

Difracción Fraunhofer producida por una abertura circular
En la figura, se muestra el obstáculo, una abertura circular de radio a, y un punto P situado en una pantalla a una distancia R del obstáculo. La recta que une el centro del círculo y el punto, forma un ángulo θ con el eje Z.
La expresión de la intensidad I(x, y) registrada en el punto P debido a la difracción de ondas planas de longitud de onda λ por el obstáculo, es
Donde I(0) es la intensidad registrada en el origen de la pantalla
Jn(α) es la función de Bessel de orden n.
Máximos y mínimos
-
Los máximos de intensidad se producen cuando
Las funciones de Bessel tiene la siguiente relación de recurrencia
Aplicando esta propiedad a la función J1(α)
Se concluye que los máximos secundarios de intensidad son los ceros de la función de Bessel J2(α) que se calculan por procedimientos numéricos.
J2(α)=0
-
Los mínimos de intensidad son los ceros de la función de Bessel J1(α) que se calculan por procedimientos numéricos.
J1(α)=0
Ahora bien J1(α) presenta un cero para α=0, y este corresponde a un máximo de intensidad, ya que
En la siguiente tabla, se proporcionan los primeros ceros de las funciones de Bessel J1(x) y J2(x).
J1(x) J2(x) 3.8317 5.1356 7.0156 8.4172 10.1735 11.6198 13.3237 14.7960 16.4706 17.9598 196159 21.1170 22.7601 24.2701 25.9037 27.4206 29.0468 30.5692 32.1897 33.7165
Fuente: Puig Adam P., Curso teórico-práctico de ecuaciones diferencias aplicado a la Física y Técnica. Biblioteca Matemática (1950).pág. 156.
Actividades
Se pulsa el botón titulado Dibuja
Medida del radio de la abertura circular
Cuando iluminamos una abertura circular podemos determinar su radio contando el número de franjas que produce en una pantalla la luz difractada en un determinado intervalo angular.
Iluminamos una abertura circular de radio a del orden de μm, 10-6 m con luz procedente de un láser He-Ne de longitud de onda λ=632.8·10-9 m. Observamos la intensidad de la luz difractada en un intervalo angular entre 30 y 60º.
- En la parte superior del applet, se proporciona el gráfico de la intensidad
- En la parte central del applet, se representa la intensidad en escala de grises. Podemos contar en número de franjas de difracción de color claro o de color oscuro en dicho intervalo angular, que será igual al número de máximos o mínimos, respectivamente.
- En la parte inferior del applet, se representa el radio de la abertura circular en función del número de franjas. Podemos comprobar la relación aproximadamente lineal entre estas dos magnitudes.
La intensidad correspondiente al máximo inmediatamente anterior a θ=30º se toma como unidad.
Podemos contar los máximos y mínimos de intensidad en el intervalo angular 30º-60º
Se pulsa el botón titulado Nuevo
Se introduce
- El radio a de la abertura circular (en μm) actuando en la barra de desplazamiento.
Se pulsa el botón titulado Radio
- Se cambia el valor del radio de la abertura circular
Se pulsa el botón titulado Radio
Y así, sucesivamente
Referencias
Hecht E., Zajac A. Óptica. Addison-Wesley Iberoamericana (1977), págs. 369-379
Chee Sheng Fong, Black N. D. Kiefer P. A., Shaw R. A. An experiment on the Rayleigh instability of charged liquid drops. Am. J. Phys. 75 (6) June 2007, pp. 499-503

