|
I am member of the "Intelligent Systems
Group" research team, which leader is Jose
A. Lozano.
I'm a associate professor at the "Intelligent
Systems Group", of the University of the Basque Country. The
research group is located in the Computer
Science and AI Department,
Computer
Engineering Faculty, in Donostia - San Sebastián,
Basque Country, north of Spain.
My PhD advisor was
Pedro
Larrañaga. You can take a look to the web pages of my
friends-colleagues Yvan
Saeys, Joao Gama
and Gavin Brown.
I co-supervised the International-PhD thesis of
Ander Carreño,
Rubén
Armañanzas,
Jose A. Fernándes,
Jerónimo Hernández, Jonathan Ortigosa, Pablo Rozas-Larraondo, Aritz
Pérez and
Rosa Blanco.
I currently co-supervise the PhD project of Mario Martinez.
post: Iñaki
Inza
Computer Science Faculty University of the Basque Country (Campus Ibaeta)
Paseo Manuel de Lardizabal s/n
20018 Donostia - San Sebastián
Basque Country, Spain |
email:
inaki.inza at ehu.es |
phone:
+34 943 015026 |
fax:
+34 943 015590 |
|
|
-
Machine Learning in
general, specially for learning predictive models
- Non-standard classification scenarios with label uncertainty: weakly supervised
classification, semi-supervised
classification, learning from crowds... - Feature Subset Selection in Machine Learning and Data Mining (FSS)
- Learning with streaming data
- Applications in Biomedicine and Bioinformatics: microarrays,
microRNAs
and mass spectrometry data
in diagnosis-prognosis-classification tasks -- biomarker identification
- Applications in Weather Forecasting, Oceanographic and Ecological data
Google Scholar profile
ORCID ID profile
You can find in the following webpage
a compilation of data mining applications which attracted my
attention.
Although
the used methodology is mentioned, they are written in a divulgative
style, where emphasis is put on the problem solved.
- Refereed JCR-Impact factor Journals:
- A. Carreño, I. Inza, J.A. Lozano (2023). SNDProb: a probabilistic approach for streaming novelty detection. IEEE-TKDE Transacations on Knowledge and Data Engineering, 35(6), 6335-6348.[preprint version]
- A.M. Ascensión, O. Ibáñez-Solé, I. Inza, A. Izeta, M.J. Araúzo-Bravo (2022). Triku: a feature selection method based on nearest neighbors for single-cell data. GigaScience. 11, giac017.
- P. Rozas-Larraondo, L.J. Renzullo, A.I.J.M. Van Dijk, I. Inza., J.A.
Lozano (2020). Optimization of deep learning precipitation models using categorical binary metrics. Journal of Advances in Modeling Earth Systems. 12(5), e2019MS001909.
- A. Carreño, I. Inza, J.A.
Lozano (2020). Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework. Artificial Intelligence Review, 53(5), 3575-3594.
- J. Hernández-González, I. Inza, I. Granado, O.C. Basurko, J.A. Fernandes, J.A.
Lozano (2019). Aggregated outputs by linear models: an application on marine litter beaching prediction. Information Sciences, 481, 381-393.
- J. Hernández-González, I. Inza, J.A.
Lozano (2019). A note on the behavior of majority voting in multi-class domains with biased annotators. IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 31(1), 195-200.
- J. Hernández-González, I. Inza, L. Crisol-Ortíz, M.A. Guembe, M.J. Iñarra, J.A.
Lozano (2018). Fitting the data from embryo implantation prediction: learning from label proportions. Statistical Methods in Medical Research. 27(4), 1056-1066.
- J. Hernández-González, D. Rodríguez, I. Inza, R. Harrison, J.A.
Lozano (2018). Learning to classify software defects from crowds: a novel approach. Applied Soft Computing, 62, 579-591.
- J. Hernández-González, D. Rodríguez, I. Inza, R. Harrison, J.A.
Lozano (2018). Two datasets of defect reports labeled by a crowd of annotators of unknown reliability. Data in Brief, 18, 840-845.
- P. Rozas-Larraondo, I. Inza, J.A. Lozano (2018). A system for airport weather forecasting based on circular regression trees. Environmental Modelling & Software, 100, 24-32.
- J. Ortigosa-Hernández, I. Inza, J.A.
Lozano (2017). Measuring the class-imbalance extent in multi-class problems. Pattern Recognition Letters, 98, 32-38.
- J. Hernández-González, I. Inza, J.A.
Lozano (2017). Learning from proportions of positive and unlabaled samples. International Journal of Intelligent Systems, 32(2), 109-133.
- J. Ortigosa-Hernández, I. Inza, J.A. Lozano (2016). Semisupervised multiclass classification problems with scarcity of labeled data: a theoretical study. IEEE Neural Networks and Learning Systems, 27(12), 2602-2614.
- J. Hernández-González, I. Inza, J.A.
Lozano (2016). Weak supervision and other non-standard classification problems: A taxonomy. Pattern Recognition Letters, 69, 49-55.
- A. Pérez, I. Inza, J.A. Lozano (2016). Efficient approximation of probability distributions with k-order decomposable models. International Journal of Approximate Reasoning, 74, 58-87.
- J. Hernández-González, I. Inza, J.A.
Lozano (2015). Multi-dimensional learning from crowds: usefulness and application of expertise detection. International Journal of Intelligent Systems, 30(3), 326-354.
- G. Santafe, I. Inza, J.A. Lozano (2015). Dealing with the evaluation of supervised classification algorithms. Artificial Intelligence Review, 44(4), 467-508.
- J.A. Fernandes, X. Irigoien, I. Inza, J.A. Lozano, N. Goikoetxea, A. Pérez (2015). Evaluating machine-learning techniques for recruitment forecasting of seven North East Atlantic fish species. Ecological Informatics, 25, 35-42.
- P. Rozas-Larraondo, I. Inza, J.A. Lozano (2014). A method for wind speed forecasting in airports based on non-parametric regression. Weather and Forecasting, 29, 1332-1342.
- R. Sagarna, A. Mendiburu, I.
Inza, J.A. Lozano (2014).
Assisting in search heuristics selection through multidimensional
supervised classification: A case study on software testing.
Information Sciences, 258, 122-139.
- J. Hernández-González, I. Inza, J.A.
Lozano (2013).
Learning Bayesian network classifiers from label
proportions. Pattern Recognition,
46(12), 3425-3440.
- J.L. Flores, I. Inza, P.
Larrañaga, B. Calvo (2013).
A new measure for gene expression biclustering based on
non-parametric correlation. Computer Methods and Programs
in Biomedicine, 112(3), 367-397.
- J.A. Fernandes, J.A. Lozano,
I. Inza, X. Irigoien, A. Pérez, J.D. Rodríguez (2013).
Supervised
pre-processing approaches in multiple class variables classification
for fish recruirment forecasting. Environmental Modelling &
Software, 40, 245-254.
- B. Calvo, I. Inza, P.
Larrañaga, J.A. Lozano (2012).
Wrapper positive Bayesian network classifiers. Knowledge
and Information Systems, 33(3), 631-654.
- J. Ortigosa-Hernández, J.D.
Rodriguez, L. Alzate, M. Lucania I. Inza, J.A. Lozano (2012).
Approaching Sentiment Analysis by Using Semi-supervised Learning of
Multi-dimensional Classifiers. Special Issue in Data Mining
Applicacions and Case Studies. Neurocomputing journal,
92, 98-115
- A. Garcia-Bilbao, R.
Armañanzas, Z. Ispizua, B. Calvo, A. Alonso-Varona, I. Inza, P.
Larrañaga, G. López-Vivanco, B. Suárez-Merino, M. Betanzos (2012).
Identification of a biomarker panel for colorectal cancer diagnosis.
BMC Cancer,
12:43.
- R. Armañanzas, Y. Saeys, I.
Inza, M. García-Torres, C. Bielza, Y. van de Peer, P. Larrañaga
(2011). Peakbin selection in mass spectrometry data using a
consensus approach with estimation of distribution algorithms.
IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 8(3), 760-774.
- J.A. Fernandes, X. Irigoien,
N. Goikoetxea, J.A. Lozano, I. Inza, A. Pérez, A. Bode (2010).
Fish
recruitment prediction, using robust supervised classification
methods. Ecological Modelling, 221(2), 338-352.
- A. Pérez, P. Larrañaga, I.
Inza (2009). Bayesian classifiers based on kernel estimation: Flexible
classifiers. International Journal of Approximate
Reasoning, 50(2), 341-362.
- R. Armañanzas, B. Calvo, I.
Inza, M. López-Hoyos, V. Martínez-Taboada, E. Ucar, I. Bernales, A.
Fullaondo, P. Larrañaga, A. M. Zubiaga (2009).
Microarray analysis
of autoimmune diseases by machine learning procedures. IEEE
Transactions on Information Technology in Biomedicine,
13(3), 341-350.
- J.A. Fernandes, X. Irigoien,
J.A. Lozano, I. Inza (2009).
Optimizing the number of
classes in automated zooplankton classification. Journal
of Plankton Research, 31(1), 19-29.
- D. Otaegui, S.E. Baranzini,
R. Armañanzas, B. Calvo, M. Muñoz-Culla, P. Khankhanian, I. Inza,
J.A. Lozano, T. Castillo-Triviño, A. Asensio, J. Olaskoaga, A. López
de Munain (2009).
Differential micro RNA expression in PBMC from multiple sclerosis
patients.
PLoS ONE, 4(7), e6309.
- A. Sáenz, M. Azpitarte, R.
Armañanzas, F. Leturq, A. Alzualde, I. Inza, F. García-Bragado, G.
De la Herran, J. Corcuera, A. Cabello, C. Navarro, C. De la Torre,
E. Gallardo, I. Illa, A. López de Munain (2008).
Gene expression profiling in Limb-Girdle Muscular Dystrophy 2A.
PLoS ONE, 3(11), e3750.
- R. Armañanzas, I. Inza, R.
Santana, Y. Saeys, J.L. Flores, J.A. Lozano, Y. Van de Peer, R.
Blanco, V. Robles, C. Bielza, P. Larrañaga (2008).
A review of
estimation of distribution algorithms in bioinformatics. BioDataMining,
1(6).
- R. Armañanzas, I. Inza, P.
Larrañaga (2008).
Detecting reliable gene interactions by a
hierarchy of Bayesian network classifiers. Computer Methods
and Programs in Biomedicine, 91(2), 110-121.
- Co-organized event: ECML PKDD 2008 -
Workshop on New
Challenges for Feature Selection in Data Mining and Knowledge Discovery
- FSDM08
Accepted papers were published as a Journal of Machine Learning
Research Workshop and Conference Proceedings,
Volume 4.
- Y. Saeys, I. Inza, P. Larrañaga (2007).
A review of feature selection techniques in bioinformatics.
Bioinformatics, 23, 2507-2517.
- J.L. Flores, I. Inza, P. Larrañaga (2007).
Wrapper discretization by means of estimation of distribution
algorithms. Intelligent Data Analysis Journal, 11(5),
525-545.
- A. Pérez, P. Larrañaga, I. Inza (2006).
Supervised
classification with conditional Gaussian networks: increasing the
structure complexity from naive Bayes. International Journal of
Approximate Reasoning, 43(1), 1-25.
- P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza,
J. A. Lozano, R. Armañanzas, G. Santafé, A. Pérez, V. Robles (2006).
Machine Learning in Bioinformatics.
Briefings in Bioinformatics, 7(1), 86-112.
- P. Larrañaga, J.A. Lozano, J.M. Peña, I. Inza (guest
editors, 2005).
Special
issue on "Probabilistic Graphical Models for Classification".
Machine Learning, vol. 59(3).
- R. Blanco, I. Inza, M. Merino, J. Quiroga and P. Larrañaga
(2005).
Feature selection in Bayesian classifiers for the prognosis
of survival of cirrhotic patients treated with TIPS. Journal
of Biomedical Informatics, vol. 38(5), 376-388.
- I. Inza, P. Larrañaga, R. Blanco, A.J. Cerrolaza (2004).
Filter
versus wrapper gene selection approaches in DNA microarray domains.
Artificial Intelligence in Medicine, special issue in "Data
mining in genomics and proteomics", 31(2), 91-103.
- R. Blanco, P. Larrañaga, I. Inza, B. Sierra (2004).
Gene
selection for cancer classification using wrapper approaches.
International Journal of Pattern Recognition and Artificial Intelligence,
18(8), 1373-1390.
- R. Blanco, I. Inza, P. Larrañaga (2003).
Learning
Bayesian networks in the space of structures by estimation of distribution
algorithms. International Journal of Intelligent Systems,
18, 205-220.
- I. Inza, B. Sierra, R. Blanco, P. Larrañaga (2002).
Gene selection by sequential wrapper approaches in microarray cancer
class prediction. Journal of Intelligent and Fuzzy Systems,
12/1, 25-34.
- I. Inza, M. Merino, P. Larrañaga, J. Quiroga, B. Sierra, M. Girala
(2001). Feature subset
selection by genetic algorithms and estimation of distribution algorithms.
A case study in the survival of cirrhotic patients treated with
TIPS. Artificial Intelligence in Medicine, 23/2, 187-205.
- I. Inza, P. Larrañaga, B. Sierra (2001).
Feature Subset Selection by Bayesian networks: a comparison with
genetic and sequential algorithms. International Journal
of Approximate Reasoning, 27/2, 143-164.
- B.Sierra, N. Serrano, P.Larrañaga, E.J. Plasencia, I. Inza, J.J.
Jimenez, P. Revuelta, M.L. Mora (2001).
Using Bayesian networks in the construction of a bi-level multi-classifier.
Artificial Intelligence in Medicine, 22, 233-248.
- J.M. Peña, J.A. Lozano, P. Larrañaga, I. Inza (2001).
Dimensionality Reduction in Unsupervised Learning of Conditional
Gaussian Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(6), 590-603.
- I. Inza, P. Larrañaga, R. Etxeberria, B. Sierra (2000).
Feature
Subset Selection by Bayesian networks based optimization.
Artificial Intelligence, 123(1-2), 157-184.
- I. Inza, P. Larrañaga, B. Sierra, R. Etxeberria, J.A. Lozano,
J.M. Peña (1999).
Representing
the joint behaviour of machine learning inducers by Bayesian networks.
Pattern Recognition Letters, 20 (11-13), 1201-1209.
- P. Larrañaga, C. Kuijpers, R. Murga, I. Inza, S. Dizdarevich
(1999).
Evolutionary algorithms
for the travelling salesman problem: A review of representations
and operators. Artificial Intelligence Review, 13, 129-170.
- New book on Estimation of
Distribution Algorithms (EDAs).
"Towards a New Evolutionary Computation" (Springer, 2006). Lozano,
Larrañaga, Inza, Bengoetxea (eds.)
- My Doctoral Dissertation,
"Advances
in Supervised Classification based on Probabilistic Graphical Models"
(June, 2002). (Supervisor: Pedro Larrañaga)
- Book Chapters:
- I. Inza, B. Calvo, R.
Armañanzas, E. Bengoetxea, P. Larrañaga, J.A. Lozano (2010). Machine
learning: an indispensable tool in bioinformatics. R. Matthiesen
(ed.).
Bioinformatics Methods in Clinical Research. Springer. (2nd
chapter of the book).
- P. Larrañaga, I. Inza, J.L. Flores (2005). A guide to the
literature on inferring genetic networks by probabilistic graphical
models. F. Azuaje, J. Dopazo (eds.).
Data
Analysis and Visualization in Genomics and Proteomics. John
Wiley and Sons Ltd., 215-238.
- I. Inza, R. Armañanzas, G.
Santafé (2006). Una aproximación al software WEKA.
Aprendizaje Automático: conceptos básicos y avanzados. B.
Sierra (ed.), chapter 23, pp. 477-483. Pearson Educación, Madrid.
(In Spanish).
- R. Blanco, I. Inza, P. Larrañaga (2004). Learning Bayesian networks
by floating search methods.
Advances
in Bayesian Networks.
J.A. Gámez, S. Moral, A. Salmerón (eds.), Physica
Verlag - Springer Verlag, 181-200.
- I. Inza, P. Larrañaga, B. Sierra (2001). Estimation of Distribution
Algorithms for feature subset selection in large dimensionality
domains.
Data
Mining: A Heuristic Approach. H. Abbass, R. Sarker, C. Newton
(eds.), IDEA Group Publishing, 97-116.
- I. Inza, P. Larrañaga, B. Sierra (2001). Feature Subset Selection
by Estimation of Distribution Algorithms.
Estimation
of Distribution Algorithms. A new tool for Evolutionary Computation.
P. Larrañaga, J.A. Lozano (eds.), Kluwer Academic Publishers.
- I. Inza, P. Larrañaga, B. Sierra (2001). Feature Weighting for
Nearest Neighbor by Estimation of Distribution Algorithms.
Estimation
of Distribution Algorithms. A new tool for Evolutionary Computation.
P. Larrañaga, J.A. Lozano (eds.), Kluwer Academic Publishers.
- Refereed Conference Papers:
- M. Martinez-Garcia, S. Garcia-Gutierrez, R. Armañanzas, A. Diaz, I. Inza, J.A. Lozano (2022). Learning a battery of COVID-19 mortality prediction models by multi-objective optimization. International Conference on Artificial Intelligence in Medicine (AIME'2022). Halifax, Canada.
- A. Arregi, I. Inza, I. Bediaga (2022). Vibration analysis for rotatory elements wear detection in paper mill machine. International Conference on Database and Expert Systems Applications (DEXA). Vienna, Austria.
- M. Soric, D. Pongrac, I. Inza (2020). Using convolutional neural network for chest X-ray image classification. 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). Opatija, Croatia.
- P. Rozas-Larraondo, I. Inza, J.A.
Lozano (2017). Automating weather forecasts based on convolutional networks. ICML 2017 Workshop on Deep Structured Prediction. Sydney, Australia.
- J. Hernández, I. Inza, J.A.
Lozano (2015). A novel weakly supervised problem: learning from positive-unlabeled proportions.
Spanish
Conference on Artificial Intelligence. Albacete, Spain.
- J. Hernández, I. Inza, J.A.
Lozano (2013).
Learning from crowds in multi-dimensional classification domains.
Spanish
Conference on Artificial Intelligence.
Lecture
Notes in Computer Science 8109, "Advances in Artificial
Intelligence", 352-362. Madrid, Spain.
- A. Pérez, I. Inza, J.A.
Lozano (2013).
Multidimensional k-interaction classifier: taking advantage
of all the information contained in low order interactions.
Spanish
Conference on Artificial Intelligence.
Lecture
Notes in Computer Science 8109, "Advances in Artificial
Intelligence", 393-401. Madrid, Spain.
- J.A. Fernandes, J.A. Lozano,
I. Inza, X. Irigoien, J.D. Rodríguez, A. Pérez (2013). Supervised
pre-processing approaches in multiple class variables classification
for fish recruitment forecasting.
ICES (International Council for the Exploration of the Sea) Annual
Science Conference. Session on "Advantages of Bayesian analysis
for fisheries and ecological research". Reykjavik, Iceland.
- J. Hernández, I. Inza (2011).
Learning naive Bayes models for multiple-instance learning with
label proportions. Spanish
Conference on Artificial Intelligence. Lecture Notes in
Artificial Intelligence 7023, 134-144. San Cristobal de La Laguna,
Tenerife, Spain.
- J.A. Fernandes, X. Irigoien,
N. Goikoetxea, A. Uriarte, J.A. Lozano, I. Inza (2009). Robust
approaches to supervised machine learning techniques for seven fish
species recruitment prediction in fisheries.
ICES/PICES/UNCOVER
Symposium 2009 on Rebuilding Depleted Fish Stocks - Biology,
Ecology, Social Science and Management Strategies. Warnemünde/Rostock,
Germany.
- J.A. Fernandes, X. Irigoien,
A. Uriarte, L. Ibaibarriaga, J.A. Lozano, I. Inza (2009). Anchovy
recruitment mixed long series prediction using supervised
classification. Working document to the
ICES benchmark workshop on short lived species (WKSHORT).
Bergen, Norway.
- R. Armañanzas, B. Calvo, I.
Inza, P. Larrañaga, I. Bernales, A. Fullaondo, A.M. Zubiaga (2007).
Bayesian classifiers with consensus gene selection: a case study in
the systemic lupus erythematosus. 14th European Conference for
Mathematics in Industry,
Progress in Industrial Mathematics ECMI'06.
Madrid, Spain,
560-565.
- A. García, A. Freije, R.
Armañanzas, I. Inza, Z. Ispizua, P. Heredia, P. Larrañaga, G. López
Vivanco, T. Suárez, M. Betanzos (2007).
Gene expression model for the classification of human colorectal
cancer and potential CRC biomarkers search.
Drug Discovery Technology,
poster session. London, UK.
- A. Pérez, P. Larrañaga, I. Inza
(2006). Information theory and classification error in probabilistic
classifiers.
Discovery
Science, DS-2006, Lecture Notes in Computer Science 4265. Barcelona, Spain,
347-351.
- A. García, A. Freije, R.
Armañanzas, I. Inza, Z. Ispizua, P. Heredia, P. Larrañaga, G. López
Vivanco, T. Suárez, M. Betanzos (2006).
Simultaneous search of genomic and proteomic biomarkers in human colorectal
cancer. Genomes to
Systems Conference, poster session. Manchester, UK.
I teach in 3th course of the
Computer
Engineering Degree the
"Data
Mining"
subject. I also used to teach "Lineal
optimization" (2nd course, teached in basque language=euskara).
I have (co)supervised the following Computer
Engineering Degree Thesis
projects in the Computer Engineering Faculty.
I teach in the following
Master-Program a "Advanced Machine Learning" subject: "Master on
Computational Engineering and Intelligent Systems" (taught in
the Computer Science Faculty, University of the Basque Country). I have
(co)supervised the following Master Thesis
projects in this Master program.
I also teach a "Machine Learning" course in the "Erasmus Mundus - Language and Communication Technology" Master.
|