El efecto Compton

En el efecto fotoeléctrico solamente hemos considerado que el fotón tiene una energía E=hf . Ahora bien, un fotón también tiene un momento lineal p=E/c.

Esta relación no es nueva, sino que surge al plantear las ecuaciones que describen las ondas electromagnéticas. La radiación electromagnética tiene momento y energía. Cuando analicemos cualquier proceso en el que la radiación electromagnética interactúa con las partículas cargadas debemos de aplicar las leyes de conservación de la energía y del momento lineal.

En el caso del efecto fotoeléctrico, no se aplicó la ley de conservación del momento lineal por que el electrón estaba ligado a un átomo, a una molécula o a un sólido, la energía y el momento absorbidos están compartidos por el electrón y el átomo, la molécula o el sólido con los que está ligado.

Vamos a obtener la fórmula del efecto Compton a partir del estudio de un choque elástico entre un fotón y un electrón inicialmente en reposo.

  1. Principio de conservación del momento lineal
  2. p=p'+pe (1)

  3. Principio de conservación de la energía
  4. E k =c m e 2 c 2 + p e 2 m e c 2

    donde me es la masa en reposo del electrón 9.1·10-31 kg

    El principio de conservación de la energía se escribe

E=E'+c m e 2 c 2 + p e 2 m e c 2 (2)

Resolviendo el sistema de ecuaciones (1) y (2) llegamos a la siguiente expresión

1 E 1 E' = 1 m e c 2 ( 1cosθ )

Teniendo en cuanta la relación entre frecuencia y longitud de onda se convierte en la expresión equivalente

λ'λ= h m e c ( 1cosθ )

Hemos obtenido el valor de la constante de proporcionalidad λc a partir de las constantes fundamentales h, me y c.

Llegamos entonces a la conclusión de que podemos explicar la dispersión de la radiación electromagnética por los electrones libres como una colisión elástica entre un fotón y un electrón en reposo en el sistema de referencia del observador. A partir de las ecuaciones de conservación del momento lineal y de la energía, llegamos a la ecuación que nos relaciona la longitud de onda de la radiación incidente λ con la longitud de onda de la radiación dispersada λ’ y con el ángulo de dispersión θ .

Actividades

En la experiencia real, el detector es un cristal de INa, la fuente de rayos gamma está producida por el isótopo Cs-137, que tiene un pico muy agudo centrado en 661.6 keV, o en la longitud de onda 1.878 10-12 m, (0.01878 A). Los electrones libres los proporciona un trozo de metal que puede ser una varilla de hierro.

Midiendo la diferencia de longitudes de onda entre la radiación dispersada y la radiación incidente se pide calcular la constante λC. A partir del valor de esta constante, y conocida los valores de las constantes fundamentales, velocidad de la luz c=3·108 m/s y la masa del electrón me=9.1·10-31 kg, se pide calcular el valor de la constante h de Planck, comprobando que está cerca del valor 6.63·10-34 Js.

Se pulsa el botón titulado Nuevo

Se mide la longitud de onda de la radiación dispersada.

Ejemplo:

La longitud de onda de la radiación dispersada para el ángulo 60º es λ'=0.03091 A. Calcular la constante λC y a continuación, la constante h de Planck.

0.03091-0.01878=λC(1-cos60)
λC=0.02426 A=2.426·10-12 m

2.426· 10 12 = h 9.1· 10 31 ·3· 10 8 h=6.623· 10 34 Js

En la parte inferior izquierda, se representa la intensidad de la radiación gamma que registra el detector en función de la longitud de onda. En el programa interactivo, la fuente de rayos gamma emite ondas electromagnéticas cuyas longitudes de onda están centradas en 0.01878 A. La forma del pico se ha representado mediante la gaussiana

y= 1 2π σ exp( ( xa ) 2 2 σ 2 )

centrada en dicha longitud de onda a, y cuyo valor sigma σ se ha ajustado para dar la apariencia de un pico agudo (en color azul). La radiación registrada por el detector se ha representado por medio de otra gaussiana (en color rojo) centrada en la longitud de onda dispersada cuyo valor de sigma σ va creciendo con el ángulo de dispersión.

En la parte inferior derecha, se muestran los valores numéricos de las longitudes de onda en angstrong (10-10 m) de la radiación incidente y dispersada.

En la parte derecha, vemos de forma animada el choque elástico entre un fotón y un electrón en reposo. Observamos cómo cambia la longitud de onda de la radiación dispersada a medida que aumenta el ángulo de dispersión.

El electrón retrocede adquiriendo un momento lineal pe y formando un ángulo que se puede calcular a partir de las ecuaciones de conservación del momento lineal (1) y de la energía (2). Para calcular la velocidad v del electrón, necesitamos la expresión relativista del momento lineal

p e = m e v 1 v 2 c 2

Referencias

La descripción de la experiencia real se encuentra en University Laboratory Experiments. Physics. Volume 3. PHYWE. Pág. 5.2.12.