Sólido rígido
|
Dinámica de rotación Ecuación de la dinámica de rotación Momentos de inercia Dinámica de rotación y balance energético Péndulo de torsión Péndulo compuesto El columpio Rozamiento en el movimiento de rotación El oscilador de "Atwood"
Lápiz que cae (I) Lápiz que cae (II) Escalera que desliza Escalera, estática y dinámica |
Movimiento de la partícula
Comparación de los dos movimientos Fuerzas Fx y Fy que se ejercen sobre la varilla en su eje de rotación |
||||||||||||||||||||||||||||||
Vamos a investigar para qué ángulos de inclinación θ y para que posiciones γL de la partícula, la varilla llega al suelo antes que la partícula, lo que a primera vista resulta sorprendente, ya que la varilla es un cuerpo que no cae libremente.
Movimiento de la partículaYa hemos estudiado el movimiento de caída de un cuerpo en el capítulo de Cinemática. La partícula se deja caer desde una altura y0=γLcos θ0 partiendo del reposo y=y0-gt2/2 El tiempo Pp que tarda en llegar al suelo y=0 es La energía potencial de la partícula E=mg·y0 se convierte en energía cinética cuando llega al suelo. El principio de conservación de la energía se escribe
Movimiento de rotación la varillaLa varilla es un sólido rígido en rotación alrededor de un eje fijo perpendicular a la varilla y que pasa por su extremo O.
La ecuación de la dinámica de la rotación alrededor de un eje fijo, es IO·α=M
Para obtener el ángulo θ que hace la varilla con el suelo en función del tiempo t, se integra la ecuación diferencial mediante procedimientos numéricos.
con las condiciones iniciales siguientes: en el instante t=0, la varilla está inclinada un ángulo θ=θ0 y parte del reposo, ω=dθ/dt=0 Estudio energéticoLa energía potencial de la varilla es la energía potencial de una partícula de masa m situada en el c.m. de la varilla E=mg(L/2)·cosθ0. La energía potencial se convierte en energía cinética de rotación. El principio de conservación de la energía se escribe.
Como vemos la ecuación del movimiento nos permite calcular la posición angular θ y la velocidad angular ω de la varilla en función del tiempo t. Sin embargo, el principio de conservación de la energía nos permite calcular la velocidad angular ω en función de la posición θ. Tiempo que tarda la varilla en caer al sueloIntegrando entre θ0 y π/2, obtenemos el tiempo Pv que tarda la varilla en llegar al suelo.
Empleando la fórmula del coseno del ángulo doble cos2A=cos2A-sen2A, y la relación sen2A+cos2A=1, lo expresamos
Haciendo el cambio de variable
Llegamos finalmente, a la expresión deseada para el tiempo Pv que tarda la varilla en llegar al suelo cuando se suelta en la posición angular θ0. Una expresión similar a la obtenida para el periodo de un péndulo para cualquier amplitud.
La integral se puede calcular numéricamente o se puede encontrar en tablas, si la escribimos como diferencia entre la integral elíptica completa cuyos límites son 0 yπ/2 y la integral elíptica de primera especie de límites 0 a φ0. El programa interactivo que viene a continuación calcula la diferencia Ie entre las dos integrales, cuando introducimos la posición inicial θ0 de la varilla. El cálculo se basa en el procedimiento de Carlson . Véase Numerical Recipes in C, Special functions. Capítulo 6º Programa que calcula la diferencia entre las dos integrales elípticas
Comparación de los dos movimientosComparación de aceleraciones
El punto P de la varilla describe una circunferencia de radio γL. Hallamos su aceleración tangencial at. La aceleración de la gravedad en dicha dirección es g·senθ Si la primera es mayor que la segunda, se cumplirá que la varilla cae más deprisa que la partícula. Como vamos a comprobar, esta es una condición necesaria pero no suficiente para que la varilla llegue antes al suelo que la partícula. Comparación de tiempos de vuelo Comparemos los tiempos que requiere cada cuerpo para alcanzar el suelo La partícula sale de la posición y0=γLcosθ0 y llega al suelo en el instante Pp La varilla parte de la posición angular inicial θ0, y tarda un tiempo Pv Donde Ie es la diferencia entre los valores de las dos integrales elípticas de primera especie que calcula el pequeño programa interactivo del aparatado anterior. La varilla llegará antes que la partícula si se cumple que Pp>Pv, o bien La posición inicial de la partícula γL depende de la posición angular inicial de la varilla θ0, para que la varilla llegue antes que la partícula. En la siguiente tabla:
Los números en las columnas de la tabla nos sugieren las siguientes conclusiones: Para cada posición angular inicial θ0, se tiene que
Como γ es menor que la unidad, para las posiciones angulares θ0=30º, 40º, la partícula siempre llega antes que la varilla. Como podemos comprobar, mediante el programa interactivo, el ángulo mínimo para el cual γc=1 es θ0≈42º Para un valor dado γ<0.666…=2/3, la varilla llegará al suelo después de la partícula cualquiera que sea el ángulo inicial θ0 de partida tal como puede apreciarse en la tabla.
ActividadesSe introduce
Se pulsa en el botón titulado Empieza Se observa el movimiento de rotación de la varilla y el movimiento de la partícula. Investigar para que posiciones y ángulos de partida la varilla llega al suelo antes que la partícula.
|
Fuerzas Fx y Fy que se ejercen sobre la varilla en su eje de rotación.El centro de masas de la varilla describe un movimiento circular de radio L/2. Por tanto, la aceleración del c.m. tiene dos componentes:
En la parte izquierda de la figura, se muestra las direcciones de la aceleración tangencial y normal cuando la varilla hace un ángulo θ con la vertical. En la parte derecha de la figura, se muestra las componentes rectangulares de dichas aceleraciones.
Dado el ángulo θ, despejamos Fx y Fy del sistema de ecuaciones. Ejemplo:
Calcular Fx y Fy cuando θ=60º Primero calculamos las componentes de la aceleración at=6.37 m/s2 Luego, calculamos las componentes de la fuerza que se ejerce sobre la varilla en el eje Fx=0.546 N
ReferenciasPara el apartado "Tiempo que tarda la varilla en caer al suelo" Theron W. The "faster than gravity" demostration reviisted. Am. J. Phys. 56 (8) August 1988, pp. 736-739 |