Bibliografía. Oscilaciones

home.gif (1232 bytes)up.gif (1005 bytes)

Movimiento Armónico
Simple. M.A.S.


marca.gif (847 bytes)Bibliografía


Alvarez, Luis W., Senecal G. Mechanical analog of the synchrotron, illustrating phase stability and two-dimensional focusing. Am. J. Phys. 43 (4) April 1972, pp. 293-296

Amengual Colom A., Oscilaciones en una máquina de Atwood. Revista Española de Física.V 20, nº 1, Enero- Marzo 2006, págs. 43-47

Bacon R. H., The motion of a piston, Am. J. Phys.  (10) 1942, pp. 145-147

Bacon M. E., Do Dai Nguyen. Real-world damping of a physical pendulum. Eur. J. Phys. 26 (2005) pp. 651-655

Barrat C., Strobel G. L. Sliding friction and the harmonic oscillator. Am. J. Phys. 49 (5) May 1981, pp. 500-501.

Berg R. E. Pendulum waves: A demonstration of wave motion using pendula. Am. J. Phys. 59 (2), February 1991, pp. 186-187

Berg R. H, Marshall T. Wilberforce pendulum oscillations and normal modes. Am. J. Phys. 59 (1) January 1991, pp. 32-38.

Brito L. Fiolhais M, Paixao J. Cylinder on an incline as a fold catastrophe system. Eur. J. Phys. 24 (2003) pp. 115-123.

Black M. A. A one-dimensional approach to Gruneisen's constant. Phys. Educ pp. 515-518

Butikov. E. The rigid pendulum -an antique but evergreen physical model. Eur. J. Phys. 20 (1999) pp. 429-441.

Cayton T. E., The laboratory spring-mass oscillator: an example of parametric instability. Am. J. Phys. 45 (8) August 1977, pp. 723-732.

Crawford Jr. Ondas, Berkeley Physics Course. Editorial Reverté. (1977)

Crutchfield J. P., Doyne Farmer J. Caos. Investigación y Ciencia, nº 125, Febrero 1987, págs. 16-29.

Debowska, Jakubowicz, Mazur. Computer visualization of the beating of a Wilberforce pendulum. Eur. J. Phys. 20, 1999, pp. 89-95.

De Jong M. L. Chaos and the simple pendulum. The Physics Teacher. 30, Feb. 1992, pp. 115-121

DeMarcus W. C. Classical motion of a Morse oscillator. Am. J. Phys. 46 (7) July 1978, pp. 733-734

Denny M. Stick-slip motion: an important example of self-excited oscillation. Eur. J. Phys. 25, (2004), pp. 311-322.

Detcheva V., Spassov V., A simple nonlinear oscillator: analytical amd numerical solution.  Phys. Educ. 28 (1993) pp. 39-42

Dubois M, Aften P., Bergé P. El orden caótico. Mundo Científico V-7, nº 68, Abril 1987, págs. 428-439

Flaten J. A. Parendo K. A., Pendulum waves: A lesson in aliasing. Am. J. Phys. 69 (7) July 2001, pp. 778-782

Fuertes. El modesto péndulo. Revista Española de Física, V-4, nº 3, 1990, págs. 82-86.

Gaffney C, Kagan D. Beats in an oscillator near resonance. The Physics Teacher, Vol 40, October 2002, pp. 405-407.

Gonzalo P. La ley de Hooke, masa y periodo de un resorte. Revista Española de Física, V-5, nº 1, 1991, págs. 36.

González M. I., Bol A. Controlled damping of a physical pendulum: expriments near critical conditions. Eur. J. Phys. 27 (2006) pp. 257-264

Greenhow R. C. A mechanical resonance experiment with fluid dynamic undercurrents. Am. J. Phys. 56 (4) April 1988, pp. 352-357

Jasselette P., Vandermeulen J. More on Lissajous figures. Am. J. Phys. 54 (2) February 1986, pp. 182-183

Karioris F. G., Mendelson K. S., A novel coupled oscillation demostration. Am. J. Phys. 60 (6) June 1992, pp. 508-513

Karlow E. A. Ripples in the energy of a damped harmonic oscillator. Am. J. Phys. 62 (7) July 1994, pp. 634-636

Köpf U. Wilberforce's pendulum revisited. Am. J. Phys. 58 (9) September 1990, pp. 833-837

Kotkin G. L., Serbo V. G. Problemas de Mecánica clásica. Editorial Mir 1980.  págs. 30, 159-161

Lai H. M. On the recurrence phenomenon of a resonant spring pendulum. Am. J. Phys. 52 (3) March 1984, pp. 219-223

Lapidus I. R., Motion of a harmonic oscillator with sliding friction. Am. J. Phys. 38 (1970) pp. 1360-1361

Laws P. W. A unit on oscillations, determinism and chaos for introductory physics students. Am. J. Phys. 72 (4) April 2004, pp. 446-452.

Lee S. M. The double-simple pendulum problem. Am. J. Phys. 38 (1970) pp. 536-537

Lévesque L. Revisiting the coupled-mass system and analogy with a simple band gap structure. Eur. J. Phys. 27 (2006) pp. 133-145

Lipham J. G., Pollack V. L. Constructing a “misbehaving” spring. Am. J. Phys. 46 (1), January 1978, pp. 110-111.

Lopac V., Dananic V. Energy conservation and chaos in the gravitationally driven Fermi oscillator. Am. J. Phys. 66 (10) October 1998, pp. 892-902

LoPresto M. C., Holody P. R., Measuring the damping constant for under-damped harmonic motion. The Physics Teacher 41, January 2003, pp. 22-24

Marchewka A, Abbott D., Beichner R., Oscillator damped by a constant-magnitude friction force. Am. J. Phys. 72 (4) April 2004, pp. 477-483

Mohazzabi P. Theory and examples of intrinsically nonlinear oscillators. Am. J. Phys. 72 (4) April 2004, pp. 492-498

Molina M. I. Exponential versus linear amplitude decay in damped oscillators. The Physics Teacher, Vol. 42, November 2004, pp. 485-487

Mu-Shiang Wu, W. H. Tsai. Corrections for Lissajous figures in books. Am. J. Phys. 52 (7) July 1984, pp. 657-658

Nelson R. The pendulum. Rich physics from a simple system. Am. J. Phys. 54 (2) February 1986, pp. 112-121

Núñez Yépez, Salas Brito, Vargas, Vicente. Chaos in a dripping faucet. Eur. J. Phys. 10 (1989) pp. 99-105

Olsson M. G. Why does a mass on a spring sometimes misbehave?. Am. J. Phys. 44 (12) December 1976, pp. 1211-1212.

Rañada. Movimiento caótico. Investigación y Ciencia. nº 114, Marzo 1986, págs. 12-24

Runk R. B. Stul J. L. Anderson G. L. A laboratory analog for lattice dynamics. Am. J. Phys. (31) 1963, pp. 915-921

Rusbridge M.G., Motion of the sprung pendulum. Am. J. Phys. 48 (2) February 1980, pp. 146-151.

Sendiña I., Sanjuan M. Sistemas lineales y no lineales: del oscilador armónico al oscilador caótico. Revista Española de Física, V-16, nº 3, 2002, págs. 30-35.

Schmidt T., Marhl M. A simple mathematical model of a dripping tap. Eur. J. Phys. 18 (1997), 377-383

Simbach J. C., Priest J., Another look at damped physical pendulum. Am. J. Phys. 73 (11) November 2005, pp. 1079-1080

Soares de Castro A. Damped harmonic oscillator: A correction in some standard textbooks. Am. J. Phys. 54 (8) August 1986, pp. 741-742

Solaz J. J. Una práctica con el péndulo transformada en investigación. Revista Española de Física, V-4, nº 3, 1990, págs. 87-94.

Thomson D. A simple model of thermal expansion. Eur. J. Phys. 17 (1996), pp. 85-87

Tufillaro N. B., Mello T. M., Choi Y. M. Albano A. M. Period doubling of a bouncing ball, J. Physique 47 Septembre (1986) pp. 1477-1482

Tufillaro N. B., Albano A. M., Chaotic dynamics of a bouncing ball. Am. J. Phys. 54 (10) October 1986, pp. 939-944

Tufillaro N. B., Abott T. A. Griffiths D. J. Swinging Atwood’s machine. Am. J. Phys. 52 (10) October 1984, pp. 895-903

Varios autores. La Ciencia del caos. Número especial de la revista Mundo Científico, nº 115, Julio-Agosto de 1991.

Vega D., Vera S., Juan A., A computer-aided modelling analogue for lattice dynamics. Eur. J. Phys. 18 (1987) pp. 398-403

Walker J. S., Soule T. Chaos in a simple impact oscillator: The Bender bouncer. Am. J. Phys. 64 (4) April 1996, pp. 397-409

Weigman B. J., Perry H. F. Experimental determination of normal frequencies in coupled mechanical oscillator systems using fast Fourier transform: An advanced undergarduate laboratory. Am. J. Phys. 61 (11) November 1993, pp. 1022-1027

Xiao-jun Wang, Schmitt C. Payne M. Oscillations with three dammping effects. Eur. J. Phys. 23 (2002) pp. 155-164.

Zheng, Mears, Hall, Pushkin. Teaching the nonlinear pendulum. The Physics Teacher, Vol. 32, April 1984, pp. 248-251.

Zonetti L. F. C, Camargo A.S. S , Sartori J, de Sousa D.F., Nunes L. A. O. A demostration of dry and viscous damping of an oscillating pendulum. Eur. J. Phys. 20 (1999) pp. 85-88