teacher privileged distillation: How to deal with imperfect teachers?  Knowledge-Based Systems, vol. 316, 113338. 
M. Martínez-García, S. García-Gutiérrez, L. Barreñada, I. Inza, J.A. Lozano (2025). Extending the learning using privileged information paradigm to logistic regression.  Neurocomputing, vol. 615.
A. Carreño, I. Inza, J.A. Lozano (2023). SNDProb: a probabilistic approach for streaming novelty detection.  IEEE-TKDE Transacations on Knowledge and Data Engineering, 35(6), 6335-6348.[preprint version]
A.M. Ascensión, O. Ibáñez-Solé, I. Inza, A. Izeta, M.J. Araúzo-Bravo (2022). Triku: a feature selection method based on nearest neighbors for single-cell data.  GigaScience. 11, giac017.
P. Rozas-Larraondo, L.J. Renzullo, A.I.J.M. Van Dijk, I. Inza., J.A. 
			Lozano (2020). Optimization of deep learning precipitation models using categorical binary metrics.  Journal of Advances in Modeling Earth Systems. 12(5), e2019MS001909.
A. Carreño, I. Inza, J.A. 
			Lozano (2020). Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework. Artificial Intelligence Review, 53(5), 3575-3594. J. Hernández-González, I. Inza, I. Granado, O.C. Basurko, J.A. Fernandes, J.A. 
			Lozano (2019). Aggregated outputs by linear models: an application on marine litter beaching prediction. Information Sciences, 481, 381-393.
J. Hernández-González, I. Inza, J.A. 
			Lozano (2019). A note on the behavior of majority voting in multi-class domains with biased annotators. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 31(1), 195-200. J. Hernández-González, I. Inza, L. Crisol-Ortíz, M.A. Guembe, M.J. Iñarra, J.A. 
			Lozano (2018). Fitting the data from embryo implantation prediction: learning from label proportions. Statistical Methods in Medical Research. 27(4), 1056-1066. J. Hernández-González, D. Rodríguez, I. Inza, R. Harrison, J.A. 
			Lozano (2018). Learning to classify software defects from crowds: a novel approach. Applied Soft Computing, 62, 579-591. 
J. Hernández-González, D. Rodríguez, I. Inza, R. Harrison, J.A. 
			Lozano (2018). Two datasets of defect reports labeled by a crowd of annotators of unknown reliability. Data in Brief, 18, 840-845.
P. Rozas-Larraondo, I. Inza, J.A. Lozano (2018). A system for airport weather forecasting based on circular regression trees. Environmental Modelling & Software, 100, 24-32.
J. Ortigosa-Hernández, I. Inza, J.A. 
			Lozano (2017). Measuring the class-imbalance extent in multi-class problems. Pattern Recognition Letters, 98, 32-38. J. Hernández-González, I. Inza, J.A. 
			Lozano (2017). Learning from proportions of positive and unlabaled samples. International Journal of Intelligent Systems, 32(2), 109-133.J. Ortigosa-Hernández, I. Inza, J.A. Lozano (2016). Semisupervised multiclass classification problems with scarcity of labeled data: a theoretical study. IEEE Neural Networks and Learning Systems, 27(12), 2602-2614. J. Hernández-González, I. Inza, J.A. 
			Lozano (2016). Weak supervision and other non-standard classification problems: A taxonomy. Pattern Recognition Letters, 69, 49-55.  A. Pérez, I. Inza, J.A. Lozano (2016). Efficient approximation of probability distributions with k-order decomposable models. International Journal of Approximate Reasoning, 74, 58-87.
J. Hernández-González, I. Inza, J.A. 
			Lozano (2015). Multi-dimensional learning from crowds: usefulness and application of expertise detection. International Journal of Intelligent Systems, 30(3), 326-354.  G. Santafe, I. Inza, J.A. Lozano (2015). Dealing with the evaluation of supervised classification algorithms. Artificial Intelligence Review, 44(4), 467-508. J.A. Fernandes, X. Irigoien, I. Inza, J.A. Lozano, N. Goikoetxea, A. Pérez (2015). Evaluating machine-learning techniques for recruitment forecasting of seven North East Atlantic fish species. Ecological Informatics, 25, 35-42. 
P. Rozas-Larraondo, I. Inza, J.A. Lozano (2014). A method for wind speed forecasting in airports based on non-parametric regression. Weather and Forecasting, 29, 1332-1342.
R. Sagarna, A. Mendiburu, I. 
			Inza, J.A. Lozano (2014).
			
			Assisting in search heuristics selection through multidimensional 
			supervised classification: A case study on software testing. 
			Information Sciences, 258, 122-139.J. Hernández-González, I. Inza, J.A. 
			Lozano (2013). 
			Learning Bayesian network classifiers from label 
			proportions.  Pattern Recognition, 
			46(12), 3425-3440. 
			J.L. Flores, I. Inza, P. 
			Larrañaga, B. Calvo (2013).
			
			A new measure for gene expression biclustering based on 
			non-parametric correlation. Computer Methods and Programs 
			in Biomedicine, 112(3), 367-397. 
J.A. Fernandes, J.A. Lozano, 
			I. Inza, X. Irigoien, A. Pérez, J.D. Rodríguez (2013).
			Supervised 
			pre-processing approaches in multiple class variables classification 
			for fish recruirment forecasting.  Environmental Modelling & 
			Software, 40, 245-254. B. Calvo, I. Inza, P. 
			Larrañaga, J.A. Lozano (2012).
			
			Wrapper positive Bayesian network classifiers.  Knowledge 
			and Information Systems, 33(3), 631-654. J. Ortigosa-Hernández, J.D. 
			Rodriguez, L. Alzate, M. Lucania I. Inza, J.A. Lozano (2012). 
			Approaching Sentiment Analysis by Using Semi-supervised Learning of 
			Multi-dimensional Classifiers. Special Issue in Data Mining 
			Applicacions and Case Studies. Neurocomputing journal, 
			92, 98-115 A. Garcia-Bilbao, R. 
			Armañanzas, Z. Ispizua, B. Calvo, A. Alonso-Varona, I. Inza, P. 
			Larrañaga, G. López-Vivanco, B. Suárez-Merino, M. Betanzos (2012). 
			Identification of a biomarker panel for colorectal cancer diagnosis.
			BMC Cancer, 
			12:43. R. Armañanzas, Y. Saeys, I. 
			Inza, M. García-Torres, C. Bielza, Y. van de Peer, P. Larrañaga 
			(2011). Peakbin selection in mass spectrometry data using a 
			consensus approach with estimation of distribution algorithms.
			IEEE/ACM Transactions on 
			Computational Biology and Bioinformatics, 8(3), 760-774. 
			J.A. Fernandes, X. Irigoien, 
			N. Goikoetxea, J.A. Lozano, I. Inza, A. Pérez, A. Bode (2010).
			Fish 
			recruitment prediction, using robust supervised classification 
			methods. Ecological Modelling, 221(2), 338-352. 
			A. Pérez, P. Larrañaga, I. 
			Inza (2009). Bayesian classifiers based on kernel estimation: Flexible 
			classifiers. International Journal of Approximate 
			Reasoning,  50(2), 341-362. 
			R. Armañanzas, B. Calvo, I. 
			Inza, M. López-Hoyos, V. Martínez-Taboada, E. Ucar, I. Bernales, A. 
			Fullaondo, P. Larrañaga, A. M. Zubiaga (2009). 
			Microarray analysis 
			of autoimmune diseases by machine learning procedures. IEEE 
			Transactions on Information Technology in Biomedicine, 
			13(3), 341-350.
			J.A. Fernandes, X. Irigoien, 
			J.A. Lozano, I. Inza (2009).
			Optimizing the number of 
			classes in automated zooplankton classification. Journal 
			of Plankton Research,  31(1), 19-29.D. Otaegui, S.E. Baranzini, 
			R. Armañanzas, B. Calvo, M. Muñoz-Culla, P. Khankhanian, I. Inza, 
			J.A. Lozano, T. Castillo-Triviño, A. Asensio, J. Olaskoaga, A. López 
			de Munain (2009).
			
			Differential micro RNA expression in PBMC from multiple sclerosis 
			patients.
			PLoS ONE, 4(7), e6309. 
			A. Sáenz, M. Azpitarte, R. 
			Armañanzas, F. Leturq, A. Alzualde, I. Inza, F. García-Bragado, G. 
			De la Herran, J. Corcuera, A. Cabello, C. Navarro, C. De la Torre, 
			E. Gallardo, I. Illa, A. López de Munain (2008).
			Gene expression profiling in Limb-Girdle Muscular Dystrophy 2A.
			PLoS ONE, 3(11), e3750. 
			R. Armañanzas, I. Inza, R. 
			Santana, Y. Saeys, J.L. Flores, J.A. Lozano, Y. Van de Peer, R. 
			Blanco, V. Robles, C. Bielza, P. Larrañaga (2008).
			A review of 
			estimation of distribution algorithms in bioinformatics. BioDataMining, 
			 
			1(6).R. Armañanzas, I. Inza, P. 
			Larrañaga (2008).
			Detecting reliable gene interactions by a 
			hierarchy of Bayesian network classifiers. Computer Methods 
			and Programs in Biomedicine, 91(2), 110-121.Co-organized event: ECML PKDD 2008 -
			
			Workshop on New 
		Challenges for Feature Selection in Data Mining and Knowledge Discovery 
		- FSDM08 Accepted papers were published as a Journal of Machine Learning 
		Research Workshop and Conference Proceedings,
			Volume 4.
 
Y. Saeys, I. Inza, P. Larrañaga (2007).
			A review of feature selection techniques in bioinformatics.
			Bioinformatics, 23, 2507-2517.
J.L. Flores, I. Inza, P. Larrañaga (2007).
			Wrapper discretization by means of estimation of distribution 
			algorithms. Intelligent Data Analysis Journal, 11(5), 
			525-545.A. Pérez, P. Larrañaga, I. Inza (2006).
			Supervised 
			classification with conditional Gaussian networks: increasing the 
			structure complexity from naive Bayes. International Journal of 
			Approximate Reasoning, 43(1), 1-25.P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, 
			J. A. Lozano, R. Armañanzas, G. Santafé, A. Pérez, V. Robles (2006). 
			Machine Learning in Bioinformatics.
			Briefings in Bioinformatics, 7(1), 86-112. 
			P. Larrañaga, J.A. Lozano, J.M. Peña, I. Inza (guest 
              editors, 2005).
			Special 
              issue on "Probabilistic Graphical Models for Classification". 
              Machine Learning, vol. 59(3).R. Blanco, I. Inza, M. Merino, J. Quiroga and P. Larrañaga 
              (2005).
			Feature selection in Bayesian classifiers for the prognosis 
              of survival of cirrhotic patients treated with TIPS. Journal 
              of Biomedical Informatics, vol. 38(5), 376-388.I. Inza, P. Larrañaga, R. Blanco, A.J. Cerrolaza (2004).
			Filter 
              versus wrapper gene selection approaches in DNA microarray domains.
			Artificial Intelligence in Medicine, special issue in "Data 
              mining in genomics and proteomics", 31(2), 91-103. R. Blanco, P. Larrañaga, I. Inza, B. Sierra (2004).
			Gene 
              selection for cancer classification using wrapper approaches.
			International Journal of Pattern Recognition and Artificial Intelligence,
			18(8), 1373-1390.R. Blanco, I. Inza, P. Larrañaga (2003).
			Learning 
              Bayesian networks in the space of structures by estimation of distribution 
              algorithms.  International Journal of Intelligent Systems,
			18, 205-220. I. Inza, B. Sierra, R. Blanco, P. Larrañaga (2002). 
              Gene selection by sequential wrapper approaches in microarray cancer 
              class prediction. Journal of Intelligent and Fuzzy Systems,
			12/1, 25-34. I. Inza, M. Merino, P. Larrañaga, J. Quiroga, B. Sierra, M. Girala 
              (2001). Feature subset 
              selection by genetic algorithms and estimation of distribution algorithms. 
              A case study in the survival of cirrhotic patients treated with 
              TIPS. Artificial Intelligence in Medicine, 23/2, 187-205.I. Inza, P. Larrañaga, B. Sierra (2001).
			Feature Subset Selection by Bayesian networks: a comparison with 
              genetic and sequential algorithms. International Journal 
              of Approximate Reasoning, 27/2, 143-164.B.Sierra, N. Serrano, P.Larrañaga, E.J. Plasencia, I. Inza, J.J. 
              Jimenez, P. Revuelta, M.L. Mora (2001).
			Using Bayesian networks in the construction of a bi-level multi-classifier.
			Artificial Intelligence in Medicine, 22, 233-248. 
			J.M. Peña, J.A. Lozano, P. Larrañaga, I. Inza (2001).
			Dimensionality Reduction in Unsupervised Learning of Conditional 
              Gaussian Networks. IEEE Transactions on Pattern Analysis and 
              Machine Intelligence, 23(6), 590-603. 
I. Inza, P. Larrañaga, R. Etxeberria, B. Sierra (2000).
			Feature 
              Subset Selection by Bayesian networks based optimization. 
			Artificial Intelligence, 123(1-2), 157-184. 
			
I. Inza, P. Larrañaga, B. Sierra, R. Etxeberria, J.A. Lozano, 
              J.M. Peña (1999).
			Representing 
              the joint behaviour of machine learning inducers by Bayesian networks.
			Pattern Recognition Letters, 20 (11-13), 1201-1209.P. Larrañaga, C. Kuijpers, R. Murga, I. Inza, S. Dizdarevich 
              (1999).
			Evolutionary algorithms 
              for the travelling salesman problem: A review of representations 
              and operators. Artificial Intelligence Review, 13, 129-170.
 
New book on Estimation of 
		Distribution Algorithms (EDAs).
		
		"Towards a New Evolutionary Computation" (Springer, 2006). Lozano, 
		Larrañaga, Inza, Bengoetxea (eds.)My Doctoral Dissertation,
		"Advances 
		in Supervised Classification based on Probabilistic Graphical Models" 
		(June, 2002). (Supervisor: Pedro Larrañaga)
 
Book Chapters: 
 
 
			I. Inza, B. Calvo, R. 
			Armañanzas, E. Bengoetxea, P. Larrañaga, J.A. Lozano (2010). Machine 
			learning: an indispensable tool in bioinformatics. R. Matthiesen 
			(ed.). 
			
			Bioinformatics Methods in Clinical Research. Springer. (2nd 
			chapter of the book).P. Larrañaga, I. Inza, J.L. Flores (2005). A guide to the 
              literature on inferring genetic networks by probabilistic graphical 
              models. F. Azuaje, J. Dopazo (eds.). 
			Data 
              Analysis and Visualization in Genomics and Proteomics. John 
              Wiley and Sons Ltd., 215-238.I. Inza, R. Armañanzas, G. 
			Santafé (2006). Una aproximación al software WEKA.
			
			Aprendizaje Automático: conceptos básicos y avanzados. B. 
			Sierra (ed.), chapter 23, pp. 477-483. Pearson Educación, Madrid. 
			(In Spanish). R. Blanco, I. Inza, P. Larrañaga (2004). Learning Bayesian networks 
              by floating search methods. 
			Advances 
              in Bayesian Networks. 
              J.A. Gámez, S. Moral, A. Salmerón (eds.), Physica 
              Verlag - Springer Verlag, 181-200.I. Inza, P. Larrañaga, B. Sierra (2001). Estimation of Distribution 
              Algorithms for feature subset selection in large dimensionality 
              domains. 
			Data 
              Mining: A Heuristic Approach. H. Abbass, R. Sarker, C. Newton 
              (eds.), IDEA Group Publishing, 97-116. I. Inza, P. Larrañaga, B. Sierra (2001). Feature Subset Selection 
              by Estimation of Distribution Algorithms. 
			Estimation 
              of Distribution Algorithms. A new tool for Evolutionary Computation. 
              P. Larrañaga, J.A. Lozano (eds.), Kluwer Academic Publishers.
			I. Inza, P. Larrañaga, B. Sierra (2001). Feature Weighting for 
              Nearest Neighbor by Estimation of Distribution Algorithms. 
			Estimation 
              of Distribution Algorithms. A new tool for Evolutionary Computation. 
              P. Larrañaga, J.A. Lozano (eds.), Kluwer Academic Publishers.Refereed Conference Papers: 
		
 
 
			
            I. Prol-Godoy, A. Picallo-Pérez, I. Inza, R. Santana, J.M. Sala-Lizarraga, J. Rey-Martínez (2023). First step to define a predictive model of the behaviour of a building's thermal system to analyse the climate change influence. International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023). Las Palmas de Gran Canaria, Spain. 
R. Santana, I. Prol-Godoy, A. Picallo-Pérez, I. Inza (2023). Evolved neural networks for building energy prediction. IEEE Symposium Series on Computational Intelligence (IEEE SSCI'2023). Mexico City. 
M. Martinez-Garcia, I. Inza, J.A. Lozano (2023). Learning a logistic regression with the help of unknown features at prediction stage. IEEE Conference on Artificial Intelligence (IEEE CAI'2023). Santa Clara, CA, USA. 
M. Martinez-Garcia, S. Garcia-Gutierrez, R. Armañanzas, A. Diaz, I. Inza, J.A. Lozano (2022). Learning a battery of COVID-19 mortality prediction models by multi-objective optimization. International Conference on Artificial Intelligence in Medicine (AIME'2022). Halifax, Canada. 
A. Arregi, I. Inza, I. Bediaga (2022). Vibration analysis for rotatory elements wear detection in paper mill machine. International Conference on Database and Expert Systems Applications (DEXA). Vienna, Austria. [preprint version]
M. Soric, D. Pongrac, I. Inza (2020). Using convolutional neural network for chest X-ray image classification. 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). Opatija, Croatia. 
P. Rozas-Larraondo, I. Inza, J.A. 
			Lozano (2017). Automating weather forecasts based on convolutional networks. ICML 2017 Workshop on Deep Structured Prediction. Sydney, Australia. 
J. Hernández, I. Inza, J.A. 
			Lozano (2015). A novel weakly supervised problem: learning from positive-unlabeled proportions.
			Spanish 
			Conference on Artificial Intelligence. Albacete, Spain. J. Hernández, I. Inza, J.A. 
			Lozano (2013). 
			Learning from crowds in multi-dimensional classification domains.
			Spanish 
			Conference on Artificial Intelligence. 
			Lecture 
			Notes in Computer Science 8109, "Advances in Artificial 
			Intelligence", 352-362. Madrid, Spain.A. Pérez, I. Inza, J.A. 
			Lozano (2013). 
			Multidimensional k-interaction classifier: taking advantage 
			of all the information contained in low order interactions.
			Spanish 
			Conference on Artificial Intelligence. 
			Lecture 
			Notes in Computer Science 8109, "Advances in Artificial 
			Intelligence", 393-401. Madrid, Spain.J.A. Fernandes, J.A. Lozano, 
			I. Inza, X. Irigoien, J.D. Rodríguez, A. Pérez (2013). Supervised 
			pre-processing approaches in multiple class variables classification 
			for fish recruitment forecasting.
			
			ICES (International Council for the Exploration of the Sea) Annual 
			Science Conference. Session on "Advantages of Bayesian analysis 
			for fisheries and ecological research". Reykjavik, Iceland.J. Hernández, I. Inza (2011). 
			Learning naive Bayes models for multiple-instance learning with 
			label proportions. Spanish 
			Conference on Artificial Intelligence. Lecture Notes in 
			Artificial Intelligence 7023, 134-144. San Cristobal de La Laguna, 
			Tenerife, Spain.J.A. Fernandes, X. Irigoien, 
			N. Goikoetxea, A. Uriarte, J.A. Lozano, I. Inza (2009). Robust 
			approaches to supervised machine learning techniques for seven fish 
			species recruitment prediction in fisheries. 
			ICES/PICES/UNCOVER 
			Symposium 2009 on Rebuilding Depleted Fish Stocks - Biology, 
			Ecology, Social Science and Management Strategies. Warnemünde/Rostock, 
			Germany. J.A. Fernandes, X. Irigoien, 
			A. Uriarte, L. Ibaibarriaga, J.A. Lozano, I. Inza (2009). Anchovy 
			recruitment mixed long series prediction using supervised 
			classification. Working document to the 
			
			ICES benchmark workshop on short lived species (WKSHORT). 
			Bergen, Norway.R. Armañanzas, B. Calvo, I. 
			Inza, P. Larrañaga, I. Bernales, A. Fullaondo, A.M. Zubiaga (2007). 
			Bayesian classifiers with consensus gene selection: a case study in 
			the systemic lupus erythematosus. 14th European Conference for 
			Mathematics in Industry,
			Progress in Industrial Mathematics ECMI'06.
			Madrid, Spain, 
			560-565.A. García, A. Freije, R. 
			Armañanzas, I. Inza, Z. Ispizua, P. Heredia, P. Larrañaga, G. López 
			Vivanco, T. Suárez, M. Betanzos (2007).
			Gene expression model for the classification of human colorectal 
			cancer and potential CRC biomarkers search.
			Drug Discovery Technology, 
			poster session. London, UK.A. Pérez, P. Larrañaga, I. Inza 
			(2006). Information theory and classification error in probabilistic 
			classifiers. 
			Discovery 
			Science, DS-2006, Lecture Notes in Computer Science 4265. Barcelona, Spain, 
			347-351.A. García, A. Freije, R. 
			Armañanzas, I. Inza, Z. Ispizua, P. Heredia, P. Larrañaga, G. López 
			Vivanco, T. Suárez, M. Betanzos (2006). 
			Simultaneous search of genomic and proteomic biomarkers in human colorectal 
			cancer. Genomes to 
			Systems Conference, poster session. Manchester, UK.
I teach in the
		Computer 
		Engineering and Artificial Intelligence Degrees the
		"Advanced Machine Learning" subjects. I have (co)supervised the following Computer 
		Engineering Degree Thesis 
		projects in the Computer Engineering Faculty.
 I teach in the following 
		Master-Program a "Advanced Machine Learning" subject: "Master on 
		Computational Engineering and Intelligent Systems" (taught in 
		the Computer Science Faculty, University of the Basque Country). I have 
		(co)supervised the following Master Thesis 
		projects in this Master program.
 I also teach a "Machine Learning" course in the "Erasmus Mundus - Language and Communication Technology" Master.   |