Dinámica de una partícula unida a una goma elástica
Supongamos una goma de longitud d sujeta por su extremo superior, del extremo inferior se puede colgar un cuerpo de masa m. El comportamiento de la goma es distinto al de un muelle elástico tal como observamos en la figura.

- Para x<0 la goma no ejerce ninguna fuerza sobre el cuerpo de masa m. F=0
- Para x>0 la goma ejerce una fuerza F=-k·x. Suponiendo que la goma tiene un comportamiento lineal (ley de Hooke)
Si sujetamos el cuerpo con la mano y hacemos que descienda muy despacio. Llega un momento en el que la fuerza que ejerce la goma equilibra el peso del cuerpo y la acción de la mano ya no es necesaria. En esta situación de equilibrio, el cuerpo se ha desplazado xe
mg=kxe

Si se deja caer un cuerpo desde la posición del extremo superior de la goma x=-d, aplicando el principio de conservación de la energía, calculamos la velocidad que alcanza cuando la goma se ha estirado una longitud x.
La máxima deformación xm de la goma se alcanza cuando v=0
A continuación, describiremos las distintas etapas del movimiento de un cuerpo unido a una goma elástica inicialmente estirada, y que presenta una mayor riqueza de comportamientos que la equivalente de un cuerpo unido a un muelle elástico.
Oscilaciones
Un cuerpo de masa m unido a un muelle elástico de constante k describe un Movimiento Armónico Simple, cuya amplitud es independiente del periodo y cuya frecuencia angular es ω2=k/m.
Supongamos que el cuerpo de masa m se desplaza hacia abajo una longitud z0 desde la posición de equilibrio y luego se suelta (v=0), tal como se indica en la figura.
El cuerpo ascenderá impulsado por la fuerza -kx+mg. La ecuación del movimiento se escribirá
La solución de esta ecuación diferencial como puede comprobarse por simple sustitución es
x=xe +Asin(ωt)+Bcos(ωt) con ω2=k/m
Donde xe=mg/k es la posición de equilibrio, y las constantes A y B se determinan a partir de las condiciones iniciales: en el instante t=0, x=z0, v=dx/dt=0
La posición x del cuerpo en función del tiempo t será
x=xe+z0·cos(ωt)
Pueden ocurrir dos casos:
-
Si z0≤xe
-
Si z0>xe
El sistema describe un Movimiento Armónico Simple de amplitud z0 y de periodo 2π/ω. El periodo de la oscilación es independiente de la amplitud z0.
En el instante t=P el cuerpo llega a la posición x=0
con velocidad
A partir de este instante, la fuerza que actúa sobre el cuerpo es su propio peso. La máxima altura que alcanza es
empleando un tiempo de Q=v0/g
El cuerpo inicia su movimiento descendente, llegando en el instante t=P+2Q a x=0 con velocidad v0, pero en sentido opuesto. A partir de este momento, actúa la fuerza que ejerce la goma. En el instante t= 2P+2Q vuelve a la posición de partida completándose la oscilación, cuyo periodo vale
La amplitud de la oscilación es
Aplicando el principio de conservación de la energía, calculamos z1
Conocido z1 se calcula la amplitud de la oscilación (z1+xe+z0)/2
Ejemplo:
Para k=400 N/m y m=350 kg.
La posición de equilibrio xe es
Sea la posición de partida z0 =12.65 m (segundo caso) en el instante t=0 por debajo de la posición de equilibrio.
Empleando el principio de conservación de la emergía calculamos z1=7.21 m la altura que se eleva el cuerpo en la región x<0.
Calculamos la frecuencia angular ω=1.15 rad/s, y el periodo de la oscilación 6.22 s que como vemos es distinto de 2π/ω, debido a que el cuerpo se mueve en la región x<0 donde la fuerza que ejerce la goma es F=0.
El problema general
Consideremos una goma elástica de longitud d sin deformar y de constante elástica k (a la izquierda en la figura). Uno de los extremos se sujeta a un poste de altura h. Del extremo libre cuelga un cuerpo de masa m inicialmente anclado a la base del poste tal como apreciamos en la figura (en el centro). Para describir el movimiento unidimensional establecemos el origen en la base del poste y el eje X tal como se indica en la figura
Una vez que se suelta el cuerpo, estudiaremos las distintas etapas de su movimiento hasta que regresa a la base del poste. Supondremos que la goma es perfectamente elástica y que el rozamiento del cuerpo con el aire es despreciable.

- Situación inicial
- Primera etapa (x<h-d)
- Segunda etapa (h-d<x<h+d)
- Tercera etapa (x>h+d)
-
Cuarta etapa (h-d<x<h+d)
-
Quinta etapa (0<x<h-d)
El cuerpo de masa m está sujeto en x=0. La goma está estirada una longitud h-d. La energía inicial es
Si la fuerza que ejerce la goma k(h-d) es mayor que el peso mg, el cuerpo se eleva, su aceleración es
ma=k(h-d-x)-mg
donde h-d-x es la deformación de la goma cuando el cuerpo se ha elevado una altura x sobre el suelo (a la derecha en la figura).
Tenemos la ecuación diferencial de un M.A.S.
de frecuencia angular ω2=k/m.
La solución de la ecuación diferencial tiene la forma
x=x0+Asin(ωt)+Bcos(ωt)
con x0=h-d-g/ω2.
Las condiciones iniciales t=0, x=0, v=dx/dt=0 determinan los valores de las constantes A y B. El resultado final es
x=x0(1-cos(ωt))
v=x0ω·sin(ωt)
El cuerpo llega a la posición x=h-d, en el instante t1 tal que
con una velocidad v1
v1=x0ω·sin(ωt1)
Esta velocidad se puede obtener aplicando el principio de conservación de la energía

Cuando el cuerpo se encuentra en el intervalo que va desde x=h-d a x=h+d, la goma se dobla pero no se comprime, por tanto, no ejerce ninguna fuerza sobre el cuerpo de masa m. La única fuerza que actúa sobre el cuerpo es su propio peso mg.
La posición y la velocidad del cuerpo en el instante t>t1 se obtienen a partir de las ecuaciones del movimiento rectilíneo uniformemente acelerado
El cuerpo llega a la posición x=h+d en el instante t2 tal que
La velocidad v2 del móvil será
v2=v1-g(t2-t1)
Aplicando el principio de conservación de la energía obtenemos v2 a partir de v1
Dicha velocidad se alcanza en el instante

Cuando el cuerpo está a una altura x>h+d, la goma vuelve a estirarse ejerciendo una fuerza sobre el cuerpo cuyo valor es k(x-h-d). La aceleración del cuerpo es
ma= -k(x-h-d)-mg
La ecuación del movimiento se escribe
La solución de la ecuación diferencial tiene la forma
Las condiciones iniciales t=t2, x=h+d, v=dx/dt=v2 determinan los valores de las constantes A y B.
La altura máxima se alcanza en el instante tm tal que v=0
Aplicamos el principio de conservación de la energía para obtener la altura máxima xm.
A partir de este instante, se inicia el viaje de vuelta hasta que regresa al punto de partida x=0 con velocidad nula v=0 empleando un tiempo 2tm.
La posición x=h+d se alcanza en el instante t3=tm+tm-t2=2tm-t2 con una velocidad –v2
La goma no influye en el movimiento del cuerpo, de modo que las ecuaciones del movimiento son similares a las de la segunda etapa.
La posición y la velocidad del cuerpo en el instante t>t3 se obtienen a partir de las ecuaciones del movimiento rectilíneo uniformemente acelerado
Alcanzando la posición x=h-d en el instante t4=t3+(t2-t1)=2tm-t1 con velocidad –v1
La ecuación del movimiento es la misma que en la primera etapa.
La solución de la ecuación diferencial tiene la forma
Las condiciones iniciales t=t4, x=h-d, v=dx/dt=-v1 determinan los valores de las constantes A y B. El resultado final es
Alcanzándose la posición x=0 en el instante 2tm con velocidad v=0. Con lo que se completa un ciclo del movimiento.
Casos particulares
El cuerpo pasa por la posición x=h-d, pero no alcanza la posición x=h+d
No se alcanza la posición x=h-d
Si la energía del cuerpo
El cuerpo pasa por la posición x=h-d con una velocidad v1 empleando un tiempo t1, calculado en la primera etapa.
El cuerpo alcanza después una altura máxima xm<h+d
en el instante tm=t1+v1/g
El cuerpo después de pasar la posición x=h-d en el camino de vuelta regresa al origen x=0 en el instante 2tm
Si la energía del cuerpo
El cuerpo alcanza una altura máxima xm<h-d que se calcula aplicando el principio de conservación de la energía o poniendo v=0 en la ecuación del movimiento de la partícula en la primera etapa
Describiendo un MAS alrededor de la posición de equilibrio x0=xm/2. La posición de equilibrio se calcula poniendo a=0, en la primera etapa del movimiento, o bien, k(h-d-x0)=mg, resultando x0=h-d-g/ω2.
El periodo de la oscilación es 2π/ω, o tiempo que tarda en salir de x=0, y regresar a la misma posición.
Ejemplos
Ejemplo1
Sea k=960.0 N/m y m=300 kg.
El cuadrado de la frecuencia angular es ω2=960/300=3.2 rad2/s2

x=h-d=20 m
x=h+d=40 m
La máxima altura
El instante t1 que tarda la partícula en alcanzar la posición x= 20 m es
Despejando t1 se obtiene t1=0.98 s
La velocidad v1=x0ω·sin(ωt1)=29.80 m/s
Aplicando el principio de conservación de la energía calculamos la velocidad v2
v2=22.27 m/s
El tiempo que tarda en alcanzar esta posición es t2=t1+(v1-v2)/g=1.75 s
Aplicando el principio de conservación de la energía calculamos la máxima altura xm
xm=49,76 m
El tiempo que tarda en alcanzar esta altura se calcula mediante la fórmula
tm=2.49 s
El tiempo total que tarda en regresar al origen será de 2tm=4.98 s.
Ejemplo 2
Sea k=360.0 N/m y m=300 kg.
El cuadrado de la frecuencia angular es ω2=360/300=1.2 rad2/s2
Estamos en el caso particular 1
x=h-d=20 m
La altura máxima se calcula aplicando el principio de conservación de la energía
El instante t1 que tarda la partícula en alcanzar la posición x= 20 m es (primera etapa)
t1=2.12 s. Alcanzándose la velocidad v1= 9.38 m/s
xm=24.50 m, tardando un tiempo tm=t1+v1/g=3.08 s
El tiempo total que tarda en regresar al origen será de 2tm=6.16 s.
Ejemplo 3
Sea k=360.0 N/m y m=500 kg.
El cuadrado de la frecuencia angular es ω2=360/500=0.72 rad2/s2
Estamos en el caso particular 2
Aplicando el principio de conservación de la energía determinamos la altura máxima xm
xm=12.78 m
El tiempo que tarda en regresar al origen x=0 es el periodo de la oscilación 2π/ω=7.40 s
La oscilación se realiza alrededor de la posición de equilibrio x0=xm/2=6.39 m.
k=960; %constante elástica m=300; %masa w=sqrt(k/m); h=30; %altura del poste d=10; %longitud de la goma sin deformar %fin de la primera fase if w^2*(h-d)≤9.8 %el peso es mayor que la fuerza de la goma disp('Disminuir la masa o aumentar la constante'); return; end t1=acos(-9.8/(h*w^2-d*w^2-9.8))/w; v1=(h-d-9.8/w^2)*w*sin(w*t1); if w^2*(h-d)≤2*9.8 %no se alcanza la posición y=h-d t1=pi/w; t4=t1; elseif w^2*(h-d)^2≤2*9.8*(h+d) %no se alcanza la posición y=h+d t4=t1+2*v1/9.8; else %completa todos los pasos v2=sqrt(v1^2-4*9.8*d); t2=t1+(v1-v2)/9.8; %tercera fase (altura máxima y tiempo) tMax=t2+atan(w*v2/9.8)/w; t3=2*tMax-t2; t4=t3+t2-t1; end tt=linspace(0,t4+t1,300); %el periodo es t4+t1 y=zeros(1,length(tt)); v=zeros(1,length(tt)); a=zeros(1,length(tt)); opcion=0; i=0; for t=tt i=i+1; switch opcion case 0 y(i)=(h-d-9.8/w^2)*(1.0-cos(w*t)); v(i)=w*(h-d-9.8/w^2)*sin(w*t); a(i)=w^2*(h-y(i)-d)-9.8; if y(i)>h-d opcion=1; end case 1 y(i)=(h-d)+v1*(t-t1)-4.9*(t-t1).^2; v(i)=v1-9.8*(t-t1); a(i)=-9.8; if y(i)>h+d opcion=2; end if y(i)<h-d opcion=4; end case 2 y(i)=(h+d-9.8/w^2)+(v2/w)*sin(w*(t-t2))+(9.8/w^2)*cos(w*(t-t2)); v(i)=v2*cos(w*(t-t2))-(9.8/w)*sin(w*(t-t2)); a(i)=w^2*(y(i)-h-d)-9.8; if y(i)<h+d opcion=3; end case 3 y(i)=(h+d)-v2*(t-t3)-4.9*(t-t3).^2; v(i)=-v2-9.8*(t-t3); a(i)=-9.8; if y(i)<h-d opcion=4; end case 4 y(i)=(h-d-9.8/w^2)-(v1/w)*sin(w*(t-t4))+(9.8/w^2)*cos(w*(t-t4)); v(i)=-v1*cos(w*(t-t4))-(9.8/w)*sin(w*(t-t4)); a(i)=w^2*(h-y(i)-d)-9.8; if y(i)>h-d opcion=1; end end end plot(tt,y); grid on xlabel('t (s)') ylabel('y (m)') title('Altura') figure subplot(2,1,1) plot(tt,v) grid on xlabel('t(s)') ylabel('v(m/s)') title('Velocidad') subplot(2,1,2) plot(tt,a) grid on xlabel('t(s)') ylabel('a(m/s^2)') title('Aceleración')
Actividades
Se introduce
- La constante elástica k de la goma, en el control titulado Constante k
- La masa m del cuerpo, en el control titulado Masa
En el programa se han fijado los datos de
- La altura del poste h=30 m
- La longitud de la goma sin deformar d=10 m
Se pulsa el botón titulado Nuevo
En el caso que se introduzca datos de m y k tales que k(h-d)≤mg, el cuerpo no puede ascender, el programa no prosigue, se debe disminuir la masa o aumentar la constante elástica para poder continuar.
Se proporcionan los datos de la posición x, la velocidad v y aceleración a del móvil en un instante t
Al lado del cuerpo, se dibujan las fuerzas que actúan sobre el mismo. En la parte derecha, se dibuja un diagrama en forma de tarta que nos muestra como se van transformando las energías, cinética, potencial gravitatoria, y potencial elástica a medida que se mueve la partícula.
Referencias
Theron W F D. The dynamics of a bungee rocket. Eur. J. Phys. 23 (2002), pp. 643-650