Oscilaciones transversales de un imán

El dispositivo experimental consta de un par de bobinas de Helmholtz de radio R y que constan de N espiras cada una, conectadas a una batería de modo que la corriente recorre las espiras en el mismo sentido. Las bobinas se disponen paralelamente a una distancia a una de la otra. Un pequeño imán de momento dipolar μ se cuelga de un hilo de modo que esté situado en el punto medio del eje de las bobinas.

Cuando el eje del imán no coincide con el eje de las bobinas el campo magnético ejerce un momento que tiende a orientar su momento dipolar en la dirección del campo. Como veremos el imán describe aproximadamente un Movimiento Armónico Simple (M.A.S.), cuyo periodo medimos con un cronómetro.

El campo magnético producido por una bobina de radio R, de N espiras, recorrida por una corriente de intensidad i, en un punto de su eje que dista x de su centro es

B= μ 0 Ni R 2 2 ( R 2 + x 2 ) 3

Su dirección es la del eje de la bobina y su sentido está dado por la regla de la mano derecha, el señalado en la figura.

El campo producido por dos bobinas iguales, recorridas por la misma corriente i, en el punto medio del eje común de las bobinas x=R/2 es

B= B 1 + B 2 =2 μ 0 Ni 2R ( 1+1/4 ) 3 = 8 5 5 μ 0 Ni R

Los campos producidos por las dos bobinas tienen el mismo módulo, la misma dirección y el mismo sentido.

Si el imán se separa un ángulo pequeño θ del eje de las bobinas, se ejerce sobre él un momento M=μ×B

La ecuación de la dinámica de rotación alrededor de un eje fijo Z se escribe

I·α=-μB·sinθ

Donde I es el momento de inercia del imán, que depende de su forma y dimensiones y α la aceleración angular

El signo menos se interpreta del siguiente modo:

Expresando la ecuación del movimiento en forma de ecuación diferencial

d 2 θ d t 2 + μB I sinθ=0

Esta es una ecuación similar a la obtenida en el estudio del péndulo simple. No es la ecuación diferencial de un MAS. Ahora bien, si la amplitud de la oscilación es pequeña, hacemos la aproximación sinθ≈θ.

d 2 θ d t 2 + μB I θ=0

Tenemos entonces, la ecuación diferencial de un MAS de frecuencia angular

ω 2 = μB I

Como el campo magnético B es proporcional a la intensidad i que circula por las espiras, la representación gráfica de ω2 en función de i será una línea recta. Midiendo la pendiente de la recta calculamos el momento dipolar magnético μ del imán

Si el imán parte de la posición θ0 en el instante t=0, con velocidad angular inicial dθ/dt=0, la ecuación del MAS, como puede deducirse fácilmente, es

θ=θ0·cos(ωt)

Energía potencial de un dipolo magnético en un campo magnético

Cuando un momento actúa sobre un cuerpo y éste gira un determinado ángulo, se realiza un trabajo. Cuando el dipolo gira un ángulo , el trabajo realizado es

dW=-M·dθ=-μBsinθ·dθ

El signo menos aparece por que el momento tiende a disminuir el ángulo θ,

Como el trabajo de una fuerza conservativa es igual a la variación de energía potencial cambiada de signo (definición de energía potencial)

dEp=-dW=μBsinθ·dθ

Integrando

Ep=-μBcosθ+C

Donde C es una constante aditiva que nos permite establecer el nivel cero de energía potencial. La energía potencial es nula cuando θ=90º, luego, C=0.

Ep=-μBcosθ=-μ·B

La energía potencial es el producto escalar de dos vectores, el momento magnético μ y el campo magnético B.

Actividades

El programa interactivo genera aleatoriamente un valor del momento magnético μ comprendido entre 2.0 y 5.0 A·m2

Se pulsa el botón titulado Nuevo

Para calcular el momento dipolar magnético necesitamos los siguientes datos (véase el artículo citado en las referencias):

Con estos datos, obtenemos la relación de proporcionalidad entre el cuadrado de la frecuencia angular ω2 y la intensidad i.

ω 2 =μ 8 5 5 154·4π· 10 7 0.20·3.23· 10 5 i=21.435·μ·i

Midiendo el periodo P=2π/ω de las oscilaciones para una intensidad i dada, calculamos el momento dipolar μ del imán. Para medir el periodo utilizamos los botones pausa || y paso a paso >|

Referencias

Bisquert J., Manzanares J. A., Mafé S. Determinación experimental del momento dipolar magnético, un modelo estático y dos dinámicos. Revista Española de Física, V-6, nº 2, 1992, págs. 43-47.