
Procedimiento numérico
Resolver el sistema de ecuaciones diferenciales
con las siguientes condiciones iniciales, en el instante τ=0, ξ=ξ0, (dξ/dτ)0=0,θ1=θ10, θ2=1-θ10
public class Estado { double t; double x; double y; double z; double v; public Estado(double t, double x, double v, double y, double z) { this.t=t; this.x=x; this.y=y; this.z=z; this.v=v; } } public abstract class RungeKutta { double h; RungeKutta(double h){ this.h=h; } public void resolver(Estado e){ //variables auxiliares double k1, k2, k3, k4; double l1, l2, l3, l4; double m1, m2, m3, m4; double q1, q2, q3, q4; //condiciones iniciales double x=e.x; double v=e.v; double t=e.t; double y=e.y; double z=e.z; //for(double t=t0; t<tf; t+=h){ k1=h*v; l1=h*f(x, v, t, y, z); m1=h*g(x, v, t, y, z); q1=h*c(x, v, t, y, z); k2=h*(v+l1/2); l2=h*f(x+k1/2, v+l1/2, t+h/2, y+m1/2, z+q1/2); m2=h*g(x+k1/2, v+l1/2, t+h/2, y+m1/2, z+q1/2); q2=h*c(x+k1/2, v+l1/2, t+h/2, y+m1/2, z+q1/2); k3=h*(v+l2/2); l3=h*f(x+k2/2, v+l2/2, t+h/2, y+m2/2, z+q2/2); m3=h*g(x+k2/2, v+l2/2, t+h/2, y+m2/2, z+q2/2); q3=h*c(x+k2/2, v+l2/2, t+h/2, y+m2/2, z+q2/2); k4=h*(v+l3); l4=h*f(x+k3, v+l3, t+h, y+m3, z+q3); m4=h*g(x+k3, v+l3, t+h, y+m3, z+q3); q4=h*c(x+k3, v+l3, t+h, y+m3, z+q3); //nuevo estado del sistema x+=(k1+2*k2+2*k3+k4)/6; v+=(l1+2*l2+2*l3+l4)/6; y+=(m1+2*m2+2*m3+m4)/6; z+=(q1+2*q2+2*q3+q4)/6; // } //cambia el estado e.x=x; e.v=v; e.y=y; e.z=z; e.t=t+h; } abstract public double f(double x, double v, double t, double y, double z); abstract public double g(double x, double v, double t, double y, double z); abstract public double c(double x, double v, double t, double y, double z); } public class Sistema extends RungeKutta{ final double gamma=5.0/3; double delta; Sistema(double delta, double h){ super(h); this.delta=delta; } public double f(double x, double v, double t, double y, double z){ double temp=y/x-z/(1-x)-delta*v*(Math.sqrt(y)/x+ |
