Varilla que se mueve en un campo magnético uniforme (IV)

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Electromagnetismo

Ley de Faraday
Espiras en un campo
magnético variable (I)
Espiras en un campo
magnético variable (II)
Demostración de
la ley de Faraday (I)
Demostración de 
la ley de Faraday (II)
Acelerador de partículas
El betatrón
Varilla que se mueve
en un c. magnético (I)
Caída de una varilla
en un c. magnético
Movimiento de una
espira a través de
un c. magnético
Medida del campo
magnético
Generador de corriente
alterna
Galvanómetro balístico
Corrientes de Foucault
Imán en tubo metálico
Inducción homopolar
Un disco motor y
generador
Varilla que se mueve
en un c. magnético (II)
Varilla que se mueve
en un c. magnético (III)
marca.gif (847 bytes)Varilla que se mueve
 en un c. magnético (IV)
Momento angular de
los campos EM (I)
Momento angular de
los campos EM (II)
Fundamentos físicos

Descripción cualitativa

Descripción cuantitativa

Actividades

Referencias

 

Hemos ilustrado la ley de Faraday con el clásico ejemplo  de una varilla que se mueve sobre dos raíles paralelos con velocidad constante situados en una región en la que hay en un campo magnético uniforme y constante en el tiempo, perpendicular al plano de los raíles. En esta página, vamos a estudiar el movimiento de la varilla cuando el campo magnético es uniforme pero cambia con el tiempo, en particular, cuando aumenta rápidamente y luego, se hace constante.

 

Fundamentos físicos

Una varilla de longitud L y masa m se mueve sobre raíles paralelos separados una distancia a, tal como se muestra en la figura.

Cuando la varilla se encuentra en la posición x, el flujo del campo magnético a través de la espira ABCD es

Φ=B·S=Bax

La fem inducida es

Supongamos que la resistencia del lado CD del circuito es R y el resto es superconductor. La intensidad de la corriente inducida es

i=Vε/R

Si el campo B apunta hacia arriba y aumenta, el flujo Φ aumenta y la corriente inducida i, de acuerdo a la ley de Lenz, tiene sentido de las agujas del reloj.

Una corriente i que circula por la porción de varilla de longitud a, experimenta una fuerza F en el seno de un campo magnético uniforme B.

F=i·ut×B·a

donde ut es un vector unitario que señala la dirección y sentido del movimiento de los portadores de carga (positivos).

Como el campo magnético B es perpendicular a la varilla. El módulo de F es

F=iBa

Es un vector paralelo a los raíles y cuyo sentido es hacia la izquierda, tal como se señala en la figura.

La ecuación del movimiento de la varilla es

Conocida la expresión del campo B en función del tiempo t, se resuelve esta ecuación diferencial por procedimientos numéricos con las siguientes condiciones iniciales: en el instante t=0, la varilla se encuentra en la posición x0 en reposo dx/dt=0

 

Descripción cualitativa

Supondremos que el campo magnético crece rápidamente en un intervalo pequeño de tiempo y luego, se mantiene constante con valor B0. El movimiento de la varilla se divide en dos etapas:

  1. En la primera etapa t<Δt, el primer término entre paréntesis predomina sobre el segundo, ya que dB/dt es grande al incrementarse B rápidamente. Supondremos que durante este breve tiempo la varilla no se habrá desplazado apreciablemente de su posición inicial x0.

Integrando ambos miembros, con las condicione iniciales t=0, B=0, y dx/dt=0, y en el instante final B=B0, y dx/dt=vf.

  1. En la segunda etapa tt, el campo B se mantiene constante y dB/dt=0.

Las condiciones iniciales son: en el instante t=0, xx0, B=B0 constante, y dx/dt=vf

La aceleración es de signo contrario a la velocidad, positiva, la varilla se frena. Integrando

Cuando la velocidad v se hace cero, la varilla se detiene en la posición

La posición final es la mitad de la posición inicial

 

Descripción cuantitativa.

Una función que describe bastante bien un campo magnético que crece rápidamente con el tiempo y luego, se mantiene constante B0 es

B=B0(1-exp(t/τ))

Donde τ se denomina constante de tiempo.

En el instante t=5τ, el valor del campo B=0.99B0 es prácticamente constante

Para describir el movimiento de la varilla tenemos que resolver la ecuación diferencial por procedimientos numéricos

con las condiciones iniciales siguientes: en el instante t=0, la varilla se encuentra en la posición x=x0, en reposo, dx/dt=0.

Los dos programas interactivos de esta página resuelven esta ecuación diferencial por el procedimiento de Runge-Kutta.

 

Actividades

Se introduce

  • El valor de la constante de tiempo τ, actuando en la barra de desplazamiento titulada Cte. de tiempo.

  • La posición inicial, de la varilla se ha fijado en x0=10

  • Se ha fijado el valor de la constante de proporcionalidad  

  • El campo magnético es perpendicular al plano de los raíles y apunta hacia dentro.

Se pulsa el botón titulado Empieza

Podemos observar las dos etapas del movimiento de la varilla:

  1. Como el flujo aumenta y es hacia dentro, la corriente inducida tiene el sentido contrario a las agujas del reloj (positiva). La fuerza acelera la varilla hacia el origen (velocidad negativa), incrementando su velocidad.

  1. La corriente inducida cambia de sentido, la fuerza frena la varilla hasta que se para, después de un tiempo teóricamente infinito.

En la parte inferior del applet, se representa

  • En color azul, el campo magnético B en función del tiempo t

  • En color rojo, la intensidad de la corriente inducida.

En la parte derecha del applet, se proporcionan los datos de la velocidad v de la varilla y la intensidad i de la corriente inducida

Cuando la constante de tiempo es pequeña, por ejemplo, τ=0.1, el campo crece rápidamente en un tiempo muy corto y luego, se mantiene prácticamente constante. La varilla se detiene cerca de la posición calculada en el apartado descripción cualitativa: x=x0/2=10/2=5.

FemApplet aparecerá en un explorador compatible JDK 1.1
                                      

 

En el segundo applet, examinamos el papel del campo magnético B0 y de la distancia a entre los raíles.

Se introduce

  • El campo magnético B0, en el control de edición titulado C. magnético

  • La distancia a entre los raíles, en el control de edición titulado Distancia raíles

  • El valor de la constante de tiempo τ, en el control de edición titulado Cte. de tiempo.

Se pulsa el botón titulado Empieza

Se representa mediante flechas

  • El vector campo magnético, hacia arriba o hacia abajo, según que B0 sea positivo o negativo, en color azul

  • El vector iut, que señala el sentido de la corriente inducida: i es la intensidad y ut es un vector unitario, en color rojo

  • El vector fuerza, en color negro.

Para un valor dado del la constante de tiempo τ

  • Cambiar el valor de B0, manteniendo la distancia a constante. Probar con B0 positivo y negativo.

  • Mantener B0 constante y cambiar el valor de a.

Mantener a y B0 constantes y cambiar el valor de la constante de tiempo τ

 

FemApplet aparecerá en un explorador compatible JDK 1.1

 

Referencias

Physics challenge for teachers and students, A faradayan slip April 2006, The Physics Teacher Vol 44, 2006