Procedimiento numérico
Resolver el sistema de ecuaciones diferenciales
con las siguientes condiciones iniciales, en el instante τ=0, ξ=ξ0, (dξ/dτ)0=0,θ1=θ10, θ2=1-θ10
public class Estado {
double t;
double x;
double y;
double z;
double v;
public Estado(double t, double x, double v, double y, double z) {
this.t=t;
this.x=x;
this.y=y;
this.z=z;
this.v=v;
}
}
public abstract class RungeKutta {
double h;
RungeKutta(double h){
this.h=h;
}
public void resolver(Estado e){
//variables auxiliares
double k1, k2, k3, k4;
double l1, l2, l3, l4;
double m1, m2, m3, m4;
double q1, q2, q3, q4;
//condiciones iniciales
double x=e.x;
double v=e.v;
double t=e.t;
double y=e.y;
double z=e.z;
//for(double t=t0; t<tf; t+=h){
k1=h*v;
l1=h*f(x, v, t, y, z);
m1=h*g(x, v, t, y, z);
q1=h*c(x, v, t, y, z);
k2=h*(v+l1/2);
l2=h*f(x+k1/2, v+l1/2, t+h/2, y+m1/2, z+q1/2);
m2=h*g(x+k1/2, v+l1/2, t+h/2, y+m1/2, z+q1/2);
q2=h*c(x+k1/2, v+l1/2, t+h/2, y+m1/2, z+q1/2);
k3=h*(v+l2/2);
l3=h*f(x+k2/2, v+l2/2, t+h/2, y+m2/2, z+q2/2);
m3=h*g(x+k2/2, v+l2/2, t+h/2, y+m2/2, z+q2/2);
q3=h*c(x+k2/2, v+l2/2, t+h/2, y+m2/2, z+q2/2);
k4=h*(v+l3);
l4=h*f(x+k3, v+l3, t+h, y+m3, z+q3);
m4=h*g(x+k3, v+l3, t+h, y+m3, z+q3);
q4=h*c(x+k3, v+l3, t+h, y+m3, z+q3);
//nuevo estado del sistema
x+=(k1+2*k2+2*k3+k4)/6;
v+=(l1+2*l2+2*l3+l4)/6;
y+=(m1+2*m2+2*m3+m4)/6;
z+=(q1+2*q2+2*q3+q4)/6;
// }
//cambia el estado
e.x=x;
e.v=v;
e.y=y;
e.z=z;
e.t=t+h;
}
abstract public double f(double x, double v, double t, double y, double z);
abstract public double g(double x, double v, double t, double y, double z);
abstract public double c(double x, double v, double t, double y, double z);
}
public class Sistema extends RungeKutta{
final double gamma=5.0/3;
double delta;
Sistema(double delta, double h){
super(h);
this.delta=delta;
}
public double f(double x, double v, double t, double y, double z){
double temp=y/x-z/(1-x)-delta*v*(Math.sqrt(y)/x+ |
