Dinámica |
Trabajo y energía Trabajo y energía
El muelle elástico (I) El muelle elástico (II) El muelle elástico (III) Partícula unida a una goma Trabajo y energía (el bucle) El péndulo cónico Equilibrio y estabilidad (I) Equilibrio y estabilidad (II) Equilibrio y estabilidad (III) Equilibrio y estabilidad (IV) Movimiento sobre una cicloide (I) Movimiento sobre cúpula semiesférica Movimiento sobre sup. semicircular Carrera de dos esquiadores Movimiento sobre una cicloide (II) Movimiento sobre una parábola |
Fundamentos físicos | |||||
En esta página estudiamos el comportamiento del péndulo simple cuando su amplitud es pequeña. En el capítulo de Oscilaciones estudiaremos el comportamiento del péndulo para cualquier valor de la amplitud
Fundamentos físicosUn péndulo simple se define como una partícula de masa m suspendida del punto O por un hilo inextensible de longitud l y de masa despreciable. Si la partícula se desplaza a una posición q0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar.
Medida de la aceleración de la gravedadCuando el ángulo q es pequeño entonces, senq » q , el péndulo describe oscilaciones armónicas cuya ecuación es q =q0·sen(w t+j ) de frecuencia angular w2=g/l, o de periodo La ley de la gravitación de Newton describe la fuerza de atracción entre dos cuerpos de masas M y m respectivamente cuyos centros están separados una distancia r. La intensidad del campo gravitatorio g, o la aceleración de la gravedad en un punto P situado a una distancia r del centro de un cuerpo celeste de masa M es la fuerza sobre la unidad de masa g=F/m colocada en dicho punto. su dirección es radial y dirigida hacia el centro del cuerpo celeste. En la página dedicada al estudio del Sistema Solar, proporcionamos los datos relativos a la masa (o densidad) y radio de los distintos cuerpos celestes. Ejemplo: Marte tiene un radio de 3394 km y una masa de 0.11 masas terrestres (5.98·1024 kg). La aceleración g de la gravedad en su superficie es Tenemos dos procedimientos para medir esta aceleración
Se mide con un cronómetro el tiempo t que tarda en caer una partícula desde una altura h. Se supone que h es mucho más pequeña que el radio r del cuerpo celeste.
Se emplea un instrumento mucho más manejable, un péndulo simple de longitud l. Se mide el periodo de varias oscilaciones para minimizar el error de la medida y se calculan el periodo P de una oscilación. Finalmente, se despeja g de la fórmula del periodo. De la fórmula del periodo establecemos la siguiente relación lineal.
ActividadesSe selecciona un cuerpo celeste de la lista de cuerpos celestes, en el control selección titulado Planeta Se establece la longitud l del péndulo en cm, actuando en la barra de desplazamiento. Se pulsa el botón titulado En marcha, para poner en marcha el cronómetro, se pulsa el misma botón titulado Parar, para medir el intervalo de tiempo. En esta "experiencia" se mide el tiempo de cinco oscilaciones Se cambia la longitud del péndulo y se realiza una nueva medida y así sucesivamente. En el control área de texto, situado a la izquierda del applet se recoge los datos "experimentales", longitud del péndulo (en m) periodo (de una oscilación en s). Cuando se tienen suficientes datos se pulsa el botón titulado Gráfica. El programa interactivo traza la recta cuya pendiente es la inversa de la aceleración de la gravedad g y los datos "experimentales" en forma de puntos de color rojo. |