# Procedimiento numérico

### Calcular la función

$F\left(x\right)\approx \frac{15}{{\pi }^{4}}\sum _{n=1}^{N}\frac{\mathrm{exp}\left(-nx\right)}{n}\left({x}^{3}+\frac{3{x}^{2}}{n}+\frac{6x}{{n}^{2}}+\frac{6}{{n}^{3}}\right)$

 public class Aplicacion { public static void main(String[] args) { double x=0.2; double suma=0; for(int i=1; i<100; i++){ suma+=Math.exp(-i*x)*(x*x*x+3*x*x/i+6*x/(i*i)+6.0/(i*i*i))/i; } System.out.println(suma*15/(Math.PI*Math.PI*Math.PI*Math.PI)); } }

### Resolver la ecuación trascendente

$\delta ·{T}^{4}\frac{{R}^{2}}{{r}^{2}}=4{T}_{s}^{4}F\left(\frac{1200}{{T}_{s}}\right)$

 public class Funcion extends Ecuacion{ public double f(double x){ double y=2691089.83-x*x*x*x*F(1200.0/x); return y; } private double F(double x){ double suma=0.0; for(int i=1; i<100; i++){ suma+=Math.exp(-i*x)*(x*x*x+3*x*x/i+6*x/(i*i)+6.0/(i*i*i))/i; } return (suma*15/(Math.PI*Math.PI*Math.PI*Math.PI)); } } public class Aplicacion { public static void main(String[] args) { Ecuacion e=new Funcion(); try{ System.out.println(e.puntoMedio(50, 400)); }catch(RaizExcepcion ex){ System.out.println(ex.getMessage()); } } }

Resolver la ecuación trascendente

$0.61+1000=4\pi ·{1.0}^{2}·5.67·{10}^{-8}{T}_{s}^{4}F\left(\frac{1200}{{T}_{s}}\right)$

Solamnete hay que cambiar la definición de la función f(x)

 public class Funcion extends Ecuacion{ public double f(double x){ double y=1404339344-x*x*x*x*F(1200.0/x); return y; } }