La fuerza que ejerce la presión atmosférica
En esta página, se estudia un sistema de masa variable, y se comprueba los efectos de la fuerza que ejerce la presión atmosférica.
Disponemos de un tubo de PVC de longitud L y sección A, sellado por ambos extremos, que tiene en su interior una pelota de ping-pong. El diámetro del tubo es un poco mayor que el diámetro de la pelota, de modo que ésta pueda moverse a lo largo del tubo.
![]() |
Se retira el aire en el interior del tubo, conectándolo
a una bomba de vacío. Se rompe con un objeto punzante la lámina que
sella el extremo
izquierdo, el aire penetra en el interior del tubo y empuja a la pelota,
que se mueve a lo largo del tubo, hasta que llega al otro extremo, rompe
la tapa derecha y sale a gran velocidad.
Tenemos de este modo, un cañón cuyo proyectil es impulsado por la fuerza que ejerce la presión atmosférica. La sucesión de imágenes de la figura nos permite entender como opera este dispositivo. |
Movimiento del proyectil en el tubo de lanzamiento
Supongamos que el proyectil tiene sección A y masa m. La fuerza que ejerce la presión atmosférica p0 sobre el proyectil es p0·A. Pero esta fuerza ha de acelerar el proyectil de masa m y la columna de aire de masa ρAx por detrás del proyectil (en color amarillo en la figura).
La ecuación del movimiento es
Si el proyectil parte del reposo v=0 en el instante t=0, la expresión de la velocidad v en función del tiempo t es
Para obtener la posición x del proyectil en función del tiempo t tenemos que integrar
con la condición inicial de que en el instante t=0, el proyectil parte del origen x=0.
La velocidad v del proyectil en función del tiempo es
Para un cañón infinitamente largo, cuando t→∞, la velocidad final tiende hacia
Esta velocidad puede comparase con la velocidad del sonido en el aire
Donde γ=1.4 es el índice adiabático del aire
Ejemplo:
Una pelota de ping-pong tiene una masa m=2.5 g y un diámetro de 3.8 cm, o una sección trasversal de A=1.13·10-3 m2, la densidad del aire es ρ=1.29 kg/m3 y la presión atmosférica es de p0=1.013·105 Pa
Calculamos la velocidad final del proyectil en un tubo de longitud L=1.5 m
Movimiento del proyectil fuera del tubo.
Para simular el movimiento de la pelota de ping-pong fuera del tubo de lanzamiento, suponemos que sobre el proyectil actúa una fuerza de rozamiento proporcional al cuadrado de la velocidad.
Integramos esta ecuación sabiendo que en el instante t=t0, el móvil lleva una velocidad v0, es decir, la velocidad final al salir del tubo de lanzamiento.
Integramos de nuevo, para obtener la posición x en función del tiempo, sabiendo que en el instante t0 parte de la posición x0=L.
Actividades
Se introduce
-
La masa en gramos de la pelota de ping-pong, actuando en la barra de desplazamiento titulada Masa pelota
-
La longitud del tubo, en metros, actuando en la barra de desplazamiento titulada Longitud tubo
-
La densidad del aire vale ρ=1.29 kg/m3
-
La el área de la sección trasversal de la pelota de ping-pong se ha fijado en A=1.13·10-3 m2
-
La presión atmosférica vale p0=1.013·105 Pa
Se pulsa el botón titulado Empieza
Primero, se conecta el tubo a una bomba de vacío, y un manómetro nos señala la disminución de la presión en el tubo sellado por ambos extremos.
A continuación, se observa el movimiento del proyectil (en color rojo) a lo largo del tubo, y la columna de aire (en color amarillo) detrás.
En la parte superior del applet, se representa, la velocidad v del proyectil en función de la posición x, medida desde la parte izquierda del tubo que se toma como origen.
El proyectil alcanza una velocidad máxima al final del tubo y luego, disminuye debido al rozamiento con el aire. En esta “experiencia” anotaremos la velocidad final v0 y la relacionaremos con la masa m del proyectil y con la longitud L del tubo.
Referencias
Ayars E., Buchholtz L. Analysis of the vacuum cannon. Am. J. Phys. 72 (7) July 2004, pp. 961-963.