Transformada de Laplace

Hallar la transformada de Laplace

  1. 6sen3t-7cos8t

  2. >> syms t;
    >> Ft=6*sin(3*t)-7*cos(8*t);
    >> fs=laplace(Ft)
    fs =18/(s^2 + 9) - (7*s)/(s^2 + 64)
  3. 2ch3t+4sh3t

  4. >> syms t;
    >> Ft=2*cosh(3*t)+4*sinh(3*t);
    >> fs=laplace(Ft)
    fs =(2*s)/(s^2 - 9) + 12/(s^2 - 9)
  5. (t2+3)2

  6. >> syms t;
    >> Ft= (t^2+3)^2;
    >> fs=laplace(Ft) 
    fs = 9/s + 12/s^3 + 24/s^5
  7. t4e2t

  8. >> syms t;
    >> Ft=t^4*exp(2*t);
    >> fs=laplace(Ft)
    fs =24/(s - 2)^5
  9. e-tcos3t

  10. >> syms t;
    >> Ft=exp(-t)*cos(3*t);
    >> fs=laplace(Ft) 
    fs = (s + 1)/((s + 1)^2 + 9) 
  11. etcos32t

  12. >> syms t;
    >> Ft=exp(t)*(cos(2*t))^3;
    >> fs=laplace(Ft)
    fs =(s^3 - 3*s^2 + 31*s - 29)/(((s - 1)^2 + 4)*((s - 1)^2 +   36))
  13. e-5t(2sh2t-6cht)

  14. >> syms t;
    >> Ft=exp(-5*t)*(2*sinh(2*t)-6*cosh(t));
    >> fs=laplace(Ft)  
    fs =4/((s + 5)^2 - 4) - (6*(s +  5))/((s + 5)^2 - 1)       
  15. sent t

  16. >> syms t;
    >> Ft=sin(t)/t;
    >> fs=laplace(Ft) 
    fs = atan(1/s)
  17. cos btcos at 2t

  18. >> syms t a b;
    >> Ft=(cos(b*t)-cos(a*t))/(2*t);
    >> fs=laplace(Ft)
    fs = log(a^2/s^2 + 1)/4 - log(b^2/s^2 + 1)/4

    1 4 ln( s 2 + a 2 s 2 + b 2 )

  19. 1cos 2t 4t

  20. >> syms t;
    >> Ft=(1-cos(2*t))/(4*t);
    >> fs=laplace(Ft) 
    fs = log(s^2 + 4)/8 - log(s)/4
  21. t2cos2t

  22. >> syms t;
    >> Ft=t^2*cos(2*t);
    >> fs=laplace(Ft) 
    fs =(8*s^3)/(s^2 + 4)^3 - (6*s)/(s^2 + 4)^2
    >> simplify(fs) 
    ans = (2*s*(s^2 - 12))/(s^2 + 4)^3 
  23. (t2-2t+5)sent

  24. >> syms t;
    >> Ft=(t^2-2*t+5)*sin(t);
    >> fs=laplace(Ft)
    fs = (5*s^4 - 4*s^3 + 16*s^2 - 4*s + 3)/(s^6 + 3*s^4 + 3*s^2 + 1)
    >> simplify(fs)
    ans = (5*s^4 - 4*s^3 + 16*s^2 - 4*s + 3)/(s^2 + 1)^3
  25. sen3t·ch2t

  26. >> syms t;        
    >> Ft=cosh(2*t)*sin(t)^3;
    >> fs=laplace(Ft)
    fs =3/(((s - 2)^2 + 1)*((s - 2)^2 + 9)) + 3/(((s + 2)^2 + 1)*((s + 2)^2 + 9))
    >> pretty(fs)

  27. e-2tsen2t·cos4t

  28. Tal y como está no obtiene la solución. Cambiamos

    sen 2 tcos 4 t= 1 16 (1+cos2t-cos4t-cos4tcos2t)= 1 16 ( 1+ 1 2 cos2t-cos4t- 1 2 cos6t )

    >> syms t;
    >>  Ft=(1+cos(2*t)/2-cos(4*t)-cos(6*t)/2)/16;
    >> fs=laplace(Ft) 
    fs = s/(32*(s^2 + 4)) - s/(16*(s^2 + 16)) - s/(32*(s^2 + 36)) +  1/(16*s)
    >> simplify(fs)
    ans = (2*(s^4 + 28*s^2 + 72))/(s*(s^2 + 4)*(s^2 + 16)*(s^2 + 36))
    >> pretty(ans)
        4       2 
    2 (s  + 28 s  + 72) 
    ------------------------------ 
          2        2         2 
     s (s  + 4) (s  + 16) (s  + 36)

    Sin descomponer el producto:

    >> syms t;
    >> Ft=(1+cos(2*t)-cos(4*t)-cos(4*t)*cos(2*t))/16;
    >> fs=laplace(Ft)
    fs = s/(16*(s^2 + 4)) - (s^3 + 20*s)/(16*(s^4 + 40*s^2 + 144)) - 
    s/(16*(s^2 + 16)) + 1/(16*s)
    >> simplify(fs)
    ans = (2*(s^4 + 28*s^2 + 72))/(s*(s^2 + 4)*(s^2 + 16)*(s^2 + 36))

    Luego aplicar la propiedad de traslación.

Calcular las integrales

  1. 0 e -t (1-cos2t) 2t dt

  2. >> syms t;
    >> Ft=(1-cos(2*t))/(2*t);
    fs=laplace(Ft)
    fs = log(s^2 + 4)/4 - log(s)/2
    >> subs(fs,s,1)
    ans = 0.4024
  3. 0 e -t sen t t dt

  4. >> syms t;
    >> Ft=sin(t)/t;
    >> fs=laplace(Ft)
    fs = atan(1/s)
    >> subs(fs,s,1)
    ans = 0.7854
    >> pi/4
    ans = 0.7854
  5. 0 t 3 e t sen t ยทdt

  6. >> syms t;
    >> Ft= t^3*sin(t);
    >> fs=laplace(Ft)
    fs = (48*s^3)/(s^2 + 1)^4 - (24*s)/(s^2 + 1)^3 
    >> subs(fs,s,1)
    ans =0 

Transformada inversa

  1. L 1 [ 2s7 4 s 2 +25 ]

  2. >> syms s;
    >> fs=(2*s-7)/(4*s^2+25);
    >> Ft=ilaplace(fs)
    Ft =cos((5*t)/2)/2 - (7*sin((5*t)/2))/10
  3. L 1 [ 5s+3 9 s 2 49 ]

  4. >> syms s;
    >> fs=(5*s+3)/(9*s^2-49);
    >> Ft=ilaplace(fs)
    Ft =13/(63*exp((7*t)/3)) + (22*exp((7*t)/3))/63
  5. L 1 [ s ( s+2 ) 5 ]

  6. >> syms s;
    >> fs=s/(s+2)^5;
    >> Ft=ilaplace(fs)
    Ft = t^3/(6*exp(2*t)) - t^4/(12*exp(2*t))
  7. L 1 [ e 4s ( s1 ) 4 ]

  8. >> syms s;
    >> fs=exp(-4*s)/(s-1)^4;
    >> Ft=ilaplace(fs)
    Ft = (heaviside(t - 4)*exp(t - 4)*(t - 4)^3)/6

    Función escalonada unitaria de Heaviside:

    Η(t-a)={ 1t>a 0t<a

  9. L 1 [ e 3s (s+1) s 2 +s+1 ]

  10. >> syms s;
    >> fs=exp(-3*s)*(s+1)/(s^2+s+1);
    >> Ft=ilaplace(fs)
    Ft =heaviside(t - 3)*exp(3/2 - t/2)*(cos((3^(1/2)*(t - 3))/2) 
    - (3^(1/2)*sin((3^(1/2)*(t - 3))/2))/3) + (2*3^(1/2)*sin((3^(1/2)*(t - 3))/2)
    *heaviside(t - 3)*exp(3/2 - t/2))/3
  11. L 1 [ 3s s 2 +4 ]

  12. >> syms s;
    >> fs=3*s/(s^2+4);
    >> Ft=ilaplace(fs)
    Ft =3*cos(2*t)
  13. L 1 [ ln( 1+ 1 s 2 ) ]

  14. >> syms s;
    >> fs=log(1+s^-2);
    >> Ft=ilaplace(fs)
    Ft =-(2*(cos(t) - 1))/t
  15. L 1 [ 1 s ln( 1+ 1 s 2 ) ]

  16. >> syms s;
    >> fs=(log(1+s^-2))*s^-1; 
    >> Ft=ilaplace(fs) 
    Ft = ilaplace(log(1/s^2 + 1)/s, s, t)
  17. L 1 [ 1 s 3 ( s 2 +9) ]

  18. >> syms s;
    >> fs=1/(s^3*(s^2+9));
    >> Ft=ilaplace(fs)
    Ft =cos(3*t)/81 + t^2/18 - 1/81
     
    >> fs=s^-3*(s^2+9)^-1;
    >> Ft=ilaplace(fs) 
    Ft =cos(3*t)/81 + t^2/18 - 1/81
  19. L 1 [ 1 ( s 2 +9 ) 2 ]

  20. >> syms s;
    >> fs=(s^2+9)^-2;
    >> Ft=ilaplace(fs)
    Ft =sin(3*t)/54 - (t*cos(3*t))/18
  21. L 1 [ 1 s 2 (s+5) ]

  22. >> syms s;
    >> fs=s^-2*(s+5)^-1;
    >> Ft=ilaplace(fs)
    Ft =t/5 + 1/(25*exp(5*t)) - 1/25
  23. L 1 [ s+5 s 2 2s3 ]

  24. >> syms s;
    >> fs=(s+5)/(s^2-2*s-3);
    >> Ft=ilaplace(fs) 
    Ft = 2*exp(3*t) - 1/exp(t)
  25. L 1 [ 3s+5 (s+1)(s2)(s+4) ]

  26. >> syms s;
    >> fs=(3*s+5)/((s+1)*(s-2)*(s+4));
    >> pretty(fs)
                            3 s + 5 
                    ----------------------- 
                   (s + 1) (s - 2) (s + 4)
    
    >> Ft=ilaplace(fs) 
    Ft=(11*exp(2*t))/18 - 2/(9*exp(t)) - 7/(18*exp(4*t))
  27. L 1 [ 3 s 2 +2s+4 ( s2 ) 2 (s+4) ]

  28. >> syms s;
    >> fs=(3*s^2+2*s+4)/((s-2)^2*(s+4));
    >> Ft=ilaplace(fs)
    Ft =(16*exp(2*t))/9 + 11/(9*exp(4*t))+(10*t*exp(2*t))/3
  29. L 1 [ s 2 +2s4 (s2)( s 2 +4) ]

  30. >> syms s;
    >> fs=(s^2+2*s-4)/((s-2)*(s^2+4));
    >> Ft=ilaplace(fs)
    Ft =cos(2*t)/2 + exp(2*t)/2 + (3*sin(2*t))/2
  31. L 1 [ s+1 ( s 2 +2s+2 ) 2 ]

  32. >> syms s;
    >> fs=(s+1)/(s^2+2*s+2)^2;
    >> Ft=ilaplace(fs) 
    Ft =(t*sin(t))/(2*exp(t))
  33. L 1 [ s 2 +3s1 ( s 2 +2s+5)( s 2 +2s+2) ]

  34. >> syms s;
    >> fs=(s^2+3*s-1)/((s^2+2*s+5)*(s^2+2*s+2));
    >> Ft=ilaplace(fs)
    Ft = (cos(t)-4*sin(t))/(3*exp(t))-(cos(2*t)- (7*sin(2*t))/2)/(3*exp(t))
    >> pretty(Ft)

  35. L 1 [ s 2 ( s 2 +16 ) 2 ]

  36. >> syms s;
    >> fs=s^2/(s^2+16)^2;
    >> Ft=ilaplace(fs)
    Ft =sin(4*t)/8 + (t*cos(4*t))/2
  37. L 1 [ s ( s 2 +4 ) 3 ]

  38. >> syms s;
    >> fs=s/(s^2+4)^3;
    >> Ft=ilaplace(fs) 
    Ft = (t*sin(2*t))/64 - (t^2*cos(2*t))/32
  39. L 1 [ s 3 +16s24 s 4 +20 s 2 +64 ]

  40. >> syms s;
    >> fs=(s^3+16*s-24)/(s^4+20*s^2+64);
    >> Ft=ilaplace(fs) 
    Ft = cos(2*t) - sin(2*t) + sin(4*t)/2
  41. L 1 [ 1 s ln( s 2 + a 2 s 2 + b 2 ) ]

  42. >> syms s;
    >> fs=log((s^2+a^2)/(s^2+b^2));
    >> Ft=ilaplace(fs)
    Ft =(2*cos(b*t))/t - (2*cos(a*t))/t

    La solución del ejercicio es la integral de 0 a t de Ft

  43. L 1 [ arctg  ( 1 s ) ]

  44. >> syms s;
    >> fs=atan(1/s);
    >> Ft=ilaplace(fs) 
    Ft =sin(t)/t
  45. L 1 [ ln( s+5 s+3 ) ]

  46. >> syms s;
    >> fs=log((s+5)/(s+3));
    >> Ft=ilaplace(fs) 
    Ft =1/(t*exp(3*t)) - 1/(t*exp(5*t))

Ecuaciones diferenciales

  1. y''+2y'+5y= e -t sent,y(0)=0,y'(0)=1

  2. >> syms y;
    >> y=dsolve('D2y+2*Dy+5*y=exp(-t)*sin(t)','y(0)=0','Dy(0)=1')
    y =sin(t)/(6*exp(t)) + sin(2*t)/(6*exp(t)) - sin(3*t)/(8*exp(t))
     + sin(5*t)/(24*exp(t)) + (sin(2*t)*(cos(t)/4 - cos(3*t)/12 + 1/6))/exp(t)
    >> simplify(y) 
    ans = (sin(t)*(2*cos(t) + 1))/(3*exp(t))
    >> pretty(ans)
      sin(t) (2 cos(t) + 1) 
      --------------------- 
            3 exp(t)

    y= 1 3 e -t (sent+sen2t)

  3. y''+4y'+4y=8 e -2t ,y(0)=1,y'(0)=1

  4. >> syms y;
    >> dsolve('D2y+4*Dy+4*y=8*exp(-2*t)','y(0)=1','Dy(0)=1')
    ans =exp(-2*t) + 3*t*exp(-2*t) + 4*t^2*exp(-2*t)
    >> simplify(ans)
    ans =exp(-2*t)*(4*t^2 + 3*t + 1)
    
    >> syms s;
    >> fs=(8/(s+2)+s+5)/(s^2+4*s+4);
    >> ilaplace(fs)
    ans =exp(-2*t) + 3*t*exp(-2*t) + 4*t^2*exp(-2*t)

    y=4 t 2 e -2t +3t e -2t + e -2t = e -2t (4 t 2 +3t+1)