El péndulo giratorio de Pohl

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Oscilaciones

Osciladores (I)
Oscilaciones libres
Oscilaciones
amortiguadas
Oscilaciones forzadas
el estado estacionario
Oscilaciones forzadas
el estado transitorio 
marca.gif (847 bytes)El péndulo de Pohl
Una partícula cae 
sobre muelle elástico
Caja sobre una cinta
transportadora
Oscilador amortiguado
por una fuerza cte (I).
Oscilador amortiguado
por una fuerza cte (II).
Oscilaciones amortiguadas

Oscilaciones forzadas

 

El péndulo de Pohl es un sistema oscilante que consta de un anillo de cobre unido a un muelle helicoidal que puede girar alrededor de un eje horizontal.

El disco se frena mediante las corrientes de Foucault que genera el campo magnético producido por una bobina en el anillo de cobre. Como se estudia en la página titulada “Corrientes de Foucault (I)” el momento de las fuerzas que ejerce el campo magnético sobre las corrientes inducidas es proporcional a la velocidad angular de rotación y de sentido contrario a ésta.

La intensidad del campo magnético es proporcional a la corriente i que pasa por la bobina, la fuerza sobre dichas corrientes es también proporcional al campo magnético. El momento de frenado es proporcional, por tanto, al cuadrado de la intensidad de la corriente que pasa por la bobina.

La fuerza oscilante se proporciona mediante un motor de velocidad variable, que dispone de una rueda impulsora y una excéntrica unida a una biela. La biela se atornilla a una varilla que puede girar alrededor del mismo eje y cuyo extremo está unido al muelle helicoidal. La varilla dispone de una ranura que permite ajustar la amplitud de la oscilación forzada. La varilla impulsora y el disco giran independientemente uno del otro, solamente están conectados por el muelle helicoidal.

En esta página, vamos a realizar dos experiencias simuladas con el péndulo giratorio de Pohl:

  • Oscilaciones amortiguadas: medida de la constante de amortiguamiento

  • Oscilaciones forzadas: medida de la amplitud en el estado estacionario en función de la frecuencia de la fuerza oscilante.

 

Oscilaciones amortiguadas

Se desplaza el disco de la posición de equilibrio y se suelta

La ecuación de la dinámica de rotación del anillo de cobre es

=-- λω

  • α  es la aceleración angular del disco cuando el indicador del péndulo se encuentra en la posición angular θ.

  • I es el momento de inercia del anillo respecto del eje de rotación

  • k es la constante del muelle helicoidal

  • λω es el momento de rozamiento proporcional a la velocidad angular ω de rotación, debidos a las corrientes de Foucault producidas en el disco de cobre por el campo magnético de la bobina.

Expresamos la ecuación del movimiento en forma de ecuación diferencial

ω0 es la frecuencia natural o propia del oscilador, y γ es la constante de amortiguamiento.

El péndulo de Pohl de la marca Leybold-Heraeus que disponemos en el laboratorio de Física de la EUITI de Eibar tiene una frecuencia de aproximadamente f0=0.5 Hz, un periodo P0=1/f0=2 s, la frecuencia angular propia es ω0=2πf0=π rad/s en ausencia de rozamiento, es decir, cuando no se conecta la bobina a la fuente de alimentación de corriente continua.

Oscilación es amortiguada. γ<ω0

La solución de la ecuación diferencial es

ω es la frecuencia angular de la oscilación amortiguada, que difiere poco de la frecuencia propia ω0, si el amortiguamiento γ es pequeño. No se debe de confundir ω la frecuencia de la oscilación amortiguada, con la velocidad angular de rotación del disco.

La velocidad angular de rotación dθ/dt es

Las condiciones iniciales determinan los valores de las constantes A y φ.

En la experiencia simulada, se desplaza el disco de cobre 150º, θ0=5π/6 de la posición de equilibrio y se suelta, momento en el que empieza a contar el tiempo t=0.

θ0=Asenφ
0=-γAsenφ+ ωAcosφ

Despejamos del sistema de dos ecuaciones con dos incógnitas A y φ.

Las sucesivas posiciones de máximo desplazamiento angular, para las cuales la velocidad angular del disco es cero, se denominan posiciones de retorno y se calculan poniendo dθ/dt=0

tan(ωt+φ)=ω/γ

Si el móvil parte de la posición θ0 con velocidad angular nula, tanφ=ω/γ, los sucesivos tiempos son:

Medida de la constante de amortiguamiento

En el instante tm=mπ/ω, el máximo desplazamiento del indicador del péndulo es

El cociente

Ejemplo. En el instante t=0, la posición de máximo desplazamiento es la posición inicial θ0=150º, en el instante t9=9.0 el desplazamiento máximo medido es -48.4º.

La constante de amortiguamiento γ vale

Comprobación

t9=9·π/ω=9.007 s

Oscilación es crítica. γ=ω0

La solución de la ecuación diferencial es

La velocidad angular de rotación dθ/dt es

Las condiciones iniciales determinan los valores de las constantes A y B.

En la experiencia simulada, se desplaza el disco de cobre 150º, θ0=5π/6 de la posición de equilibrio y se suelta, momento en el que empieza a contar el tiempo t=0.

θ0=B
0=AB

Despejamos del sistema de dos ecuaciones con dos incógnitas A y B.

El oscilador tiende a la posición de equilibrio θ=0, después de un tiempo t→∞, sin oscilar

Oscilación es sobreamamortiguada. γ>ω0

La solución de la ecuación diferencial es

La velocidad angular de rotación dθ/dt es

Las condiciones iniciales determinan los valores de las constantes A y B.

En la experiencia simulada, se desplaza el disco de cobre 150º, θ0=5π/6 de la posición de equilibrio y se suelta, momento en el que empieza a contar el tiempo t=0.

θ0=A+B
0=β(B-A)-γ(A+B)

Despejamos del sistema de dos ecuaciones con dos incógnitas A y B.

El oscilador tiende a la posición de equilibrio θ=0, después de un tiempo t→∞, sin oscilar.

Actividades

Se introduce,

  • La intensidad i de la corriente que pasa por la bobina, lo que equivale a una constante de amortiguamiento γ=1.396·i2

  • La frecuencia propia o natural del oscilador se mantiene fija e igual a ω0=π rad/s

Se pulsa el botón titulado Empieza

Se observa las oscilaciones amortiguadas del péndulo de Pohl

Se pulsa el botón titulado Gráfica

Se representa 5 periodos de la oscilación amortiguada.

Arrastramos con el puntero del ratón el punto de color azul situado en el eje horizontal y medimos dos posiciones de desplazamiento máximo, θn y θm alejadas una de la otra, y los correspondientes tiempos tn y tm. Calculamos la constante de amortiguamiento γ, mediante la fórmula

 

AmortiguadasApplet aparecerá en un explorador compatible con JDK 1.1.

Pulsar el botón titulado Gráfica. Arrastrar con el puntero del ratón el punto de color azul situado en  el eje horizontal

 

Oscilaciones forzadas

En la sección anterior, se ha descrito el oscilador amortiguado, la oscilación desaparece al cabo de un cierto tiempo, teóricamente infinito. En esta sección se describe el mecanismo que permite mantener la oscilación.

Disponemos de un motor de velocidad angular variable ωf. El eje M del motor está situado a una distancia horizontal c y vertical a del eje O del anillo de cobre donde situamos el origen. Una excéntrica de radio r=|MB| está unida a una biela AB. El extremo A de la biela de longitud b está unida a una varilla excitadora AP que puede girar alrededor del eje O. La distancia R=OA se puede modificar mediante un tornillo que sujeta el extremo A de la biela a una ranura existente en la varilla. Modificando R se modifica la amplitud de la fuerza oscilante.

Como el motor gira con velocidad angular constante, en un determinado instante el ángulo que forma la excéntrica con la horizontal θ=ωft. Dado el ángulo θ, calcularemos el ángulo f, que forma la varilla con la vertical.

Sea α el ángulo que forma la biela con la horizontal,

cosf-senα=a-senθ
senf+cosα=c+cosθ

Eliminamos el ángulo α de este sistema de dos ecuaciones

(Rcosf-a+rsenθ)2+(c+rcosθ-Rsenf)2=b2

y teniendo en cuenta que f es un ángulo pequeño, por lo que senff y cosf0

En la figura, se muestra la gráfica del ángulo de la fuerza f en función de θ, para los siguientes datos r=1.0, b=22.0, a=10.0, c=22.0,

  • La curva roja se ha trazado para R=7.0

  • La curva azul se ha trazado para R=12.0

Ambas curvas difieren de un MAS, aunque pueden hacerse próximas a un MAS con una elección apropiada de los parámetros.

Como vemos en la figura, cambiando R, la distancia entre el eje de rotación del anillo de cobre O y el extremo A de la biela cambia la amplitud de la fuerza oscilante.

En la simulación supondremos que la fuerza oscilante produce un momento respecto del eje de rotación del anillo, descrito por la función armónica

Mf=M0f·cos(ωf·t)

siendo M0f· la amplitud y ωf la frecuencia angular.

La ecuación del movimiento del disco se escribe ahora

=-- λω+Mf

  • α  es la aceleración angular del disco cuando el indicador del péndulo se encuentra en la posición angular θ.

  • I es el momento de inercia del anillo respecto del eje de rotación

  • k es la constante del muelle helicoidal

  • λω es el momento de rozamiento proporcional a la velocidad angular ω de rotación, debidos a las corrientes de Foucault producidas en el disco de cobre por el campo magnético de la bobina.

  • Mf es el momento de la fuerza oscilante producida por el motor respecto del eje de rotación O.

Expresamos la ecuación del movimiento en forma de ecuación diferencial

  • donde ω0 es la frecuencia natural o propia del oscilador
  • ωf es la frecuencia angular del momento producido por la fuerza oscilante de amplitud M0f
  • γ es la constante de amortiguamiento,

Como mostramos en la página titulada “El estado transitorio y su evolución hacia el estado estacionario”, la solución de la ecuación diferencial con las condiciones iniciales θ=0, y dθ/dt=0 en el instante t=0, el indicador del anillo parte del origen con velocidad angular inicial nula, es

Actividades

Se introduce,

  • La intensidad i de la corriente que pasa por la bobina, lo que equivale a una constante de amortiguamiento γ=1.396·i2

  • La frecuencia del momento de la fuerza oscilante f, actuando en la barra de desplazamiento titulada Frecuencia fuerza, ωf=2πf rad/s.

  • La frecuencia propia o natural del oscilador se mantiene fija e igual  f0= 0.5 Hz, ω0=π rad/s.

  • La amplitud del momento de la fuerza oscilante M0f/I, actuando en la barra de desplazamiento titulada Amplitud.

Se puede elegir entre

  • la representación gráfica de la posición del indicador θ en función del tiempo t, activando la casilla titulada Gráfica,

  • la simulación del oscilador forzado, cuando dicha casilla se encuentra desactivada.

Se pulsa el botón titulado Empieza

Manteniendo fija la intensidad i de la corriente que pasa por la bobina (o la constante de amortiguamiento γ), y la amplitud M0f del momento de la fuerza oscilante, y con la casilla Gráfica activada, medimos la amplitud de la oscilación forzada en el estado estacionario para varios valores de la frecuencia de la fuerza oscilante ωf, completando tablas similares a la siguiente:

Intensidad i=

Cociente ωf/ω0

Amplitud (estado estacionario)

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

Se representa los datos de dos tablas en la misma gráfica, empleando distintos colores para cada gráfica.

 

ForzadasApplet aparecerá en un explorador compatible con JDK 1.1.